
Master Product Manager
Mission Critical Database Technologies
February 2020

Maria Colgan

SQL Tuning Tips and Tricks

@SQLMaria

PART 5



The following is intended to outline our general product direction. It is intended for information 
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be relied upon in making purchasing decisions. The 
development, release, timing, and pricing of any features or functionality described for Oracle’s 
products may change and remains at the sole discretion of Oracle Corporation.

Safe harbor statement

2



3

4

3

2

1 Use the right Tools

Functions Friends or Foe

Data Type Dilemmas

Influencing an execution without adding hints

Agenda

5

6



Query – How many customers do we have in a specific zipcode?

SELECT Count(cust_first_name)
FROM customers2
WHERE zipcode = :n;

• Customers2 table has 20,000 rows 
• A b-tree index exists on zipcode
• There is also a histogram on the zipcode column due to data skew

Expecting index range scan execution plan
Using the right tools



Expected index range scan but got full table scan. Why?
Using the right tools

Set bind variable :n  
to 94065



Using literal value gets the right plan
Using the right tools

Let’s try using literal 
value to get the plan 

we want



Using the right tools

• Let’s check our bind 
statement and plan again

• Why is a simple equality 
predicate being applied 
as filter and not as as 
access predicate?

• Why is there a 
TO_NUMBER function 
on the bind variable n
after it was defined as a 
number?

Let’s double check our code



Using the right tools

• Autotrace is not aware of 
binds at all

• All binds treated as strings 
hence TO_NUMBER on n

• Also no bind peeking 
takes place

Bad plan is caused by using Autotrace



Using the right tools

• No bind peeking means 
the histogram can’t be 
used for cardinality 
estimate

• Calculated using  

Bad plan is caused by using Autotrace

ROW_NUM 20,000

NDV 2



Solution – use DBMS_XPLAN.DISPLAY_CURSOR
Using the right tools

Execute the statement 
with the bind then run 

DBMS_XPLAN 
command



Solution – use DBMS_XPLAN.DISPLAY_CURSOR
Using the right tools

Additional format 
option shows actual 
bind value under the 
plan



12

4

3

2

1 Use the right Tools

Functions Friends or Foe

Data Type Dilemmas

Influencing an execution without adding hints

Agenda

5

6



Functions Friend or Foe

CREATE table t
AS
SELECT *
FROM all_objects;

Table created.

OWNER VARCHAR2(128) NOT NULL
OBJECT_NAME VARCHAR2(128) NOT NULL
SUBOBJECT_NAME VARCHAR2(128)
OBJECT_ID NUMBER NOT NULL
DATA_OBJECT_ID NUMBER

OBJECT_TYPE VARCHAR2(23)
CREATED DATE NOT NULL
LAST_DDL_TIME DATE NOT NULL

TIMESTAMP VARCHAR2(19)
STATUS VARCHAR2(7)
TEMPORARY VARCHAR2(1)
GENERATED VARCHAR2(1)
SECONDARY VARCHAR2(1)
NAMESPACE NUMBER NOT NULL
EDITION_NAME VARCHAR2(128)
SHARING VARCHAR2(13)

EDITIONABLE VARCHAR2(1)

ORACLE_MAINTAINED VARCHAR2(1)

APPLICATION VARCHAR2(1)
DEFAULT_COLLATION VARCHAR2(100)
DUPLICATED VARCHAR2(1)
SHARDED VARCHAR2(1)
CREATED_APPID NUMBER
CREATED_VSNID NUMBER
MODIFIED_APPID NUMBER
MODIFIED_VSNID NUMBER

ALL_OBJECTS



Functions Friend or Foe

SELECT count(*)
FROM t
WHERE created >= to_date( '5-sep-2010', 'dd-mon-yyyy’ )
AND created <  to_date( '6-sep-2010', 'dd-mon-yyyy’ );

COUNT(*)
----------

65925

SELECT count(*), 0.01 * count(*), 0.01 * 0.01 * count(*)
FROM t;

COUNT(*) 0.01*COUNT(*) 0.01*0.01*COUNT(*)
---------- ------------- ------------------

72926        729.26             7.2926



Functions Friend or Foe

EXEC dbms_stats.gather_table_stats( user, 'T' );

PL/SQL procedure successfully completed.

• Why did I wait till here to gather statistics?



Functions Friend or Foe
SELECT count(*)
FROM t
WHERE created >= to_date( '5-sep-2010', 'dd-mon-yyyy’ )
AND created <  to_date( '6-sep-2010', 'dd-mon-yyyy’ );

COUNT(*)
----------

65925

select * from table(dbms_xplan.display_cursor);
---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       |       |   291 (100)|          |
|   1 |  SORT AGGREGATE    |      |     1 |     8 |            |          |
|*  2 |   TABLE ACCESS FULL| T    | 65462 |   511K|   291   (1)| 00:00:04 |
---------------------------------------------------------------------------



Functions Friend or Foe
SELECT count(*)
FROM t
WHERE trunc(created) = to_date( '5-sep-2010', 'dd-mon-yyyy’ );

COUNT(*)
----------

65925

select * from table(dbms_xplan.display_cursor);
---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       |       |   294 (100)|          |
|   1 |  SORT AGGREGATE    |      |     1 |     8 |            |          |
|*  2 |   TABLE ACCESS FULL| T    |   729 |  5832 |   294   (2)| 00:00:04 |
---------------------------------------------------------------------------
Optimizer doesn’t know impact of the function on NDV so assumes 1% of the tables 



Functions Friend or Foe

Optimizer doesn’t know impact of either function, but additional predicate reduces rows..

SELECT count(*)
FROM t
WHERE trunc(created) = to_date( '5-sep-2010', 'dd-mon-yyyy’ )
And   substr( owner, 1, 3 ) = 'SYS';

COUNT(*)
----------
33535

select * from table(dbms_xplan.display_cursor);
---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       |       |   292 (100)|          |
|   1 |  SORT AGGREGATE    |      |     1 |    14 |            |          |
|*  2 |   TABLE ACCESS FULL| T    |     7 |    98 |   292   (1)| 00:00:04 |
---------------------------------------------------------------------------



Query – How many packages of bounce did we sell?

SELECT /*+ gather_plan_statistics */ count(*) 

FROM    sales2

WHERE to_char(prod_id)=‘139’;

COUNT(*)
----------
11547

• Sales 2 has 400,000 rows
• Sales2 has a b-tree index on the prod_id column

Expected index range scan but got fast full index scan
Functions friends or foe?



• Use GATHER_PLAN_STATISTICS 
hint to capture execution 
statistics

• Use format parameter of 
DBMS_XPLAN to show 
estimated and execution 
statistics in plan

• Additional column added to 
the plan to show Actual Rows
produce by each operation 

Let’s check Cardinality Estimate
Functions friends or foe?



• Cardinality estimate is 
in the right ballpark so 
not a problem with 
statistics

Expected index range scan but got fast full index scan
Functions friends or foe?

• But why is an 
equality predicate 
being evaluated as a 
filter and not an 
access predicate? 

• Could it have 
something to do with 
the TO_CHAR function?



What data type is the prod_id column ?

But literal value is a character string ‘139’

Expected index range scan but got fast full index scan
Functions friends or foe?

Better to apply inverse function on other side of predicate 



SELECT /*+ gather_plan_statistics */ count(*) 

FROM    sales2

WHERE prod_id= to_number(‘139’);

COUNT(*)
----------
11547

Expected index range scan but got fast full index scan
Functions friends or foe?



Query – calculate total amount sold for one year 

SELECT sum(amount_sold)
FROM sh.sales s
WHERE TO_CHAR(s.time_id,’YYYYMMDD’) BETWEEN 

‘19990101’ AND ‘19991231’;

• Sales table is partitioned on the time_id column 
• Sales table has quarterly partitions for historical data

Expected query to access only 4 partitions but its accesses all
Functions friends or foe?



Expected query to access only 4 partitions but its accesses all 
Functions friends or foe?

Why has an 
additional 
INTERNAL_FUNCTION

been added to our 
predicate?



• INTERNAL_FUNCTION typically means a data type conversion has occurred

• Predicate is TO_CHAR(s.time_id,’YYYYMMDD’) 

• Optimizer has no idea how TO_CHAR function will effect the values in the 
time_id column

• Optimizer can’t determine which partitions will be accessed now

• Needs to scan them all just in case

Expected query to access only 4 partitions but its accesses all
Functions friends or foe?



Solution – Use inverse function on other side of predicate
Functions friends or foe?



Keep the following in mind when deciding where to place the function
• Try to place functions on top of constants (literals, binds) rather than on columns 

• Avoid using a function on index columns or partition keys as it prevents index use or 
partition pruning

• For function-based index to be considered, use that exact function as specified in index

• If multiple predicates involve the same columns, write predicates such that they share 
common expressions For example,

WHERE f(a) = b WHERE   a = inv_f(b) 
AND         a = c AND         a = c

Using inverse function on other side of predicate
Functions friends or foe?

Should be rewritten as

This will allow transitive predicate c=inv_f(b) to be added by the optimizer



29

4

3

2

1 Use the right Tools

Functions Friends or Foe

Data Type Dilemmas

Influencing an execution without adding hints

Agenda

5

6



Query – Simple IAS part of an ETL process

INSERT /*+ APPEND gather_plan_statistics */ 

INTO t1(row_id, modification_num, operation, last_upd)

SELECT row_id, 1 , 'I', last_upd

FROM t2

WHERE t2.last_upd > systimestamp;

• T2 has 823,926 rows
• T2 has a b-tree index on the last_upd column

Expected index range scan but got fast full index scan
Data type dilemmas



• Cardinality Estimate is 
seriously wrong

• Only 1 non-equality 
access predicate

• So why is our access 
predicate applied as a 
filter? 

• What does the 
INTERNAL_FUNCTION 
mean?

Data type dilemmas
Expected index range scan but got fast full index scan



• INTERNAL_FUNCTION typically means a data type conversion has occurred

• Predicate is “t2.last_upd > systimestamp”

• What data type is the last_upd column

Expected index range scan but got fast full index scan
Data type dilemmas



• Presence of the INTERNAL_FUNCTION cause the Optimizer to guess the 
cardinality estimate

• Optimizer has no way of knowing how function effects data in LAST_UPD 
column

• Without a function-based index or extended statistics the Optimizer must 
guess

• Guess is 5% of the rows in the tables

• 5% of 823296 is 41,164.8 or 41,165

Why is the cardinality estimate wrong?
Data type dilemmas



INSERT /*+ APPEND gather_plan_statistics */ 

INTO t1(row_id, modification_num, operation, last_upd)

SELECT row_id, 1 , 'I', last_upd

FROM t2

WHERE t2.last_upd > sysdate;

Solution - correct data type mismatch
Data type dilemmas



Query – calculate total amount sold that was return same day

SELECT sum(amount_sold)
FROM    sh.sales s, sh.sales_returns sr
WHERE   s.time_id = sr.time_id
AND     sr.time_id=‘31-DEC-19’;

• Sales table is range partitioned on time_id
• Sales table has 4 years of data in quarterly partitions

Expected to get partition pruning via a join but didn’t
Data type dilemmas



Expected to get partition pruning via a join but didn’t
Data type dilemmas

Getting transitive 
predicate but 
INTERNAL_FUNCTION
on partitioned 
column prevents 
pruning
Function needed 
because the join 
columns have 
different data types 



Solution – ensure join columns have the same data type
Data type dilemmas

KEY means 
dynamic pruning at 
execution time AP 
means And 
Pruning, caused by 
bloom filter

Now get transitive predicate 
without data type conversion 
hence pruning



38

4

3

2

1 Use the right Tools

Functions Friends or Foe

Data Type Dilemmas

Influencing an execution without adding hints

Agenda

5

6



39

Different ways to influence the Optimizer
Statistics Use the auto job or DBMS_STATS package Think about using  extended 

statistics and histograms Don’t forget to include all constraints too

Stored 
Outline

Provides plan stability by freezing an execution plan No way to evolve a 
plan over time Currently deprecated

SQL Plan 
Management 

Provides plan stability but can delay adopt of new plans as they need to 
be verification. Can't be shared across stmts.

SQL Profile Requires Diagnostics Pack and may go stale. Can be shared by multiple 
SQL stmts with force matching 

SQL Patch A SQL manageability object that can be generated by the SQL Repair 
Advisor, in order to circumvent a plan which causes a failure

Hints Only use as a last resort and only as a complete set of hints. Remember 
if you can hint it you can baseline or patch it!



• It is not always possible to add hints to third party applications
• Hints can be extremely difficult to manage over time
• Once added never removed

Alternative approach to hints
If you can hint it, baseline it

Solution
• Use SQL Plan Management (SPM)

• Influence the execution plan without adding hints directly to queries

• SPM available in Enterprise Edition*, no additional options required



SQL Plan Management 
If you can hint it, baseline it

User

Plan baseline

Execute Plan

Plan Acceptable

NOTE:: Actual execution plans 
stored in SQL plan baseline in 
Oracle Database 12c

SQL Management Base

Parse SQL Generate Plan

ACCEPTED UNACCEPTED



SQL Plan Management 
If you can hint it, baseline it

NOTE:: You do not need to be in 
auto-capture mode to have a 
new plan added to an existing 
SQL plan baseline

Additional fields such as 
fetches, row processed etc. are 
not populated because new 
plan has never executed

User Parse SQL Generate Plan

Plan baseline

SQL Management Base

ACCEPTED UNACCEPTED



SQL Plan Management 
If you can hint it, baseline it

User Parse SQL Plan used

Plan baseline

SQL Management Base

ACCEPTED UNACCEPTED

Execute Plan

Plan Acceptable



Simple two table join between the SALES and PRODUCTS tables

SELECT p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

Example Overview
Influence execution plan without adding hints

Current Plan

GROUP BY

HASH JOIN

TABLE ACCESS 
SALES

TABLE ACCESS 
PRODUCTS



Simple two table join between the SALES and PRODUCTS tables 

SELECT p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

Example Overview
Influence execution plan without adding hints

GROUP BY

HASH JOIN

INDEX RANGE SCAN 
PROD_SUPP_ID_INDX

TABLE ACCESS 
SALES

Desired Plan



SELECT p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

PROD_NAME                                 SUM(S.AMOUNT_SOLD)
--------------------------------------- ------------------
Baseball trouser Kids                                    91
Short Sleeve Rayon Printed Shirt $8.99                   32

Step 1. Execute the non-hinted SQL statement
Influence execution plan without adding hints



Default plan uses full table scans followed by a hash join
Influence execution plan without adding hints



SELECT sql_id,
sql_fulltext

FROM v$sql
WHERE sql_text LIKE 'SELECT p.prod_name, %';

SQL_ID SQL_FULLTEXT
------------- ----------------------------------------
akuntdurat7yr SELECT p.prod_name, SUM(s.amount_sold)

FROM products p , sales s
WHERE p.prod

Step 2. Find the SQL_ID for the non-hinted statement in V$SQL
Influence execution plan without adding hints



VARIABLE cnt NUMBER

EXECUTE :cnt := dbms_spm.load_plans_from_cursor_cache(sql_id=>'akuntdurat7yr');

PL/SQL PROCEDURE successfully completed.

SELECT sql_handle, sql_text, plan_name, enabled

FROM dba_sql_plan_baselines

WHERE sql_text LIKE 'SELECT p.prod_name, %';

SQL_HANDLE         SQL_TEXT            PLAN_NAME    ENA

------------------ --------------------------------------- -------------------- ---

SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176  YES                     
FROM   products p , sales s g42949306

Step 3. Create a SQL plan baseline for the non-hinted SQL statement 
Influence execution plan without adding hints



EXECUTE :cnt := dbms_spm.alter_sql_plan_baseline(sql_handle=>'SQL_8f876d84821398cf’,-

plan_name=>'SQL_PLAN_8z1vdhk11766g42949306',-
attribute_name => 'enabled’, -
attribute_value => 'NO');

PL/SQL PROCEDURE successfully completed.

SELECT sql_handle, sql_text, plan_name, enabled
FROM dba_sql_plan_baselines
WHERE sql_text LIKE 'SELECT p.prod_name, %';
SQL_HANDLE         SQL_TEXT            PLAN_NAME    ENA
------------------ ---------------------------------------- --------------------- ---
SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176   NO

FROM   products p , sales s g42949306

Step 4. Disable plan in SQL plan baseline for the non-hinted SQL statement 
Influence execution plan without adding hints



SELECT /*+ index(p) */ p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

PROD_NAME                                 SUM(S.AMOUNT_SOLD)
--------------------------------------- ------------------
Baseball trouser Kids                                    91
Short Sleeve Rayon Printed Shirt $8.99                   32

Step 5. Manually modify the SQL statement to use the hint(s) & execute it
Influence execution plan without adding hints



SELECT sql_id, plan_hash_value, sql_fulltext
FROM v$sql
WHERE sql_text LIKE 'SELECT /*+ index(p) */ p.prod_name, %';

SQL_ID PLAN_HASH_VLAUE SQL_FULLTEXT
------------- --------------- -----------------------------------
avph0nnq5pfc2 2567686925 SELECT /*+ index(p) */ p.prod_name,

SUM( s.amount_sold) FROM products p,
sales

Step 6. Find SQL_ID & PLAN_HASH_VALUE for hinted SQL stmt in V$SQL
Influence execution plan without adding hints



VARIABLE cnt NUMBER
EXECUTE :cnt := dbms_spm.load_plans_from_cursor_cache(sql_id=>'avph0nnq5pfc2’,-

plan_hash_value=>'2567686925', -
sql_handle=>'SQL_8f876d84821398cf‘);

PL/SQL PROCEDURE successfully completed.

Step 7. Associate hinted plan with original SQL stmt’s SQL HANDLE
Influence execution plan without adding hints

SQL_ID & PLAN_HASH_VALUE belong to hinted 
statement 
SQL_HANDLE is for the non-hinted statement



SELECT sql_handle, sql_text, plan_name, enabled
FROM dba_sql_plan_baselines
WHERE sql_text LIKE 'SELECT p.prod_name, %';
SQL_HANDLE         SQL_TEXT            PLAN_NAME    ENA
------------------ --------------------------------------- -------------------- ---
SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176   NO                     

FROM   products p , sales s g42949306

SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176  YES                     
FROM   products p , sales s 6ge1c67f67

Step 8. Confirm SQL statement has two plans in its SQL plan baseline 
Influence execution plan without adding hints

Hinted plan is the only enabled 
plan for non-hinted SQL statement



Step 9. Confirm hinted plan is being used
Influence execution plan without adding hints

Non-hinted SQL text but it 
is using the plan hash 
value for the hinted 
statement

Note section also confirms 
SQL plan baseline used for 
statement



56

CREATE table t (n number NOT NULL)

AS
SELECT object_id

FROM all_objects;

Table created.

CREATE INDEX ind_t_n ON t(n);

Index created.

Setup
How to Create a SQL Patch to influence execution plans



57

EXPLAIN PLAN FOR

SELECT *
FROM t

WHERE n > 0;

Explained.

SELECT * FROM table(dbms_xplan.display());
---------------------------------------------------------------------------

| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |

---------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |       | 69478 |   882K|    42  (29)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL|  T    | 69478 |   882K|    42  (29)| 00:00:01 |

---------------------------------------------------------------------------

Step 1 What is the current plan
How to Create a SQL Patch to influence execution plans

But what if we needed the plan to use the index?



58

DECLARE

patch_name varchar2(100);
BEGIN

patch_name := sys.dbms_sqldiag.create_sql_patch(-
sql_text=>'select * from t where n > 0’, -
hint_text=>'INDEX(@"SEL$1" "T")’, -
name=>'TEST_PATCH');

END;

/

PL/SQL procedure successfully completed.

Step 2 Create a SQL Patch with the hint to force an index plan
How to Create a SQL Patch to influence execution plans



59

EXPLAIN PLAN FOR

SELECT *
FROM t

WHERE n > 0;

Explained.

SELECT * FROM table(dbms_xplan.display());
-----------------------------------------------------------------------------

| Id  | Operation        | Name     | Rows  | Bytes | Cost (%CPU)| Time     |

-----------------------------------------------------------------------------

|   0 | SELECT STATEMENT |          | 70187 |   891K|   166   (8)| 00:00:01 |

|*  1 |  INDEX RANGE SCAN| IND_T_N1 | 70187 |   891K|   166   (8)| 00:00:01 |

-----------------------------------------------------------------------------

Note

-----

- SQL patch "TEST_PATCH" used for this statement

Step 3 Check patch took affect
How to Create a SQL Patch to influence execution plans



Join the Conversation 

60

https://twitter.com/SQLMaria
https://blogs.oracle.com/optimizer/
https://sqlmaria.com
https://www.facebook.com/SQLMaria




