
Real-World Performance Team

Oracle Database Development

Michael Hallas

Maintaining Availability and Restoring Performance After the Glitch Has Gone

NoCOUG Virtual Spring Conference 2020

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

Safe harbor statement

Copyright © 2020, Oracle and/or its affiliates2

Michael Hallas

The Problem of Processes
Struggling with Sessions

A Confusion of Connections

What We Do

Use the product as designed

Aim for the best performance

Apply data-driven analysis

Avoid guesswork

Share what we learn

Who We Are

Part of Oracle Database Development

Team members at HQ and in the USA, Europe
and Asia

Over three hundred years of experience
combined

Real-World Performance

Copyright © 2020, Oracle and/or its affiliates5

Something New

Guidelines for Most Workloads

Anatomy of a Glitch

Connection Primer

Maintaining Availability and Restoring Performance

Copyright © 2020, Oracle and/or its affiliates6

Getting work done in Oracle Database requires a session

In the simplest case, for example SQL*Plus

• A connection is established between my SQL*Plus process and one foreground process

• One session is authenticated using my credentials

• Away I go

Connection Primer

application
process

database
process

database
session

connection

Copyright © 2020, Oracle and/or its affiliates7

A foreground process will run on one CPU when there is work to be done

• This works for me

• What about everybody else?

Oracle relies on multiple active foreground processes to exploit multiple CPUs

For OLTP
Connection Primer

Copyright © 2020, Oracle and/or its affiliates8

ANSWER

Up to a point

• Most workloads need multiple connections

Not too many

• Wastes resources

Not too few

• May be a bottleneck

Just right!

QUESTION

So the more connections, the better?

Connection Primer

Copyright © 2020, Oracle and/or its affiliates9

Start with a minimum number of connections

If the workload increases

• If all existing connections are being used

• If the number of connections is below the maximum

- add a connection

If the workload decreases

• If some connections have been idle for some time

• If the number of connections is above the minimum

- remove a connection

Feedback loops that are mostly harmless

Just Right with a Connection Pool?

Copyright © 2020, Oracle and/or its affiliates10

ANSWER

In normal circumstances?

• Nothing much

When a glitch occurs

• Glitches may escalate to outages

QUESTION

My server has lots of memory

My server has lots of CPU

So what’s the problem?

Connection Primer

Copyright © 2020, Oracle and/or its affiliates11

ANSWER

A glitch is an unexpected transient delay to
normal processing

Some possible examples

• Delay in redo log write I/O

• Delay in network write I/O

• Invalidation or Recompilation

• Reconfiguration

QUESTION

So what is a glitch?

Anatomy of a Glitch

Copyright © 2020, Oracle and/or its affiliates12

ANSWER

Careful choices of hardware, software, people
and processes can reduce the incidence of
glitches

Even the best systems suffer from occasional
glitches

We call this the real-world!

QUESTION

Sounds bad. How do I eliminate glitches?

Anatomy of a Glitch

Copyright © 2020, Oracle and/or its affiliates13

ANSWER

Database work is delayed

Work continues to arrive

Existing connections and sessions become active

The existing connections in the connection pool
will soon be exhausted

The number of connections rises rapidly

QUESTION

So what happens during a glitch?

Wasn’t my connection pool just right?

Anatomy of a Glitch

Copyright © 2020, Oracle and/or its affiliates14

Videos from Real-World Performance

• Large Dynamic Connection Pools - Part 1

• Large Dynamic Connection Pools - Part 2

Avoiding a Thousand Words

https://apexapps.oracle.com/pls/apex/f?p=44785:112:113101737760097::::P112_CONTENT_ID:9565
https://apexapps.oracle.com/pls/apex/f?p=44785:112:113101737760097::::P112_CONTENT_ID:9566

Copyright © 2020, Oracle and/or its affiliates15

Eliminate dynamic resizing of connection pools

• Establishing a new connection is expensive

• Especially when the system is already under pressure

Aim for about right

Ten processes per CPU is almost always more than enough

• Enough to make the server busy

• But not so busy that performance suffers

Guidelines for Most OLTP Workloads

Copyright © 2020, Oracle and/or its affiliates16

Modern application often scale horizontally

• More containers

• More application server instances

• More connection pools

Sometimes it is hard to meet the guidelines

Enter Proxy Resident Connection Pool

Something New

Copyright © 2020, Oracle and/or its affiliates17

First Something Old

CLIENTS DATABASE

Each client is connected to a separate
database process and is associated
with separate database sesssions.

This allows for the programming style
with mixing of user interface and
database calls.

Copyright © 2020, Oracle and/or its affiliates18

Using DRCP – Database Resident
Connection Pool – the pooling between
sessions now take place on the database
side.

This allows for pooling using single-
threaded applications.

The programming model with separation of
user interface and database calls is required.

The actual code (Java, Python, C) is almost
the same as for multi-threaded clients.

Again, clients will have to queue when
requesting a session, if none is available

Support in ODP.NET as of 18c only.

Let the database do the pooling

CLIENTS DATABASE

DRCP
Broker

Queue

Copyright © 2020, Oracle and/or its affiliates19

The client side now has worker threads that are
responsible for user interface and has a pool of
threads that are connected to the database.

This requires the programming model with
separation of user interface and database calls.

• Java does this via UCP

• Python does this via cx_Oracle.SessionPool

• ODP.NET pool attibutes of
OracleConnection

• OCI has OCISessionPool

A multi-threaded client is required

From the database’s perspective, this is the
same as legacy, so the database doesn’t
”know” requests are from different clients.

If no session is available when requested, the
worker thread will have to queue.

Typical current model

MULTITHREADED
CLIENT

DATABASE

Queue

Copyright © 2020, Oracle and/or its affiliates20

• The application identifies itself with the database once, up front.

• This allows the pool (be it threads in the client or the DRCP broker) to
establish connections to and sessions in the database.

• When needed, i.e. when all data is available to process a complete
business transaction, the application acquires a session from the pool.

• As soon as the business transaction is complete, the session is returned to
the pool.

• The call to acquire a session may have to queue for one to be available (or
a new one to be started)

• No database state can be kept after releasing the session back to the pool.

Session pooling core points

identify();

loop ...

user_interface();

user_interface();

get_session();

sql1;

sql2;

commit;

release_session();

end loop:

leave();

Copyright © 2020, Oracle and/or its affiliates21

Shared server is very different from the pools
mentioned so far.

Each client has a session in the database; the
session is retained during user think time

No session get/release calls

During processing of one database call (such
as one SQL statement, a commit, etc), some
database process does the work.

When no database call is in progress, the
client is not associated with a process;
however, the session (with state) is still there.

Clients will potentially queue to get an
available process; this may happen for every
database call.

What about shared server?

CLIENTS DATABASE

Dispatcher

Queue

Copyright © 2020, Oracle and/or its affiliates22

Comparing the models

Direct connection Client pool DRCP Shared server

Application
style

Any session get/release
required

session
get/release
required

Any

Programming
model

Any Multi-threaded only Any Any

Benefits Supports legacy
applications

Very scalable,
database resources
only spent doing
database work

Somewhat
scalable

Somewhat scalabile,
supports legacy
application style

Drawbacks Not scalable, high
risk of database
contention

Multi-threading
required

Database
resources
spent pooling

Database resources
spent pooling, complex
database configuration

Copyright © 2020, Oracle and/or its affiliates23

PRCP runs on a separate server

It has a pool of in-coming connections,
that are one-to-one connected to client
processes.

It has a pool of out-going sessions that are
connected to database processes and
associated with database sessions.

The database does (almost) not “know” its
connections and sessions are from PRCP

PRCP allows pooling and provides a funnel
without database side overhead and
without the need for clients to be multi-
threaded.

Clients may queue if no session is
available.

PRCP – Proxy Resident Connection Pool

CLIENTS DATABASEPRCP

Q

Copyright © 2020, Oracle and/or its affiliates24

Pooling in the client exactly as with
ordinary pools.

When worker thread gets a session, it
is first gotten from the client pool,
then from the out-going pool in
PRCP. Again, this implies two
potential places for queueing.

Provides double funneling without
database side overhead.

The “price” is two network hops.

Brings the X*Y*Z<N*C goal nearer.

PRCP and client pool together

MULTITHREADED
CLIENT

DATABASEPRCP

Q

Q

Copyright © 2020, Oracle and/or its affiliates25

Comparing the models

Client pool DRCP PRCP Client pool and PRCP

Application style session get/release required in all cases

Programming
model

Multi-
threaded only

Any Any Multi-threaded only

Benefits Very scalable,
pooling done
outside
database

Somewhat scalable Very scalabile,
pooling done
outside database;
different pools
possible

Extremely scalable,
pooling done outside
database

Drawbacks Multi-
threading
required

Database resources
spent pooling; single
pool for all tenants etc

Extra network hop,
one funnel

Multi-threading
required, extra
network hop

Copyright © 2020, Oracle and/or its affiliates26

Some waits at high workloads

DB CPU effectively as with direct
connection

No errors

Application pool and DRCP

Copyright © 2020, Oracle and/or its affiliates27

Database CPU clearly reduced

Only little wait, mostly log file sync

No errors

Application pool and PRCP

Copyright © 2020, Oracle and/or its affiliates28

For most workloads, the established rules continue to apply

Ten processes per CPU is almost always more than enough

PRCP is very good at protecting the database when used with ordinary application pools

There is no such thing as a free lunch

• PRCP introduces an extra network hop

• The extra hop increases latency for lightweight SQL

If you are interested in PRCP, please contact Real-World Performance

What did we learn?
Summary

Copyright © 2020, Oracle and/or its affiliates29

Real-World Performance Team

Oracle Database Development

Michael Hallas

Thank you

Copyright © 2020, Oracle and/or its affiliates30

