
Scaling Databases to Infinity and

Beyond!
(Well, almost Infinity!)

Agenda

©2021 PayPal Inc. Confidential and proprietary. 2

1. Intro

2. Tenets

3. Keys

4. Tables

5. Access Path

6. DB Engines

Intro

About the Speaker

• Currently Sr. Database/Data Architect @ PayPal

• Has been working with Oracle Databases and UNIX for 3+ decades

• Working on various NoSQL/Big Data technologies for the past 6 years

• Design and Implement High scale systems – Both Oracle and NoSQL

• Author, Technical editor, Oracle ACE Alumni, Frequent speaker

• Loves to mentor new speakers and authors!

• http://www.linkedin.com/in/johnkanagaraj

Alumni

© 2021 PayPal Inc. Confidential and proprietary.

Definitions: Data Platforms

5

System of Origin (SOO)

Any application or repository where

data is initially captured.
Purpose built repositories oriented to

one or more specific business use

cases.

An officially designated system or

repository for data that has been

determined to be reliable and accurate.

The authoritative data source for the

specified data element after it has

been remediated and validated.

System of Record (SOR) Authoritative Data Source (ADS) Authoritative Data Marts (ADM)

/ Reporting & Analytics

Producers/Suppliers Distribution Consumption

Site Transactional Databases Strict Process Integrity – accuracy

and consistency guarantees during

data processing. OLTP & ACID Semantics

Operational Workload /

Processing, Reporting & Controls

Analytical Workload
Write Once Read Many (WORM)

Distribution

6

System of Origin (SOO)

Any application or repository where

data is initially captured.
Purpose built repositories oriented to

one or more specific business use

cases.

Authoritative Data Marts (ADM)

/ Reporting & Analytics

Producers/Suppliers Consumption

OLTP & ACID Semantics

Operational Workload /

Processing, Reporting & Controls

Analytical Workload
Write Once Read Many (WORM)

An officially designated system or

repository for data that has been

determined to be reliable and accurate.

The authoritative data source for the

specified data element after it has

been remediated and validated.

System of Record (SOR) Authoritative Data Source (ADS)

Site Transactional Databases Strict Process Integrity – accuracy

and consistency guarantees during

data processing.

Site Data Architecture

Core Tenets

© 2015 PayPal Inc. All rights reserved. Confidential and proprietary.

Know [Data About] Your Data (KYD)

SECURITY

Site Data Architecture
Core Tenets

Resiliency Scalability Cost of Ownership

99.999% = 5.26 minutes/year Distributed Data Stores

Scale-Out Architecture

Gotta keep count of the $$!

©2016 PayPal Inc. Confidential and proprietary. 10

Challenges at Scale

• Pushing the limits

• Connections

• Memory

• Interconnect

• CPU

• DDL on busy tables

• RAC reconfiguration

• Redo rate

• I/O latencies

• SAN Storage limits

• Replication latencies

• HA requirements

• Solutions

• Custom Connection pooling and
multiplexing (OCC)

• Read Scale out (replication)

• Microservice oriented architecture
(logical separation)

• Custom HA caching (Juno)

• Custom Sharding

• Active-Active operation using
Oracle RO‘s and GoldenGate

• Storage Tiering and Archiving

•

• Moving to Cloud! 

Scaling and Blast Radius Resiliency Patterns

11

Monolith

SH0 SH1

SH2 SH3

3 Read Only Replicas
ORO / LDR / DR

2 Horizontal DB Splits SH0 SH1

SH2 SH3

0 Monolith / Antipattern

4 Cache

Cutovers and Failovers

were the only way to know

the blast radius.

When Tier-1 service starts to

depend on non-Tier-1 db.

Why different shards have

different blast radius (>2x).

Fragmented R/W traffic split

for Tier-1 services.

Observations Data Layer

Domain 3 Domain 2 Domain 1

Vertical DB Splits 1

6 Read from Cache

7 Read/Write Split

5 Tier-2/3 apps

Application Layer

Tier-1

 apps

Logical DB Logical DB

HERA/OCC Orchestration
Shard Routing, Local R/W Split, Auto Failover, Auto Retry, Integrated Caching, Neutral SQL Protocol

HERA/OCC Orchestration
Shard Routing, Local R/W Split, Auto Failover, Auto Retry, Integrated Caching, Neutral SQL Protocol

Resiliency Vision

12

Shard-N Shard-N

Active

DR

LDR

Shard-1 Shard-1

Active

DR

LDR

Shard-0 Shard-0

Active

DR

LDR

Design for Survival

RTO in Seconds

RPO is Zero

Autonomous Disaster Detection

Autonomous DR Triggering

Automated DR Procedures

Design for Survival

RTO in Seconds

RPO is Zero

Autonomous Disaster Detection

Autonomous DR Triggering

Automated DR Procedures

Keys: Timed UUID

Timed UUID / PayPal Variant

 6E8BC430-9C3A-11D9-9669-

0800200C9A66

128-bit number in

hexadecimal format:

UUID Version

1- timed; 4 - random

[time-low]-[time-mid]-[version-and-time-high]-[clock-misc.]-[node]

count of 100 nanosecond intervals

Since 10/15/1582 00:00:00.00 UTC

11D9-9C3A-6E8BC430-9669-

0800200C9A66
64 random bits 60 time-based bits

Hexadecimal unshuffled:

4 bits

Globally Unique

Decentralized

Sortable

Primary Key, Idempotency Key, Time-Based Partition Key

[50.123456]-[11:20]-[2021-05-27] Decimal equivalent:

[2021-05-27]-[11:20]-[50.123456] Decimal equivalent unshuffled:

[SS.FFFFFF]-[HH24:MI]-[YYYY-MM-DD]

[YYYY-MM-DD]-[HH24:MI]-[SS.FFFFFF]

Timed UUID / PayPal Variant / Collision Rate

11D9-9C3A-6E8BC430-9669-

080F210C9A66
64 random bits 60 time-based bits

Hexadecimal unshuffled

4 bits

Globally Unique

Decentralized

Sortable

To allow for 50% probability of one collision,

we need to generate 9.1x109 UUIDs within 100 nanoseconds

(ns).

~7.9B

people

100 ns =

1 sec / 10M

KYD: Table Categories

Table Categories

© 2020 PayPal Inc. Confidential and proprietary.

Immutable Mutable

Master Data

Reference or configuration data.

Standard business objects like merchant, customer,

customer account, customer address, etc..

Country

Lookup Customer
Customer

Balance
Merchant

Table Categories

© 2020 PayPal Inc. Confidential and proprietary.

Immutable Mutable

Master Data

Reference or configuration data.

Standard business objects like merchant, customer,

customer account, customer address, etc..

Transactional Data

These are time-based recordings of events.

Time-based events that are modifiable until they

'close’, such as payments or customer cases.

Country

Lookup Customer
Customer

Balance
Merchant

Customer

Activity Log
Payment

Customer

Case
Journal

Table Categories

© 2020 PayPal Inc. Confidential and proprietary.

Immutable Mutable

Master Data

Reference or configuration data.

Standard business objects like merchant, customer,

customer account, customer address, etc..

Transactional Data

These are time-based recordings of events.

Time-based events that are modifiable until they

'close’, such as payments or customer cases.

Country

Lookup
Customer

Customer

Address
Merchant

Customer

Activity Log
Payment

Customer

Case

Hybrid Tables

[Master + Transactional Data]

[Do Not Mix]

KYD: Access Path

Problem Statement

Acct # Time Attribute 1 Attribute 2 Attribute 3 Attribute N

100 t1 A X 6 !@

400 t1 A Y 7 #$

300 t2 B X 8 %^

100 t3 C Z 0 ^&

300 t4 D Z 9 *(

..

1. Customer Activities

2. Query Requirements

Customers need to query and search their data.

ACCOUNT#

TIMED_KEY

Attribute_1

Attribute_2

Attribute_3

..

Attribute_N

PK

CUSTOMER_ACTIVITY

Problem Statement cont.

ACCOUNT#

TIMED_KEY

Attribute_1

Attribute_2

Attribute_3

Attribute_4

Attribute_5

Attribute_6

…

…

…

Attribute_N

1. Denormalized Table

Attribute_1

Attribute_2

Attribute_3

Attribute_4

Attribute_5

Attribute_6

…

Attribute_N

2. Query Requirements

IDX1 Account#, Attribute_1

IDX2 Account#, Attribute_2

IDX3 Account#, Attribute_3

IDX4 Account#, Attribute_4

IDX5 Account#, Attribute_5

IDX6 Account#, Attribute_6

… …

IDX_N Account#, Attribute_N

3. Required Indexes

Need to search and query within

ACCOUNT# across all attributes

PK

CUSTOMER_ACTIVITY (CA)

Payload

/ Value

Denormalized Index
(Denormalized)2

1. Denormalized Table

ACCOUNT#

ATTRIBUTE_VALUE

ATTRIBUTE_ID

TIMED_UUID

2. “Denormalized” Index

ACCOUNT#

TIMED_UUID

Attribute_1

Attribute_2

Attribute_3

Attribute_4

Attribute_5

Attribute_6

Attribute_7

Attribute_8

…

Attribute_N

PK

CUSTOMER_ACTIVITY

CA_INDEX

DIY / Logical Index.

Inverted Key-Val index.

Key-Val structure.

Key Value

K1 A, Y, 4

K2 A, X, 0

K3 B, X, 7

.. ..

Value Key

A K1, K2

B K3

X K2, K3

Y K1, K5

.. ..

Query

1. Denormalized Table

ACCOUNT#

ATTRIBUTE_VALUE

ATTRIBUTE_ID

TIMED_UUID

2. “Denormalized” Index 3. How does it work?

Phase 1: Query Index Table

Phase 2: Fetch from CA

--pseudo code

SELECT *

FROM customer_activity

JOIN

(SELECT account#, timed_uuid FROM

ca_index

 WHERE account#=:a

 AND attribute_value = ‘Arch’

 AND attribute_id = 42

) i

 ON ca.account# = i.account#

AND ca.timed_uuid = i.timed_uuid

--dual PK access

--pseudo code

SELECT *

FROM customer_activity

JOIN

(SELECT account#, timed_uuid FROM

ca_index

 WHERE account#=:a

 AND attribute_value = ‘Arch’

 AND attribute_id = 42

) i

 ON ca.account# = i.account#

AND ca.timed_uuid = i.timed_uuid

--dual PK access

CUSTOMER_ACTIVITY

CA_INDEX

ACCOUNT#

TIMED_UUID

Attribute_1

Attribute_2

Attribute_3

Attribute_4

Attribute_5

Attribute_6

Attribute_7

Attribute_8

…

Attribute_N

25

Search

--Type Ahead

SELECT attribute_value

 FROM ca_index

 WHERE account#=:a

 AND attribute_value like ’%USA%’

AND rownum < 10;

--Type Ahead

SELECT attribute_value

 FROM ca_index

 WHERE account#=:a

 AND attribute_value like ’%USA%’

AND rownum < 10;

SELECT * FROM customer_activity

JOIN

(SELECT account#, timed_uuid

 FROM ca_index

 WHERE account#=:a

 AND attribute_value = ‘%USA%’

 AND attribute_id = 42

) i

 ON ca.account# = i.account#

AND ca.timed_uuid = i.timed_uuid

SELECT * FROM customer_activity

JOIN

(SELECT account#, timed_uuid

 FROM ca_index

 WHERE account#=:a

 AND attribute_value = ‘%USA%’

 AND attribute_id = 42

) i

 ON ca.account# = i.account#

AND ca.timed_uuid = i.timed_uuid

ACCOUNT#

ATTRIBUTE_VALUE

ATTRIBUTE_ID

TIMED_UUID

ACCOUNT#

TIMED_UUID

Attribute_1

Attribute_2

Attribute_3

…

Attribute_N

Scaling it Out

CUSTOMER_ACTIVITY CA_INDEX
MOD(ACCOUNT#,128) // (128)

S0 S1 S127 S2 S5

MOD PARTITION #5

T
IM

E
D

_
U

U
ID

2019-Q1

2021-Q1

2021-Q2

2021-Q3

Sharding / Scale-Out

Range

Partitions

ACCOUNT# = Shard Key

TIMED_UUID = Range Key

PK on (ACCOUNT#, TIMED_UUID)

Current State (7+ y/o CAM)

• 8 Physical Shards

• ~100TB/Shard

• >billions of

 reads/writes/day/table

Current State (7+ y/o CAM)

• 8 Physical Shards

• ~100TB/Shard

• >billions of

 reads/writes/day/table

DB Engine Agnostic

Why use NoSQL?

Flexibility

• Flexible schemas that enable faster and iterative

development.

• Ideal for semi-structured and unstructured datasets.

Scalability

• Designed to scale out by using distributed clusters of

hardware.

• Some cloud providers manage it behind-the-scenes

Performance

• Optimized for specific data models (e.g., document, key-

value)

• Optimized for access patterns.

Why use NoSQL?

Flexibility

• Flexible schemas that enable faster and iterative

development.

• Ideal for semi-structured and unstructured datasets.

Scalability

• Designed to scale out by using distributed clusters of

hardware.

• Some cloud providers manage it behind-the-scenes

Performance

• Optimized for specific data models (e.g., document, key-

value)

• Optimized for access patterns.

28

Appendix

Query vs Search

Query Engine Search Engine (ES)

1.Input Know exactly what you are looking for. Exact value is not required for searching.

Supports fuzzy, partial, proximity, etc., match.

2. Output Returns only results that match. Top-N ranked matches based on relevance scoring using tf-idf.

Completeness and accuracy is guaranteed. Do not need to retrieve all results. First few pages, OK.

3. Data Access Predominately index-based access.

Primary or secondary index based.

Query each shard in the index (Phase 1).

Populate local priority queue (top-n results).

Combine into global queue (global top-n).

Fetch top-n documents (Phase 2).

4. Performance Optimal performance / access path. Search has much more work to do.

5. Service Time Supports millions of executions per second.

From sub-msec.

Takes longer than regular query.

10-20 msec - considered good.

100-200 msec - under heavy load.

"Depending on the search complexity (term vs phrase vs proximity), it

can be 10 to 20 times longer than simple term search."

6. Core Strengths Predictable / Systematic Lookups. Interactive (Human!) Search / Complex Investigation.

https://www.elastic.co/guide/en/elasticsearch/guide/2.x/relevance-intro.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/_query_phase.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/_fetch_phase.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/_improving_performance.html

Key-Val and Inverted Indexes

Key Value

K1 A1, B3, C4

K2 A1, C2, X0

K3 C2, X0, Y4

.. ..

31

Value Key

A1 K1, K2

B2 K1

C2 K2, K3

C4 K1, K5

X0 K2, K3

Y4 K3

.. ..

Inverted Key-Val index.

Data Table
Index Table

Composite Key-Val Structures

Acc# Timed Key Value

ABC TK1 A1, B3, C4

ABC TK2 A1, C2, X0

ABC TK3 C2, X0, Y4

..

32

Acc# Value Timed Key

ABC A1 TK1, TK2

ABC B2 TK1

ABC C2 TK2, TK3

ABC C4 TK1, TK5

ABC X0 TK2, TK3

ABC Y4 TK3

.. ..

Inverted Key-Val index with a leading edge.

Data Table
Index Table

