Eventual consistency, Data
Quality, and CAP

Saibabu Devabhaktuni, PayPal
May 13, 2016

©2015 PayPal Inc. Confidential and proprietary.

Agenda

- Data Consistency
- Data Quality

- CAP

* Summary

Why are we talking about this?

« Single databases cannot keep scaling up

Databases needs to be “split” to scale

» Requires application workflows to split on database boundaries
* No transactions across boundaries

* May require data model change

 Access patterns also change

- Sharding/Replication are popular methods to scale out

Databases are now disjoint- “Distributed, Shared-Nothing”

Disjoint databases will fail disjointedly

Introduces inconsistencies at various levels

Data Consistency Types

 Fully consistent across all datasets
* Consistent at individual record level in a table

- Relationally consistent with stale data

» Relationally not consistent with stale data

Application Consistency Types

» Consistency at workflow level
» Consistency at transaction leve

» Consistency at data model leve
- Consistency at business entity level

Consistency at Transaction Level

Cust_id#
101

Application

€ _Cust_id# 502

'Shard1 | | Shard1 | | Shard 3 |

\ 4

\ 4 A 4

Cust_id# 101 address updated on Shard 1
Subsequent read go to lagged Shard 1 RO

Transaction based on Shard 1 RO query cause
Inconsistency

Consistency at Data Model Level

Application uses multiple services and Databases
» “Order DB” stores Order details

Application - "Line Items DB” stores Order’s line items
- "Ref DB” stores transaction details
: - Data model requires referential integrity between Order
Order ltems Transaction (parent) and Line Items (child)
Service Service Service

- Data model’s integrity constraint needs to be
maintained at the application level rather than traditional
database level

« Transactions cannot span database boundaries in such
distributed databases

A 4 &
A
=~ ~
~

No referential integrity
at database level

Consistency at Business Entity Level

Application

Cust ID generated

« Application uses multiple services and Databases
« “Cust DB” stores Customer details
» "Pref DB” stores Customer’s preferences

Cust ID used as key "Ref DB” stores transaction details

€ + Although distributed and asynchronous, Preference and

Cust Preference Transactio Transaction service depends on ID generated by Cust
service service nservice DB

* Cust ID’s failures all subsequent services

Data Quality

* Maintaining business rules within and across data entities
at rest and during state changes

* Impact based on quick detection of data quality issues
* Abllity to repair data quality Issues

CAP

» Consistency: Ability to read latest data

* Partition: Data distributed across nodes with each node
acting as a partition

* Availability: Ability to access data distributed across nodes
within a system

» CAP = You can choose only one of either C or Ain the
presence of P

Distributed Database Failure Categories

* Any logical entity with the same code can fail as a whole
» Cascading node failures can lead to cluster failure

» Cascading replication problems

- Cascading data quality problems

» Cascading capacity problem can lead to poor performance

Design Approach

* Abllity to partition by region

* Micro services

- Shard by business entity (e.g., customer)
* CAP on each shard

Design for CAP

» C and A at most granular business entity level

» Transaction lock (TL) at entity level in a separate data store

* Consistent reads wit

* Consistent reads wit

N quorum basec

- Consistent writes during partition by

N replication lag and TL

reads
everaging TL

* Batch based framework to handle stale TL

13

CAP with 2pc

Application

« Same scenario as before but with DB Links
between all databases

 Distributed transactions with 2 phase

Cust ID used as key Commlt
C ID d . .
st D generate (3) - Provide C and P for transactions
(Cust | (Prefer.ence 1 (Transactio 1 - But a big hit on “A”!
service service nservice

* Network breaks or downtime on ANY of the
3 databases breaks ALL functionality

- Does not scale linearly

Transaction Lock

Application

1. Cust_id 10, Y, TO
4.Cust_id 10, N, T1

(TLservice| (Cu§t W
service

2. Cust_id 10 tran
3. commit

K/V pair lock at entity level
Define staleness time (i.e., 5 mins, 15 mins)

Framework to handle and purge stale data

Summary

* Implement data consistency per application work flow and
transaction requirements

* Define eventual consistency at entity level
* Don’t decouple data quality from eventual consistency
» Apply CAP at data partition level

- Manage CAP at entity level to get varying degree of C, A,
and P at micro service level

16

