
Master Product Manager
Oracle Database
February 2020

Maria Colgan

Understanding the Oracle Optimizer

@SQLMaria

Part 1

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon in making purchasing
decisions.

The development, release, timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion of Oracle Corporation.

2 Confidential – © 2020 Oracle

3

5

4

3

2

1

SQL Tuning

Harnessing the Power of Optimizer Hints

Explain the Explain Plan

Best Practices for Managing Optimizer Statistics

Understanding the Oracle Optimizer

Agenda

4

How the
Oracle
Optimizer
Operates

5

1979 – 1991 RIP

“ In the beginning
there were rules …”

6

• Rule Based Optimizer (RBO) is a heuristic based Optimizer
- Uses a ranked list of access paths (rules)

- 17 possible access paths

- Lower ranked access paths assumed to operate more efficiently

• Plans chosen based on access paths available and their rank
- If multiple access paths exist, path with the lowest rank is chosen

• Only very simple physical optimizations done automatically
- OR Expansion: multiple OR predicates rewritten as UNION ALL

Oracle Version 6 and earlier
Rule Based Optimizer

SELECT count(*)
FROM emp
WHERE ename || ’’ = ‘SMITH’;

• Only way to influence RBO
was to change the SQL text

• Concatenating an empty
string to the column
prevents the index from
being used

Famous tricks to work around RBO
Got an index access but want a full table scan

Dawn of a new era:

“ .. there is cost ..
“

1992

• Database features become more and more complex
• Partitioning

• Parallel execution

• No easy way to extend Rule Based Optimizer to accommodate
so many additional access paths

• Having only one plan per statement regardless of the objects
size or structure was no longer the best approach

Oracle 7 - dawn of a new era
Cost Based Optimizer

Optimizer must evolve to become cost based

• Initial design based on IBM research paper
• Access Path Selection in a Relational Database Management System (1979)

• Approach outlined in the paper was
• Multiple execution plans are generated for a statement

• Estimated cost is computed for each plan

• Optimizer selects the plan with the lowest estimated cost

Oracle 7 - dawn of a new era
Cost Based Optimizer

http://www.cs.berkeley.edu/~brewer/cs262/3-selinger79.pdf

Understanding how the Optimizer works

Query Transformation
Rewrite query text to allow it to be processed

more efficiently

Plan Generator
Multiple plans are generated for

each SQL, using different access
paths and join types. Each plan is
costed and plan with the lowest
cost is used.

Cost Estimator
Cost is an estimate of the amount of

CPU and the number of disk I/Os,
used to perform an operation

Optimizer

Statistics
Schema definitions

• Translates statements into semantically equivalent SQL that can be
processed more efficiently

• Initial transformations were heuristic based
• Applied to SQL statements based on their structural properties only

• Predominately cost based now

• Transformations include
• Subquery Unnesting

• View Merging

• OR Expansion

• Star transformation

Optimizer Transformations

Subquery Unnesting

*Compares the cost of the best plan with and without the transformation

SELECT C.cust_last_name, C.country_id
FROM customers C
WHERE EXISTS(SELECT 1

FROM sales S
WHERE C.cust_id=S.cust_id
AND S.quantity_sold > 1000);

• A correlated subquery is one
that refers to a column from a
table outside the subquery

• In this case C.cust_id is
referenced in the subquery

• Without subquery unnesting
the correlated subquery must
be evaluated for each row in the
Customers tables

After the Transformation
Subquery Unnesting

*Compares the cost of the best plan with and without the transformation

• Transformation rewrites the
EXISTS subquery to an ANY
subquery

• ANY subquery is no longer
correlated

• ANY subquery returns a set of
CUST_IDs if any match the
predicate will return true

SELECT C.cust_last_name, C.country_id
FROM customers C
WHERE C.cust_id = ANY(SELECT S.cust_id

FROM sales S
WHERE S.quantity_sold > 1000);

After the Transformation
Subquery Unnesting

*Compares the cost of the best plan with and without the transformation

• Transformation allows subquery
to be evaluated as a SEMI join

• Subquery returns a set of
CUST_IDs those
CUST_IDs are joined to the
customers table via a
SEMI Hash Join

• Complex view merging
refers to the merging of
group by and distinct
views

• Allows the optimizer to
consider additional join
orders and access paths

• Group-by/distinct
operations can be
delayed until after the
joins have been evaluated

Complex View Merging

CREATE View cust_prod_totals_v as
SELECT SUM(s.quantity_sold) total, s.cust_id, s.prod_id
FROM sales s
GROUP BY s.cust_id, s.prod_id;

SELECT c.cust_id, c.cust_first_name, c.cust_last_name
FROM customers c,

cust_prod_totals_v v,
products p

WHERE c.country_id = 'US'
AND c.cust_id =v.cust_id
AND v.total > 100
AND v.prod_id = p.prod_id
AND p.prod_name = 'T3 Faux Fur-Trimmed Sweater';

• After transformation
GROUP BY operation
occurs after SALES is
joined to CUSTOMERS and
PRODUCTS

• Number of rows in GROUP
BY greatly reduced after
join

• May not always be best to
delay the GROUP BY or
DISTINCT operation

After the Transformation
Complex View Merging

SELECT c.cust_id, c.cust_first_name, c.cust_last_name
FROM customers c,

products p,
sales s

WHERE c.country_id = 'US'
AND c.cust_id =s.cust_id
AND s.prod_id = p.prod_id
AND p.prod_name = 'T3 Faux Fur-Trimmed Sweater’
GROUP BY s.cust_id, s.prod_id, s.cust_id, s.prod_id,

p.rowid, c.rowid, c.cust_last_name,
c.cust_first_name, c.cust_id

HAVING SUM(s.quantity_sold) > 100
;

• Without the transformation
Optimizer treats OR predicate as a
single unit

• Can’t use index on either column

• Or Expansion transforms queries
that contain OR predicates into the
form of a UNION ALL query of two
or more branches

OR Expansion

SELECT *
FROM products p
WHERE prod_category ='Photo'

OR prod_subcategory ='Camera Media';

• The transformation adds an
LNNVL() function to the second
branch in order to avoid duplicates
being generated across branches

• The LNNVL function returns TRUE,
if the predicate evaluates to FALSE
or if the predicate involved is
NULL; otherwise it will return
FALSE
• lnnvl(true) is FALSE,

lnnvl(false||null) is TRUE

After the Transformation
OR Expansion

SELECT *
FROM products p
WHERE prod_subcategory ='Camera Media’
UNION ALL
SELECT *
FROM products p
WHERE prod_category ='Photo’

AND lnnvl(prod_subcategory =
'Camera Media')

;

Transformation allows an index access to be considered for each branch of the UNION ALL
OR Expansion

• Cost-based* transformation
designed to execute star queries
more efficiently

• Relies on bitmap indexes on
foreign key columns to access
rows in the fact table

• Controlled by parameter
STAR_TRANSFORMATION_ENABLED

Star Transformation

Sales
Fact
Table

Products
Dimension

Time
Dimension

Geography
Dimension

Suppliers
Dimension

Customers
Dimension

Star Schema - one or more large fact table
and many smaller dimension tables

*Compares the cost of the best plan with and without the transformation

• Traditionally a star query only
defines predicates on the
dimension tables

• No efficient way to access rows in
the fact table

• By rewriting the query new access
paths become available on the fact
table

Star Transformation

*Compares the cost of the best plan with and without the transformation

SELECT c.cust_city, t.cal_quarter_desc,
SUM(s.amount_sold) sales_amt

FROM sales s, times t, customers c,
channels ch

WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id
AND c.cust_state_province = 'CA'
AND ch.channel_desc = 'Internet'
AND t.calendar_quarter_desc IN ('2019-
04', '2020-01')
GROUP BY c.cust_city, t.cal_quarter_desc;

• Converts original query to
include 3 sub-queries on
the fact

After the Transformation
Star Transformation

SELECT c.cust_city, t.cal_quarter_desc,
SUM(s.amount_sold) sales_amt

FROM sales s, times t, customers c,
channels ch

WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id
AND c.cust_state_province = 'CA'
AND ch.channel_desc = 'Internet'
AND t.calendar_quarter_desc IN ('2019-04', '2020-01’)
AND s.time_id IN (SELECT time_id

FROM times
WHERE cal_quarter_desc

IN('2019-01’,’2020-01’))
AND s.cust_id IN (SELECT cust_id

FROM customers
WHERE cust_state_province='CA’)

AND s.channel_id IN (SELECT channel_id
FROM channels
WHERE channel_desc = 'Internet')

GROUP BY c.cust_city, t.cal_quarter_desc;

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH GROUP BY | |

|* 2 | HASH JOIN | |

|* 3 | TABLE ACCESS FULL | CUSTOMERS |

|* 4 | HASH JOIN | |

|* 5 | TABLE ACCESS FULL | TIMES |

| 6 | VIEW | VW_ST_B1772830|

| 7 | NESTED LOOPS | |

| 8 | PARTITION RANGE SUBQUERY | |

| 9 | BITMAP CONVERSION TO ROWIDS | |

| 10 | BITMAP AND | |

| 11 | BITMAP MERGE | |

| 12 | BITMAP KEY ITERATION | |

| 13 | BUFFER SORT | |

|* 14 | TABLE ACCESS FULL | CHANNELS |

|* 15 | BITMAP INDEX RANGE SCAN | SALES_CHANNEL_BIX|

| 16 | BITMAP MERGE | |

| 17 | BITMAP KEY ITERATION | |

| 18 | BUFFER SORT | |

|* 19 | TABLE ACCESS FULL | TIMES |

|* 20 | BITMAP INDEX RANGE SCAN | SALES_TIME_BIX |

| 21 | BITMAP MERGE | |

| 22 | BITMAP KEY ITERATION | |

| 23 | BUFFER SORT | |

|* 24 | TABLE ACCESS FULL | CUSTOMERS |

|* 25 | BITMAP INDEX RANGE SCAN | SALES_CUST_BIX |

| 26 | TABLE ACCESS BY USER ROWID | SALES |

--

After the Transformation
Star Transformation

• Converts original query to include
3 sub-queries on the fact

• Fact table accessed first via bitmap
index and then joins out to
dimension tables

• Result of sub-queries may be
saved in temp tables

Understanding how the Optimizer works

Query Transformation
Rewrite query text to allow it to be processed

more efficiently

Plan Generator
Multiple plans are generated for

each SQL, using different access
paths and join types. Each plan is
costed and plan with the lowest
cost is used.

Cost Estimator
Cost is an estimate of the amount of

CPU and the number of disk I/Os,
used to perform an operation

Optimizer

Statistics
Schema definitions

Understanding how the Optimizer works

Query Transformation
Rewrite query text to allow it to be processed

more efficiently

Plan Generator
Multiple plans are generated for

each SQL, using different access
paths and join types. Each plan is
costed and plan with the lowest
cost is used.

Cost Estimator
Cost is an estimate of the amount of

CPU and the number of disk I/Os,
used to perform an operation

Optimizer

Statistics
Schema definitions

Go to PART 2 – Best Practices for Managing Optimizer Statistics

27

Related Information
• White paper on Cost-Based Query

Transformation in Oracle

http://dl.acm.org/citation.cfm?id=1164215

Join the Conversation
https://twitter.com/SQLMaria

https://blogs.oracle.com/optimizer/

https://sqlmaria.com

https://www.facebook.com/SQLMaria

http://dl.acm.org/citation.cfm%3Fid=1164215

