
The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

Copyright © 2019 Oracle and/or its affiliates.

Real-World Performance
Techniques for Extreme Data
Warehousing

Robert Carlin

Mihajlo Tekic

Real-World Performance
Oracle Database Development

Copyright © 2019 Oracle and/or its affiliates.

What is Real-World Performance?

• Getting the most out of Software and Hardware

• Achieving Performance Excellence

Copyright © 2019 Oracle and/or its affiliates.

Real-World Performance Team

Who We Are

• Part of Oracle Database Development

• Team members in USA, Europe, and
Asia

• Over a hundred years of experience
combined

How We Work

• Use the product as designed

• Take a holistic view

• Aim for best performance

• Apply data-driven analysis

• Share what we learn

Copyright © 2019 Oracle and/or its affiliates.

What we do

Customer
Engagements

• Design Review

• Escalations

• Performance
Projects

Database 
Development

• Tools

• Applications

Customer
Education

• In Person

• Online

Root Causes of Suboptimal Database Performance

The database is not being
used as it was designed to be
used

The application architecture/
code design is suboptimal

There is a suboptimal
algorithm in the database

Copyright © 2019 Oracle and/or its affiliates.

Data Warehousing Performance

• Oracle has enhanced its data warehousing capabilities dramatically
over the last decade

Exadata
Database In-Memory
Smart Scans
Bloom Filtering
Vector Processing
Storage Indexes
Columnar Storage

Copyright © 2019 Oracle and/or its affiliates.

Data Warehousing Performance

• Many older Data Warehouse projects were built with an OLTP
mindset

Over indexing
Home grown parallelism

• Understanding of Data Warehousing concepts
Storage IO Bandwidth
Parallel Processing
Set-based processing techniques

Copyright © 2019 Oracle and/or its affiliates.

Data Model

• Ideal data model is Star Schema

Dimension

DimensionDimension

Fact

Dimension Dimension

Copyright © 2019 Oracle and/or its affiliates.

Data Model

• Ideal data model is Star Schema

Dimension

DimensionDimension

Fact

Dimension Dimension

Copyright © 2019 Oracle and/or its affiliates.

Data Model

• Ideal data model is Star Schema

• Or a derivative Snowflake Schema

Dimension Dimension

Dimension

Dimension

Dimension

DimensionDimension

Fact

Dimension Dimension

Copyright © 2019 Oracle and/or its affiliates.

Data Model

• Ideal data model is Star Schema

• Or a derivative Snowflake Schema

• Well understood design pattern

Dimension Dimension

Dimension

Dimension

Dimension

DimensionDimension

Fact

Dimension Dimension

Copyright © 2019 Oracle and/or its affiliates.

Data Model

• Ideal data model is Star Schema

• Or a derivative Snowflake Schema

• Well understood design pattern

• Proven to scale well

Dimension Dimension

Dimension

Dimension

Dimension

DimensionDimension

Fact

Dimension Dimension

Copyright © 2019 Oracle and/or its affiliates.

Data Model

• Ideal data model is Star Schema

• Or a derivative Snowflake Schema

• Well understood design pattern

• Proven to scale well

• Works well with query and ETL tools

Dimension Dimension

Dimension

Dimension

Dimension

DimensionDimension

Fact

Dimension Dimension

Schema and SQL Statement

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY

Departments

LocationsStores

Sales

Products Suppliers

Copyright © 2019 Oracle and/or its affiliates.

Dimension Model

• The advantage of the dimensional data model is that the
desired execution plan is predictable

• Knowing the data sizes, we would expect our query to return
in 10s or less

We should at least be able to estimate the data acquisition phase

Copyright © 2019 Oracle and/or its affiliates.

Desired Execution Plan

Departments

Locations Stores

Sales

Products

Suppliers

HJ

HJ

HJ

HJ

HJ

Copyright © 2019 Oracle and/or its affiliates.

Query Execution: Running poorly  

89 Seconds

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?
• Increase the degree of parallelism?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?
• Increase the degree of parallelism?
• Set optimizer_index_cost_adj?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?
• Increase the degree of parallelism?
• Set optimizer_index_cost_adj?
• Set cursor_sharing = FORCE?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?
• Increase the degree of parallelism?
• Set optimizer_index_cost_adj?
• Set cursor_sharing = FORCE?
• Increase the block size?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?
• Increase the degree of parallelism?
• Set optimizer_index_cost_adj?
• Set cursor_sharing = FORCE?
• Increase the block size?
• Google for some magic hidden parameter?

Copyright © 2019 Oracle and/or its affiliates.

What do we do to fix it?

• Update the statistics?
• Histograms?
• Column Groups?
• Increase the degree of parallelism?
• Set optimizer_index_cost_adj?
• Set cursor_sharing = FORCE?
• Increase the block size?
• Google for some magic hidden parameter?

Copyright © 2019 Oracle and/or its affiliates.

“Let’s work the problem people; let’s
not make things worse by guessing”

Gene Kranz 
Flight Director Apollo 13

Schema and SQL Statement

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY

Departments

LocationsStores

Sales

Products Suppliers

Copyright © 2019 Oracle and/or its affiliates.

Demo

Baseline Run

Baseline Run

Execution time 89s

Baseline Run

Execution time 89s

Almost all DB Time spent
on accessing data from

PRODUCTS table

Baseline Run

Execution time 89s

Almost all DB Time spent
on accessing data from

PRODUCTS table

Nested Loops join when
joining PRODUCTS table

Why?

Estimated cardinality for
row source operation 9 is

18K

Baseline Run

Execution time 89s

Almost all DB Time spent
on accessing data from

PRODUCTS table

Nested Loops join when
joining PRODUCTS table

Why?

Estimated cardinality for
row source operation 9 is

18K

Estimated cardinality for
row source operation 9 is

29K, Actual 16M

Baseline Run

Execution time 89s

Almost all DB Time spent
on accessing data from

PRODUCTS table

Nested Loops join when
joining PRODUCTS table

Why?

Estimated cardinality for
row source operation 9 is

18K

Estimated cardinality for
row source operation 9 is

29K, Actual 16M

Baseline Run

Execution time 89s

Almost all DB Time spent
on accessing data from

PRODUCTS table

Nested Loops join when
joining PRODUCTS table

Why?

The underestimate
originates from row source

13

Estimated cardinality for
row source operation 9 is

18K

Estimated cardinality for
row source operation 9 is

29K, Actual 16M

Baseline Run

Execution time 89s

Almost all DB Time spent
on accessing data from

PRODUCTS table

Nested Loops join when
joining PRODUCTS table

Why?

The underestimate
originates from row source

13

Broadcasting ~17M rows 4
times, that is ~66M rows,

causing 1G to spill to
TEMP

Baseline Run

Baseline Run
The first big underestimate is
coming from row source 28:

Estimated: 3
Actual: 60

Due to small table replication,
actual cardinality is multiplied
by the number of PX servers
(4), hence 240 reported

Baseline Run

Baseline Run
At row source 28 the following filter

predicate is evaluated:

CITY in ('CITY_1','CITY_2','CITY_3')

Analysis

Analysis

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

Analysis

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

Analysis

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'LOCATIONS';
 NUM_ROWS

 100000
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'LOCATIONS'
 AND column_name ='CITY';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 98672 0 HYBRID 254
SELECT COUNT(*)
FROM user_tab_histograms
WHERE column_name='CITY'
AND endpoint_actual_value in ('CITY_1','CITY_2','CITY_3');
 COUNT(*)

 0

Analysis: Histogram with 2048 buckets?  

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

Analysis: Histogram with 2048 buckets?  

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SQL> exec dbms_stats.gather_table_stats(user,'LOCATIONS',
METHOD_OPT=>'FOR COLUMNS CITY SIZE 2048 FOR ALL COLUMNS SIZE
AUTO');  

PL/SQL procedure successfully completed.
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'LOCATIONS'
 AND column_name ='CITY';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 98672 0 HYBRID 2048
SELECT COUNT(*)
FROM user_tab_histograms
WHERE column_name='CITY'
AND endpoint_actual_value in ('CITY_1','CITY_2','CITY_3');
 COUNT(*)

 0

Analysis: Histogram with 2048 buckets?  

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SQL> exec dbms_stats.gather_table_stats(user,'LOCATIONS',
METHOD_OPT=>'FOR COLUMNS CITY SIZE 2048 FOR ALL COLUMNS SIZE
AUTO');  

PL/SQL procedure successfully completed.
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'LOCATIONS'
 AND column_name ='CITY';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 98672 0 HYBRID 2048
SELECT COUNT(*)
FROM user_tab_histograms
WHERE column_name='CITY'
AND endpoint_actual_value in ('CITY_1','CITY_2','CITY_3');
 COUNT(*)

 0

CITY is a column with > 2048 popular values
Histogram on column CITY may not always be helpful

Analysis
Dynamic statistics with higher sampling level

Analysis
Dynamic statistics with higher sampling level

Execution time 45s

Analysis
Dynamic statistics with higher sampling level

Execution time 45s

Still NL join when joining
PRODUCTS

Analysis
Dynamic statistics with higher sampling level

Execution time 45s

Still NL join when joining
PRODUCTS

Now we have accurate
single table cardinality

estimate for LOCATIONS

Analysis
Dynamic statistics with higher sampling level

Execution time 45s

Still NL join when joining
PRODUCTS

Now we have accurate
single table cardinality

estimate for LOCATIONS

But join cardinality is still
off, hence NL join

Analysis
Dynamic statistics with higher sampling level

Execution time 45s

Still NL join when joining
PRODUCTS

Now we have accurate
single table cardinality

estimate for LOCATIONS

But join cardinality is still
off, hence NL join

Now we end up with
HYBRID HASH

DISTRIBUTION instead of
BROADCAST

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'STORES';
 NUM_ROWS

 5000
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'STORES'
 AND column_name ='LOCATION_ID';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 2080 0 HYBRID 254

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'STORES';
 NUM_ROWS

 5000
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'STORES'
 AND column_name ='LOCATION_ID';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 2080 0 HYBRID 254

About than 2 % of the LOCATIONS
used in STORES

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'STORES';
 NUM_ROWS

 5000
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'STORES'
 AND column_name ='LOCATION_ID';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 2080 0 HYBRID 254

Row filtering on STORES
and LOCATIONS

About than 2 % of the LOCATIONS
used in STORES

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'STORES';
 NUM_ROWS

 5000
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'STORES'
 AND column_name ='LOCATION_ID';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 2080 0 HYBRID 254

Row filtering on STORES
and LOCATIONS

About than 2 % of the LOCATIONS
used in STORES

Possible correlation between L.CITY
AND S.STORE_TYPE

Analysis – Reason for join cardinality misestimate between STORES and LOCATIONS

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN STORES S ON D.STORE_ID=S.STORE_ID
INNER JOIN LOCATIONS L ON S.LOCATION_ID=L.LOCATION_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (L.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND S.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY;

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'STORES';
 NUM_ROWS

 5000
SELECT num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'STORES'
 AND column_name ='LOCATION_ID';
NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------ ---------- --------------- -----------
 2080 0 HYBRID 254

Row filtering on STORES
and LOCATIONS

About than 2 % of the LOCATIONS
used in STORES

Possible correlation between L.CITY
AND S.STORE_TYPE

Could we create a
correlated column group

between CITY and STORE?

End Demo1

Copyright © 2019 Oracle and/or its affiliates.

Analysis: For the query in question 

• Standard statistics are not sufficient

• Due to data distribution, histograms are not effective either

• Dynamic statistics (sampling)
Could fix single table cardinality estimates
Due to data model, data characteristics and data distribution, join cardinality is still
inaccurate

Baseline: Join order and join method 

Baseline: Join order and join method 

LOCATIONS

Baseline: Join order and join method 

LOCATIONS STORES

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree
PRODUCTS

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree
HJ

SUPPLIERS

PRODUCTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree

LOCATIONS STORES

HJ
DEPARTMENTS

HJ

HJ

HJ

SUPPLIERS

PRODUCTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree

LOCATIONS STORES

HJ
DEPARTMENTS

HJ

HJ

HJ

SUPPLIERS

PRODUCTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree

LOCATIONS STORES

HJ
DEPARTMENTS

HJ SALES

HJ

HJ

SUPPLIERS

PRODUCTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree

LOCATIONS STORES

HJ
DEPARTMENTS

HJ SALES

HJ

HJ

SUPPLIERS

PRODUCTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

Left Deep Tree

LOCATIONS STORES

HJ
DEPARTMENTS

HJ SALES

HJ

HJ

SUPPLIERS

Right Deep Tree
(Desired Execution Plan)PRODUCTS

HJ

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

LOCATIONS STORES

HJ
DEPARTMENTS

HJ SALES

HJ

HJ

SUPPLIERS

PRODUCTS

HJ

DEPARTMENTS_DIM

Left Deep Tree Right Deep Tree
(Desired Execution Plan)

Baseline: Join order and join method 

LOCATIONS STORES

HJ

DEPARTMENTS

HJ

SALES

HJ

HJ

SUPPLIERS

PRODUCTS

NL

DEPARTMENTS_DIM SALES

HJ

HJ

SUPPLIERS

PRODUCTS

HJ

Left Deep Tree Right Deep Tree
(Desired Execution Plan)

Schema and SQL Statement 

SELECT
 CATEGORY_ID
, COUNTRY
, SUM(CTRL) as CTRL
, SUM(QUANTITY) AS S_Q
FROM
(SELECT
 P.CATEGORY_ID
 , SP.COUNTRY
 , CASE
 WHEN SP.CATEGORY='CAT_'||P.CATEGORY_ID

 THEN 1
 ELSE 0
 END as CTRL
 , QUANTITY
FROM
SALES SL
INNER JOIN DEPARTMENTS_DIM D ON SL.DEPARTMENT_ID=D.DEPARTMENT_ID
INNER JOIN PRODUCTS P ON SL.PRODUCT_ID=P.PRODUCT_ID
INNER JOIN SUPPLIERS SP ON SL.SUPPLIER_ID=SP.SUPPLIER_ID
WHERE (D.CITY) IN ('CITY_1','CITY_2','CITY_3')
AND D.STORE_TYPE=0
)
GROUP BY CATEGORY_ID, COUNTRY

Departments_dim

Sales

Products Suppliers

Copyright © 2019 Oracle and/or its affiliates.

Demo

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 5s

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 5s

Correct single table
cardinality estimate

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 5s

Correct single table
cardinality estimate

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 5s

Correct single table
cardinality estimate

Dynamic statistic used.
What if dynamic statistics couldn’t help?

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 81s

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 81sSingle table cardinality
underestimate

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 81sSingle table cardinality
underestimate

Could a column
group on CITY and
STORE_TYPE help?

Analysis: Column group on DEPARTMENS_DIM(CITY, STORE_TYPE) 

SELECT dbms_stats.create_extended_stats(USER,'DEPARTMENTS_DIM','(CITY,STORE_TYPE)') from dual;  

EXEC dbms_stats.gather_table_stats(user, 'DEPARTMENTS_DIM', METHOD_OPT=>'FOR COLUMNS (CITY,STORE_TYPE) SIZE 2048 FOR ALL COLUMNS SIZE AUTO');  

PL/SQL procedure successfully completed.

SELECT column_name, num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'DEPARTMENTS_DIM';

COLUMN_NAME NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------------------------- ------------ ---------- ---------- -----------
DEPARTMENT_ID 50000 0 NONE 1
DEPARTMENT_NAME 50000 0 NONE 1
STORE_ID 5000 0 NONE 1

CITY 2080 0 HYBRID 254
STORE_TYPE 5 0 FREQUENCY 5
SYS_STUMZODT3BT6MDTDUS_1OYH3M# 2080 0 HYBRID 1878

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 5s

Desired Run
Denormalize the join between LOCATIONS, STORES and DEPARTMENTS

Execution time 5s

Very good single table
cardinality estimate

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

• “This approach requires schema changes…”

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

• “This approach requires schema changes…”
• “This approach requires code changes (ETL, queries, etc) …”

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

• “This approach requires schema changes…”
• “This approach requires code changes (ETL, queries, etc) …”
• “If we changed the code, we would have to test it …”

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

• “This approach requires schema changes…”
• “This approach requires code changes (ETL, queries, etc) …”
• “If we changed the code, we would have to test it …”
• “The person who developed this code is no longer with the company

hence we cannot implement such a solution …”

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

• “This approach requires schema changes…”
• “This approach requires code changes (ETL, queries, etc) …”
• “If we changed the code, we would have to test it …”
• “The person who developed this code is no longer with the company

hence we cannot implement such a solution …”
• “It’s a 3rd party application …”

Copyright © 2019 Oracle and/or its affiliates.

The art of finding excuses

• “This approach requires schema changes…”
• “This approach requires code changes (ETL, queries, etc) …”
• “If we changed the code, we would have to test it …”
• “The person who developed this code is no longer with the company

hence we cannot implement such a solution …”
• “It’s a 3rd party application …”
• “After much consideration the management decided to stick with the

current solution …”

Copyright © 2019 Oracle and/or its affiliates.

Enter the Materialized View

• Traditionally the Materialized View (MV) is to
Materialize expensive joins
Summarize or rollup frequently aggregated data

• Some Key Properties
A query can automatically be re-written by the optimizer to use an MV

Transparent to user queries
No data model changes required

MV’s can automatically be kept up to date by the database

Create an MV for the join between LOCATIONS, STORES and DEPARTMENTS

CREATE MATERIALIZED VIEW DEP_STORE_LOC_MV
PARALLEL 4
ENABLE QUERY REWRITE
AS
SELECT D.*
 , L.CITY
 , S.STORE_TYPE
from DEPARTMENTS D
 , STORES S
 , LOCATIONS L
WHERE D.STORE_ID=S.STORE_ID
AND S.LOCATION_ID=L.LOCATION_ID;

Copyright © 2019 Oracle and/or its affiliates.

Benefit of Materialized View

• In this example
The MV is not used to rollup aggregates
The Joins in this case are not expensive

• The MV is used to improve cardinality estimates

Query Rewrite for Materialized View
MV creation is fast

Query Rewrite for Materialized View
MV creation is fast

MV created in 0.2s

Materialized View
Cardinality underestimate still a problem

Materialized View
Cardinality underestimate still a problem

Same SQL ID as the
original query

Materialized View
Cardinality underestimate still a problem

Execution time 82s

Same SQL ID as the
original query

Materialized View
Cardinality underestimate still a problem

Execution time 82s

Rewrite took place, but there is
big cardinality mis-estimate at row

source 14. Why?

Same SQL ID as the
original query

Materialized View
Cardinality underestimate still a problem

Execution time 82s

Rewrite took place, but there is
big cardinality mis-estimate at row

source 14. Why?

Nested Loops join when
joining PRODUCTS table

Same SQL ID as the
original query

Dynamic statistics were not used.
Could we improve cardinality estimates without relying on

dynamic statistics?

(for demo purposes optimizer_dynamic_statistics set to 0)

Materialized View
Cardinality underestimate still a problem

Execution time 82s

Rewrite took place, but there is
big cardinality mis-estimate at row

source 14. Why?

Nested Loops join when
joining PRODUCTS table

Same SQL ID as the
original query

Analysis: Column group on DEP_STORE_LOC_MV(CITY, STORE_TYPE) 

Analysis: Column group on DEP_STORE_LOC_MV(CITY, STORE_TYPE) 

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'DEP_STORE_LOC_MV';
 NUM_ROWS

 27000
SELECT column_name, num_distinct, num_nulls, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'DEP_STORE_LOC_MV'
 AND column_name IN ('CITY','STORE_TYPE');
COLUMN_NAME NUM_DISTINCT NUM_NULLS NUM_BUCKETS
-------------------- ------------ ---------- -----------
CITY 2080 0 254
STORE_TYPE 5 0 5
SELECT count(DISTINCT CITY||' '||store_type) c_check
FROM DEP_STORE_LOC_MV;
 C_CHECK

 2080

 

Analysis: Column group on DEP_STORE_LOC_MV(CITY, STORE_TYPE) 

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'DEP_STORE_LOC_MV';
 NUM_ROWS

 27000
SELECT column_name, num_distinct, num_nulls, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'DEP_STORE_LOC_MV'
 AND column_name IN ('CITY','STORE_TYPE');
COLUMN_NAME NUM_DISTINCT NUM_NULLS NUM_BUCKETS
-------------------- ------------ ---------- -----------
CITY 2080 0 254
STORE_TYPE 5 0 5
SELECT count(DISTINCT CITY||' '||store_type) c_check
FROM DEP_STORE_LOC_MV;
 C_CHECK

 2080

 

Indicates strong correlation
between CITY and STORE_TYPE

Analysis: Column group on DEP_STORE_LOC_MV(CITY, STORE_TYPE) 

SELECT num_rows
FROM user_tab_statistics
WHERE table_name = 'DEP_STORE_LOC_MV';
 NUM_ROWS

 27000
SELECT column_name, num_distinct, num_nulls, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'DEP_STORE_LOC_MV'
 AND column_name IN ('CITY','STORE_TYPE');
COLUMN_NAME NUM_DISTINCT NUM_NULLS NUM_BUCKETS
-------------------- ------------ ---------- -----------
CITY 2080 0 254
STORE_TYPE 5 0 5
SELECT count(DISTINCT CITY||' '||store_type) c_check
FROM DEP_STORE_LOC_MV;
 C_CHECK

 2080

 

SELECT
dbms_stats.create_extended_stats(USER,'DEP_STORE_LOC_MV','(CITY,STORE_TYPE)')
from dual;  

EXEC dbms_stats.gather_table_stats(user, 'DEP_STORE_LOC_MV', METHOD_OPT=>'FOR
COLUMNS (CITY,STORE_TYPE) SIZE 2048 FOR ALL COLUMNS SIZE AUTO');  

PL/SQL procedure successfully completed.
SELECT column_name, num_distinct, num_nulls, histogram, num_buckets
FROM user_tab_col_statistics
WHERE table_name = 'DEP_STORE_LOC_MV';
COLUMN_NAME NUM_DISTINCT NUM_NULLS HISTOGRAM NUM_BUCKETS
------------------------------- ------------ ---------- ---------- -----------
DEPARTMENT_ID 27000 0 NONE 1
DEPARTMENT_NAME 27000 0 NONE 1
STORE_ID 2700 0 NONE 1
CITY 2080 0 HYBRID 254
STORE_TYPE 5 0 FREQUENCY 5
SYS_STUMZODT3BT6MDTDUS_1OYH3M# 2080 0 HYBRID 1878
 Indicates strong correlation

between CITY and STORE_TYPE

Materialized View
With extended statistics

Materialized View
With extended statistics

Same SQL ID as the
original query

Materialized View
With extended statistics

Execution time 4s

Same SQL ID as the
original query

Materialized View
With extended statistics

Execution time 4s

Rewrite took place and the
cardinality is estimated correctly

Same SQL ID as the
original query

End Demo2

Copyright © 2019 Oracle and/or its affiliates.

Data Model

Copyright © 2019 Oracle and/or its affiliates.

Data Model

Departments

LocationsStores

Sales

Products Suppliers

Copyright © 2019 Oracle and/or its affiliates.

Materialized View

Data Model

Departments

LocationsStores

Sales

Products Suppliers

Copyright © 2019 Oracle and/or its affiliates.

One more thing…

Copyright © 2019 Oracle and/or its affiliates.

Materialized View; Additional Consideration

• Since the original join cardinality was wrong, its cost is also
wrong

• The cost could well be lower than that of the MV-based plan

• May well have to set the following parameter
QUERY_REWRITE_ENABLED=FORCE

Copyright © 2019 Oracle and/or its affiliates.

To Summarize…

Copyright © 2019 Oracle and/or its affiliates.

Summary: Avoid Guesswork

• When things go wrong, work to find the root cause.

• When you have root cause, you then have a platform to
recommend or deliver a robust solution

Copyright © 2019 Oracle and/or its affiliates.

Summary: Data Model

• Data model is important
The benefits of a good data model cannot be overstated

• You might not always have a perfect dimensional model
Not designed that way
Coercing some other system/model for data warehousing

• A poor data model can lead to sub-optimal execution plans
Wrong distribution methods
Large amounts of TEMP used
etc
Often these plans cannot take advantage of the performance features

Copyright © 2019 Oracle and/or its affiliates.

Summary: Data Model

• In certain cases, data characteristics mean that statistics
(including advanced statistic types) are not sufficient to
estimate good join cardinality

Dynamic statistics may or may not help.

• A materialized view provides additional information to the
optimizer, resulting in a good execution plan

The performance benefit in this example comes from the better execution plan, not the
materializing of the joins

Copyright © 2019 Oracle and/or its affiliates.

Summary: Benefits of the Materialized View

• No change to the underlying data model
• No change to the code
• The MV’s that address this type of problem are typically built on

DIMENSIONS
Generally small compared to the FACT table
Slowly changing

• Opens up the possibility of additional optimizations
Eg. Column Groups

• Leverage
Can benefit many different queries

Summary: Materialized View

• Another technique in your Performance Engineering arsenal

• Learn when/where/how to use it

Thank You

Robert Carlin
Mihajlo Tekic

Real-World Performance Team
Oracle Database Development

The preceding is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s products
may change and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September
2019 and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

