
Juno: A Highly Secure, Scalable and
Available Key-Value Store With Pluggable

Storage Engine

Agenda

©2015 PayPal Inc. Confidential and proprietary. 2

• Why Juno

• Juno Architecture Overview

• Deep Dive: Sharding and Data Redistribution

• Current Status and Next Steps

Modernization

Why Juno

Customer Key Pain Points
• High Scalability
• High Availability
• High Security
• Efficiency
• Cloud Enablement

Juno Solves Key Asks
• Connection scalability while

preserving throughput and
latency

• High availability
• Highly secure

Current Solutions Fall Short
• Couchbase, Aerospike,

Cassandra, in-house in-
memory K-V Store

• None meets all requirements
• Inefficient to support all, need

consolidation

Secure, consistent, highly scalable and available key-value
store providing low (single digit millisecond) latency to meet

temporary data store needs of PayPal applications.

Juno Architecture Overview

Juno Architecture

• Distributed horizontally scalable architecture
• Thin client, proxy, storage servers

• Consistent hashing for incremental scaling

• Data replication for fault tolerance and high

availability
• Quorum based consensus protocol for data

consistency
• W+R > N, W > N/2; ex: W=3, R=3, N=5
• Two Phase Commit for write consistency

• Highly Secure with SSL/TLS enabling and at-rest
encryption

• Pluggable Storage Engine Easy to upgrade to new
storage technologies

ID Rack1 Rack
2

Rack
3

Rack
4

Rack
5

0 SS1 SS2 SS3 SS4 SS5

1 …

…

1023 SSV SSW SSX SSY SSZ

Proxy

Load Balancer

Proxy Proxy

Zone1 Zone2 Zone3 Zone4 Zone5

Client Library

Client App

Client Library

Client App…

… … … … …

Shard Map

• N=5, W=3 à seven 9s

• N=3, W=2 à five 9s

• N=1, W=1 à three 9s
ATB

vBucket based Consistent Hashing

Key a1
Key a2

…
Key am

Shard 1

Shard 2

Shard k

Server 1

Server 2

Server x

Key à Shard
Hash Function

Shard à Storage Server
Table Lookup

…

Key b1
Key b2

…
Key bm

Key k1
Key k2

…
Key km

e.g. K=1024 e.g. x=10

• Operation simplicity: All the zones
share the same shard mapping.

• Redundancy and fault tolerance: Each
shard is replicated to a group of storage
nodes located in different zones

• Quorum based protocol is used to get
consensus on a value in the storage
group (3 out of 5): W+R > N, W > N/2;
ex: W=3, R=3, N=5

• Load balance: We divide the keys in
each shard into 5 chunks, determined
by hash mod 5. For each chunk, we
assign an ordered list of storage nodes.

xData Redundancy for Fault Tolerance

Zone 0 Zone 1 Zone 2 Zone 3 Zone 4
Chunk 0 Primary Primary Primary

Chunk 1 Primary Primary Primary

Chunk 2 Primary Primary Primary

Chunk 3 Primary Primary Primary

Chunk 4 Primary Primary Primary

… … … ……Storage
Group 1

Storage
Group n

• Failover is automatic and immediate. No
data redistribution needed.

• When zone 1 fails, for chunk 0, the first 3
available nodes in the assigned list will
change to (0, 2, 3) from (0, 1, 2).

• We can survive multiple nodes failures as
long as there are no more than 2 failures
on the same storage group.

x

Storage Node Failure Scenario

Storage
Group

Zone 0 Zone 1 Zone 2 Zone 3 Zone 4

Chunk 0 Primary Primary Primary Secondary

Chunk 1 Primary Primary Primary Secondary

Chunk 2 Primary Primary Primary

Chunk 3 Primary Primary Primary

Chunk 4 Primary Primary Secondary Primary

Node0 Node1 Node2 Node3 Node4

9

Quorum Based Two Phase Commit

Proxy
(Coordinator)

Prepare Response Commit/Abort

Storage Server Group
(Participants)

Two-phase commit, phase one Two-phase commit, phase two

Proxy
(Coordinator)

Proxy
(Coordinator)

Proxy
(Coordinator)

Storage Server Group
(Participants)

Storage Server Group
(Participants)

Storage server will rollback if commit protocol not complete (due to failure or loss of connection)

Juno Security

• TLS: secure communication with
client & replication server

• Payload encryption (at client or
proxy) for secure storage at rest

• Key Management module
manages certificate, key distribution
and rotation

TLSKey Management

Client Library

Client App

Proxy

Storage Server Group

Payload
Encryption

TCP

TLS Replication to
Other clusters

11

Pluggable Storage Engine

Storage Server
Storage Engine A Storage Engine B

Benefits

• Choose underline storage engines
based on application needs

• Easy to upgrade to new storage
technologies

Supported Engines

• RocksDB as persistent storage engine

• In-house in-memory storage engine

Storage Server Storage Server

Sharding and Data
Redistribution Deep Dive

Data Redistribution: Requirements

When a cluster scales up or down, some shards must be redistributed to
different nodes to reflect new cluster topology.

• Minimize the number of shards need to be moved.
• Load balance across each node after redistribution.
• Transparent to client: no downtime and minimizing performance impact.
• Maintain data consistency while performing data redistribution.

Juno Sharding Scheme

Node N

Shard 1

…

…

Node 1

Key 2

shard mapping

Shard 2 Shard M

Murmur3 Hash (key)

Node 2

Key 1 Key k

• Divide user key space into M logical shards

• Juno uses Murmur3 for hashing (even key
distribution & good performance)

• Low bits used to calculate Shard ID

• High bits used to calculate Microshard ID

• Microshards are only visible within shards
and used as a unit for data redistribution

• Assign logical shards to storage nodes using a
repeatable and consistent mapping algorithm

Microshard

Juno Shard Mapping Algorithm
Goal: Minimize shard moves during redistribution with a consistent mapping
Solution: Start with one node, then add nodes one at a time using the following algorithm
1. Rank nodes by number of shards in descending order (tiebreak using node id, in descending order)
2. Move shard with highest shard id from the highest ranked node to the new node
3. Repeat steps 1 & 2 until the new node has enough shards (at least average)

Data Redistribution: Execution Plan

nodes
per zone

Shard Id (Total 32 Shards)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 nodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 nodes 0 0 0 0 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 2 2 2 3 3

Execution Plan to scale cluster from 2 nodes to 4 nodes

Shards Move
Shard 8, 9, 10 Node 0 à Node 3
Shard 11, 12, 13, 14, 15 Node 0 à Node 2
Shard 27, 28, 29 Node 1 à Node 2
Shard 24, 25, 26, 30, 31 Node 1 à Node 3

2. Trigger redistribution
• Replicate real time requests (red arrows)
• Transfer snapshot (orange arrows)

Data Redistribution: Cluster Scale Up

SS node 0

1 20

Proxy

SS node 1

4 53

SS node 2

25

ETCD watcher

ETCD

Shard Map V1
Redistribution info

Cluster Manager

SS node 0

1 20

Proxy

ETCD

Shard Map V1
Redistribution info

SS node 1

4 53

SS node 2

5 2

ETCD watcher

Cluster Manager

1. Preparation
• Prepare new node
• Insert execution plan into ETCD

• Shard 2, node 0 -> node 2,
• Shard 5, node 1 -> node 2

3. Snapshot transfer complete
• Validate data

4. Finish
• Update shard Map
• Stop real time request forwarding

Data Redistribution: Cluster Scale Up II

SS node 0

1 20

Proxy

SS node 1

4 53

SS node 2

25

ETCD watcher

ETCD

Shard Map V1
Redistribution info

SS node 0

0 1

Proxy

SS node 1

3 4

SS node 2

25

ETCD watcher

ETCD

Shard Map V2

Cluster ManagerCluster Manager

19

Data Redistribution: Rate Limiter

Fill in tokens
periodically at

k MB/sec

B bytes

Record1
A1 bytes

Record2
A2 bytes

remove
token

• For every record of A bytes, remove A
bytes worth of token from bucket.

• If not enough token, wait.

Send record
to receiver

Problem

• Live incident (Couchbase): one node
down, data redistribution for
secondary shards caused system
meltdown

• Without rate limiter, receiver can be
overwhelmed

Solution

• Token bucket-based rate limiter

• Use SSD IOPS, network throughput,
number of SS instances per box, and
real-time traffic estimate to set the
rate k MB/second

Data Redistribution: Zone Markdown

• When we expand cluster zone by zone, Juno
provides an option to markdown a zone to
not take real-time traffic

• Real-time data will be processed by other
storage nodes in the group. Zone 2
resources are dedicated to redistribution.

• Other storage nodes will take 25% more real
time traffic, and so there is no significant
performance impact during redistribution.

Proxy

Zone1 Zone2 Zone3 Zone4 Zone5

… … … … …

Markdown

21

Current Status and Next Steps

Next Steps
• Migrate most of existing and future

key-value use cases to Juno

• Cloud enablement
• Open Source

• New Storage Technologies

Current Status
• Rolled out in PayPal production

since Nov 2019

• Deployed 18 live clusters across
the regions

Q&A

22

