

Hands-on lab:

Working with managed relational databases in the cloud

Dallas Willet, Principal Database Engineer dallasw@amazon.com Amit Grover, Senior Database Engineer amitgrov@amazon.com

February 13th, 2020 - NoCOUG 2020 Winter Conference: Amazon RDS for Oracle Boot Camp

Amazon Web Services at NoCOUG 2020

Presentation	RDS Oracle - New Features	Thu, Feb 13 9:30 AM – 10:15 AM
Workshop	AWS Cloud Database Workshop - Managed HA and DR	Thu, Feb 13 10:30 AM – 2:00 PM
Presentation	AWS Database Migration Service	Thu, Feb 13 2:00 PM – 4:00 PM

Lab requirements

- Computer with internet access
- AWS account https://aws.amazon.com
- OTN account (optional)
- Disable any firewalls or VPN (optional)
- SQL Developer (optional)

NOTE:

Be sure to delete resources at the conclusion of the lab!

WIFI: RC Guest

Password: rosewood

Agenda

- Create an Instance
- Modify and Instance
- Upgrade and Instance
- Backup and Restore
- Managed HA and DR
- Best Practices

Console: create an RDS Oracle instance

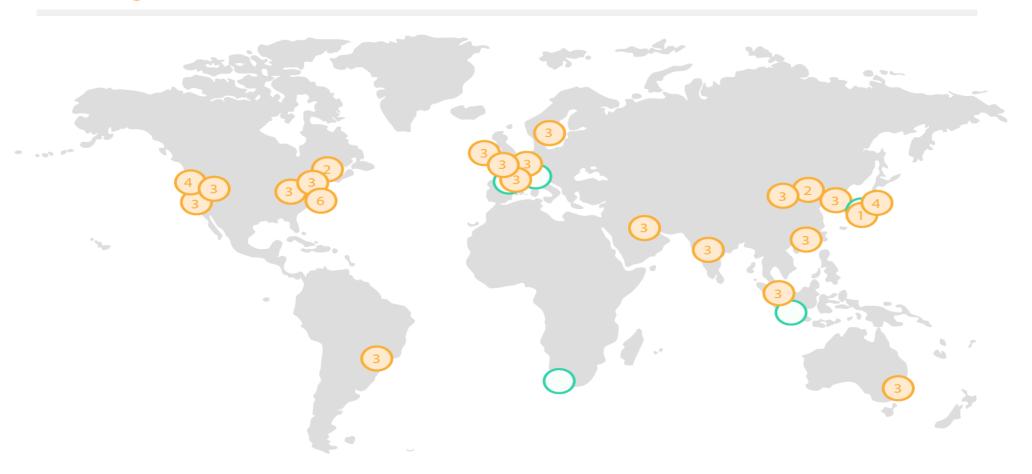
- Login to the AWS Console https://console.aws.amazon.com
- Select region "US West (Oregon)"
- Search for RDS
- Click "Get Started"
- "Launch a DB Instance"

Option	Value
Edition	Oracle EE
Use case	Dev/Test
License	BYOL
Version	12.2.0.1.ru-2019-07.rur-2019-07.r1
Class	db.t3.small
Multi-AZ	No
Identifier	<pick a="" name=""></pick>
Public	Yes

Managing AWS resources

- AWS Console
- Command Line Tools
- Software Development Kit (SDK)
- AWS CloudFormation

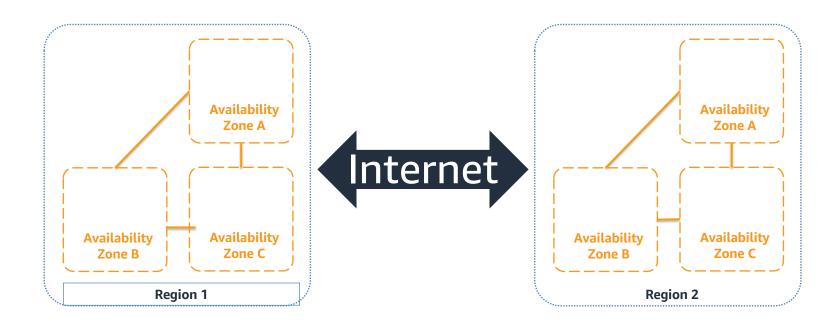
https://aws.amazon.com/tools


CLI: Create an RDS Oracle instance

```
$ aws rds create-db-instance \
--engine oracle-ee \
--license-model license-included \
--engine-version 12.2.0.1.ru-2019-07.rur-2019-07.r1\
--db-instance-class db.t3.small \
--no-multi-az \
--storage-type gp2 \
--allocated-storage 30 \
--db-instance-identifier ${USER}-oracle-ee-test1 \
--master-username xxxxx \
--master-user-password abcdef123 \
--publicly-accessible \
--db-name ORCL \
--port 1521 \
--backup-retention-period 7 \
--region us-west-2
```

Python: Create an RDS Oracle instance

```
import boto3
rds = boto3.client('rds', 'us-west-2')
db = rds.create_db_instance(
 Engine='oracle-se2',
 LicenseModel='license-included',
 EngineVersion='12.2.0.1.ru-2019-07.rur-2019-07.r1',
 DBInstanceClass='db.t3.small',
 MultiAZ=False,
 StorageType='gp2',
 AllocatedStorage=30,
 DBInstanceIdentifier='oracle-ee-test',
 MasterUsername='xxxxx',
 MasterUserPassword='abcdef123',
 PubliclyAccessible=True,
 DBName='ORCL',
 Port=1521,
 BackupRetentionPeriod=7
```


AWS global infrastructure (Feb 2020)

Choosing regions

- Latency
- Data sovereignty
- Feature availability
- Price

Availability Zones

Amazon Virtual Private Cloud (VPC)

- Logical isolation
- Public or private
- AWS PrivateLink
- Strong access control and auditing

https://www.youtube.com/watch?v=3qln2u1Vr2E

YouTube: "AWS re:Invent 2015 NET403"

Console: connect to your instance

- Find your instance
- Copy "Endpoint"
- Start SQL Developer (or client of choice) and create a new connection

Option	Value
Hostname	<your endpoint=""></your>
Port	1521
SID	ORCL
Username	<master user=""></master>
Password	<master password=""></master>

Console: authorize VPC access

- Find your instance
- "Security group rules"
- Click on "rds-launchwizard" group
- "Inbound" tab → "Edit" →
 "Add Rule"
- Search "what is my IP"

Option	Value
Туре	Oracle-RDS
Protocol	ТСР
Port	1521
Source	<your address="" ip=""></your>

Agenda

- Create an Instance
- Modify and Instance
- Upgrade and Instance
- Backup and Restore
- Managed HA and DR
- Best Practices

Undifferentiated heavy lifting

Traditional		EC2		RDS
App optimization		App optimization		App optimization
Scaling		Scaling		Scaling
High Availability		High Availability		High Availability
Database Backups		Database Backups	D	Database Backups
DB s/w patching	You	DB s/w patching	AWS	DB s/w patching
DB s/w install	ma	DB s/w install	ma	DB s/w install
OS patching	You manage	OS patching	manage	OS patching
OS installation	Ф	OS installation	es	OS installation
Server maintenance		Server maintenance		Server maintenance
Hardware lifecycle		Hardware lifecycle		Hardware lifecycle
Power/HVAC/Network		Power/HVAC/Network		Power/HVAC/Network

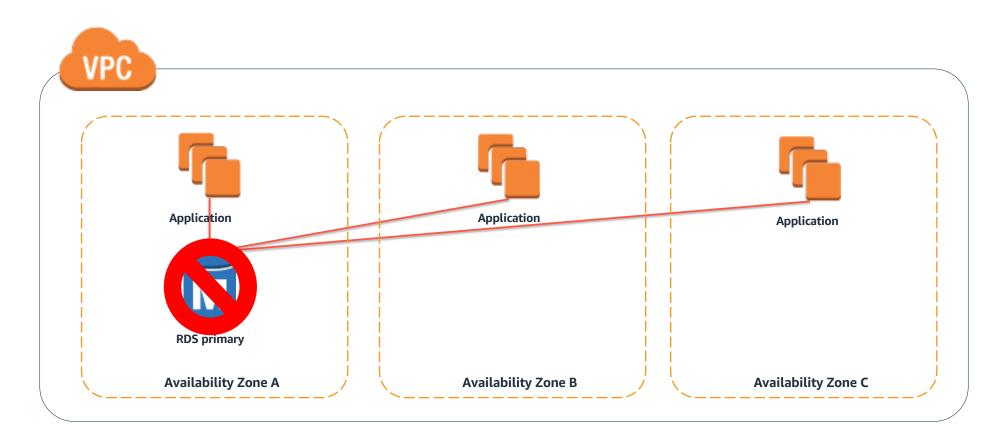
Modifying RDS instances

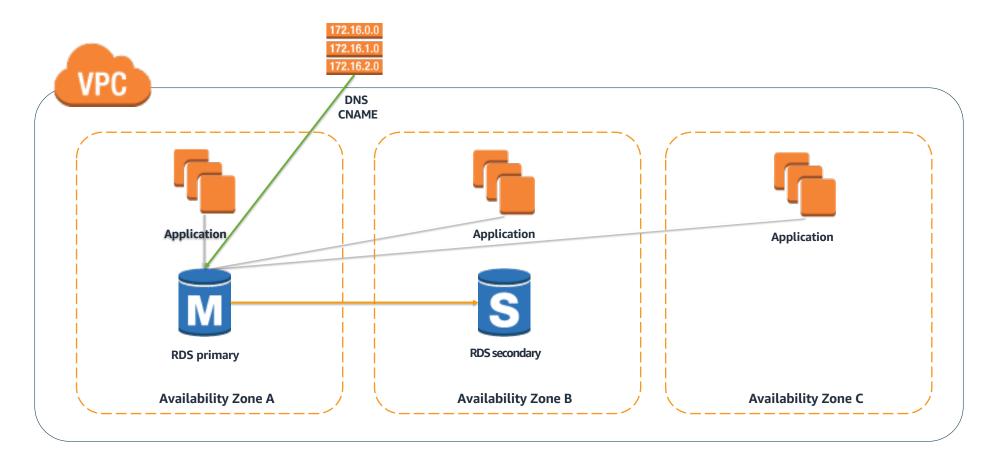
- Online
 - Storage, Multi-AZ*
 - Dynamic parameters and options
- Offline
 - Compute, version upgrade, reboot/failover
 - Static parameters and options
- Apply immediately or in maintenance window

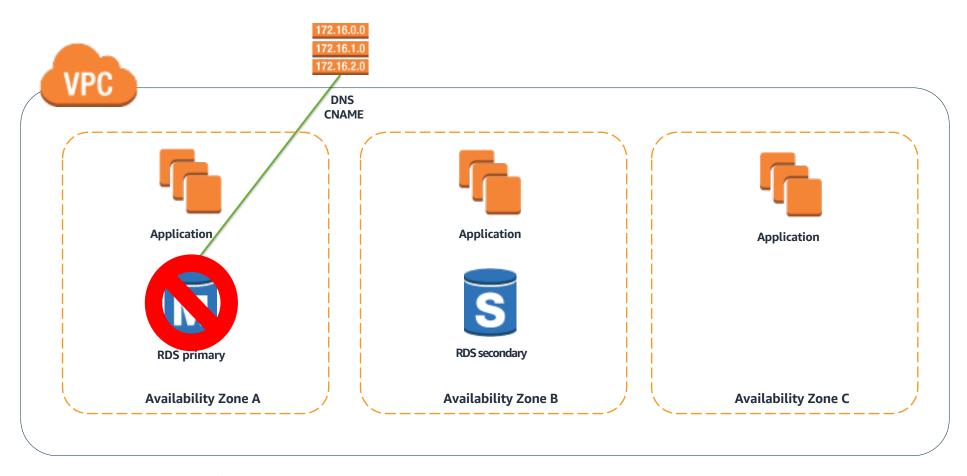
Console: scale compute (offline)

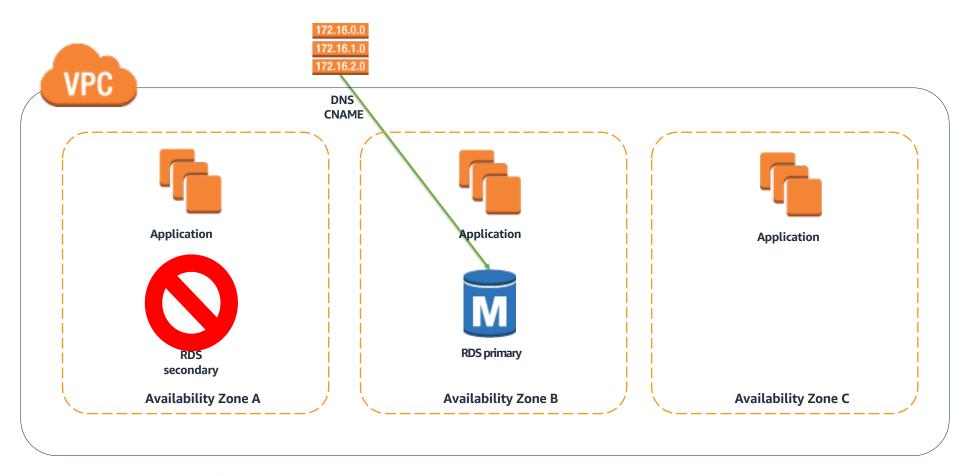
- Find your instance
- Instance actions
- Click "Modify"
- Modify instance class
- Click "Continue"
- Select "Apply immediately"
- Click "Modify DB instance"

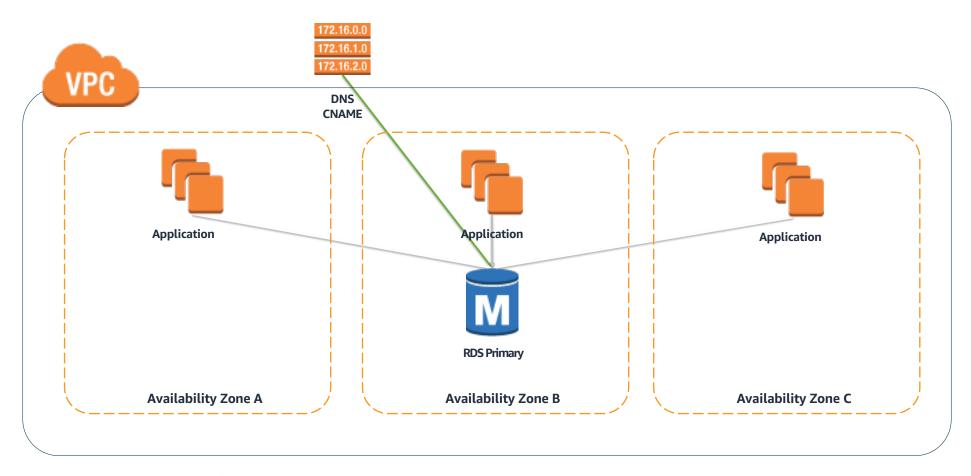
Option	Value
Class	db.t3.medium


Console: scale storage (online)


- Find your instance
- Instance actions
- Click "Modify"
- Modify allocated storage
- Click "Continue"
- Select "Apply immediately"
- Click "Modify DB instance"


Option	Value
Storage	50 GB


- Managed high availability
- Synchronous physical replication
- Secondary instance in physically distinct infrastructure
- Oracle (Standard end Enterprise Editions), PostgreSQL, MySQL, MariaDB
- Automatic monitoring and failover


RDS Single-AZ

Typical failover time 1-2 minutes t_N

Identify failure Crash recovery

DNS propagation

Console: scale storage (error)

- Find your instance
- Instance actions
- Click "Modify"
- Unable to modify allocated storage for 6 hours

Console: high availability (online*)

- Find your instance
- Instance actions
- Click "Modify"
- Modify Multi-AZ
- Click "Continue"
- Select "Apply immediately"
- Click "Modify DB instance"

Option	Value
Multi-AZ	Yes

- Primary in one AWS Availability Zone (AZ)
- Secondary in a different AZ
- Synchronous replication between Primary and Secondary
- AWS monitors database and will automatically fail-over
- Zero data loss
- Used for all RDS Linux based engines
- Multi-AZ can be added or removed at any time (online no outage)
- Can be used with Oracle Standard Editions

Console: create option group

- Go to Option groups
- Click "Create group"
- Click "Create"
- Select group
- Click "Add option"
- Select "Apply Immediately"
- Click "Add Option"

Option	Value
Name	<name></name>
Description	<description></description>
Engine	oracle- ee
Version	12.2

Option	Value
Option	NATIVE_NETWORK_ENCRYPTION

Console: associate groups

- Find your instance
- Instance actions
- Click "Modify"
- Modify parameter and option groups
- Click "Continue"
- Select "Apply immediately"
- Click "Modify DB instance"

Option	Value
DB Parameter Group	<group name=""></group>
Option group	<group name=""></group>

Working with parameter groups

- Test carefully
- Use expressions (e.g. {DBInstanceClassMemory*3/4})
- Apply to multiple instances
- Dynamic parameters apply immediately
- Static parameters require a reboot (<u>not</u> failover)

Console: modify parameters

- Go to parameter groups
- Select group
- Parameter group actions → "Edit"
- Click "Save changes"

Option	Value
Parameter	cursor_sharing
Value	SIMILAR

Console: reboot

- Find your instance
- Instance actions
- Click "Reboot"
- Click "Reboot"

Option	Value
Reboot with Failover?	No

CLI: modify instance

```
aws rds modify-db-instance --db-instance-identifier ${USER}-oracle-ee-test1 \
--db-instance-class db.t3.small --apply-immediately

aws rds modify-db-instance --db-instance-identifier ${USER}-oracle-ee-test1 \
--allocated-storage 50 \
--multi-az \
--apply-immediately

aws rds modify-db-instance --db-instance-identifier ${USER}-oracle-ee-test1 \
--db-parameter-group-name test-pg-ee-122 \
--option-group test-og-ee-122 \
--apply-immediately

aws rds reboot-db-instance \
--db-instance-identifier ${USER}-oracle-ee-test1 \
--no-force-failover
```

Break!?

Agenda

- Create an Instance
- Modify and Instance
- Upgrade and Instance
- Backup and Restore
- Managed HA and DR
- Best Practices

Upgrading

- You choose what and when
- RDS does the work
- Major version upgrades $11.2 \rightarrow 12.1 \rightarrow 12.2 \rightarrow 18C \rightarrow 19C$
- Minor version upgrades 12.1.0.2.v15 → 12.1.0.2.v16
- Outage depends largely on instance class and type of upgrade
- New minor versions quarterly search "RDS Oracle engine release notes"

Console: upgrade

- Find your instance
- Instance actions
- Click "Modify"
- Modify engine version
- Click "Continue"
- Select "Apply immediately"
- Click "Modify DB instance"

Option	Value
Version	12.2.0.1.ru-2019-10.rur-2019-10.r1

RDS pricing

- Pay for what you use
- Compute time
- Storage
- Data transfer

Search for "AWS calculator", or go to

https://calculator.s3.amazonaws.com/index.html

Agenda

- Create an Instance
- Modify and Instance
- Upgrade and Instance
- Backup and Restore
- Managed HA and DR
- Best Practices

Backups

System/automatic

- Run daily
- Specify daily backup window (30 minutes)
- Specify backup retention (0-35 days)
- Includes archived redo logs

Manual

- Run on-demand
- Retained until explicitly deleted

- RMAN Backups
 - Database
 - Archivelogs

Backups and redo

- ARCHIVELOG mode when automated backups enabled (>0 days)
 - Archived logs automatically backed up to S3
 - ARCHIVE_LAG_TARGET set to 5 minutes (or less)
 - Kept for backup retention days
- NOARCHIVELOG mode when automated backups disabled (0 days)
- Default log size is 4 x 128 MB
- Backups inherit encryption, can be copied/shared

Backup process

- EBS snapshots
- Always incremental
- Uses Oracle hot backup mode
- I/O freeze (<1 second) to instantiate snaphot
 - Single-AZ Database I/O freezes briefly
 - Multi-AZ Snapshot taken on secondary
- Latency can increase when modifying blocks being backed up

Restore

- Always creates a new instance with a new endpoint
- Can restore to the state of any snapshot (system or automatic)
- Can restore to any point in time during retention window typically up to 5 minutes ago
- Restored instances are fully accessible while data is loading

Console: take a snapshot

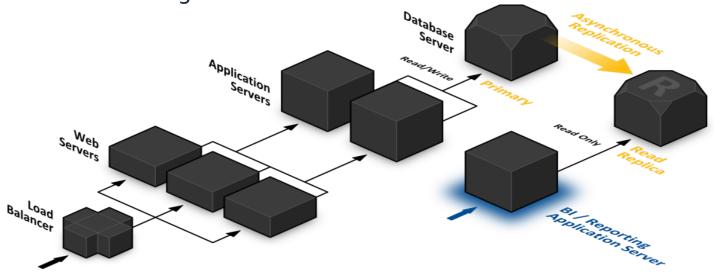
- Find your instance
- Instance actions
- Click "Take snapshot"
- Assign a name
- Click "Take Snapshot"

Option	Value
Snapshot name	<name></name>

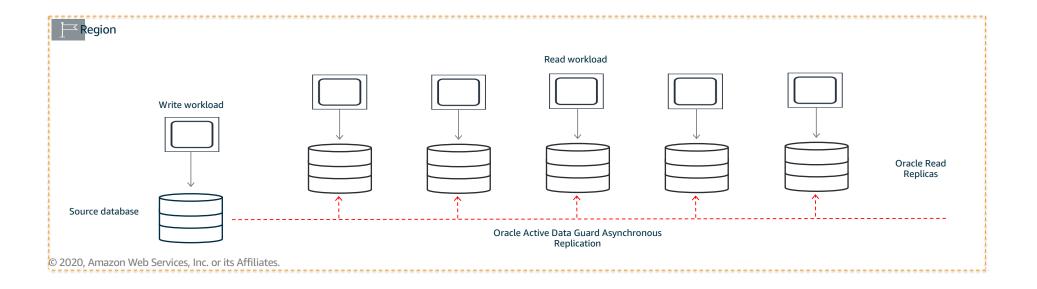
Console: point-in-time restore

- Find your instance
- Instance actions
- Click "Restore to point in time"
- Choose options
- Click "Launch DB instance"

Option	Value
Identifier	<new name=""></new>


Agenda

- Create an Instance
- Modify and Instance
- Upgrade and Instance
- Backup and Restore
- Managed HA and DR
- Best Practices


Why would I use Read Replicas?

- Relieve pressure on your source database with additional read capacity
- Bring data close to your applications in different regions
- Promote a Read Replica to a master for faster recovery in the event of disaster
- Upgrade a Read Replica to a new engine version

Why would I use Read Replicas?

- Use in-region Read Replicas
 - · For scalability of read workload
 - To relieve pressure on your source database with additional read capacity
- Create up to 5 replicas per source database
- Monitor replication lag in Amazon CloudWatch or RDS console
- A replica can be promoted to a new standalone database

Multi-AZ vs. Read Replicas?

Multi-AZ configurations

- Synchronous replication highly durable
- Only primary instance is active at any point in time
- Backups can be taken from secondary
- Always in two Availability Zones within a Region
- Database engine version upgrades happen on primary
- Automatic failover when a problem is detected

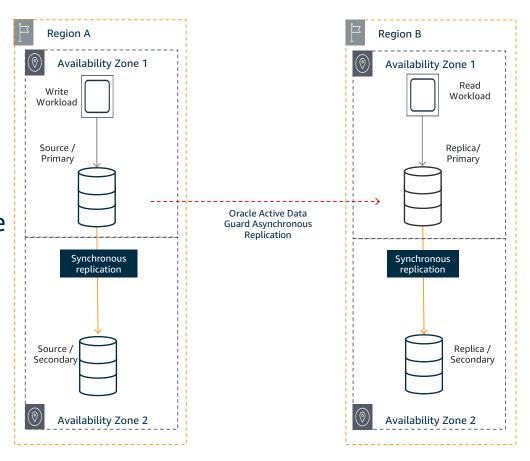
Read Replicas

- Asynchronous replication highly scalable
- All replicas are active and can be used for read scaling
- No backups configured by default
- Can be within an Availability Zone, Cross-AZ, or cross-region
- Database engine version upgrades independently from source instance
- Can be manually promoted to a standalone database

Cross-region disaster recovery

- Choose cross-region snapshot copy for greater durability, ease of migration
- Copy a database snapshot to a different AWS Region
- Restore in the case of a regional disaster
- Or use it to migrate a database to a different region

Make Copy of DB Snapshot?



© 2020, Amazon Web Services, Inc. or its Affiliates.

Cross-region Read Replicas

- Use cross-region Read Replicas:
 - •To bring data closer to the users
 - •As a standby database for recovery in the event of disaster
 - For scalability of read workload
 - •To relieve pressure on your source database with additional read capacity
- Replicas can be in Multi-AZ configuration to reduce recovery time

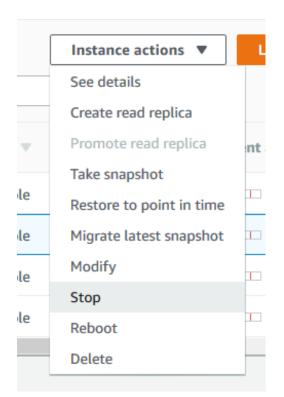
Agenda

- Create an Instance
- Modify and Instance
- Upgrade and Instance
- Backup and Restore
- Managed HA and DR
- Best Practices

Best practices

- Security, security, security
- Understand licensing
- Scale up
- Scale down
- Clean up after yourselves
- Test

Test all the things!


- Application compatibility
- Workload all use cases
- Failover
- Parameters
- Upgrades

Can I stop my database when not in use?

- Stop and start a running database instance from the console or CLI
- Available for Single-AZ and Multi-AZ DB instances
- While instance is stopped, you pay only for storage
- Backup retention window is maintained while stopped
- Instances are restarted after 7 days
 - Pending maintenance operations are applied
 - Instances can be stopped again if desired

#Shut down at 8:00 PM on Friday
0 20 * * 5 /home/ec2-user/scripts/stop_rds.sh
#Start up at 4:00 AM on Monday

0 4 * * 1 /home/ec2-user/scripts/start rds.sh

Oracle on RDS vs EC2

- RDS
 - Focus on application development/tuning
 - Managed high availability, backups, and infrastructure
 - Simplified licensing
- EC2
 - Full control over the database
 - Additional infrastructure configurations
 - More version/edition/feature flexibility

Where to go from here

- Repeat all of the lab steps, but for PostgreSQL or MySQL
 - Learn new database engines without having to learn how to install, configure, secure, backup, etc.
- Try out Database Migration Service
 - https://aws.amazon.com/dms
 - https://aws.amazon.com/dms/hands-on-lab

Where to go from here

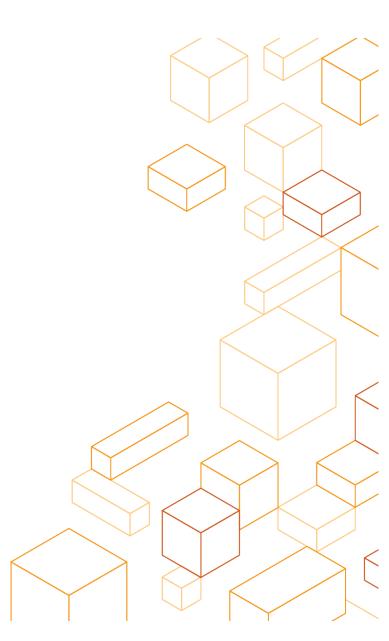
- https://aws.amazon.com/free
- https://aws.amazon.com/documentation/rds
- https://aws.amazon.com/rds/customers
- https://aws.amazon.com/compliance
- https://aws.amazon.com/iam
- https://www.youtube.com/watch?v=Y33TviLMBFY

Console: delete unused instances

- Find your instance
- Instance actions
- Click "Delete"
- Choose final snapshot options
- Click "Delete"

Option	Value
Create final snapshot	No

Console: delete snapshots


- Go to snapshots
- Select manual snapshot(s)
- In "Actions", click "Delete Snapshot"
- Click "Delete"

Note: system snapshots should automatically disappear a few minutes after you delete your instance

Amit Grover

Thank you!