
Eventual consistency, Data 
Quality, and CAP 
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Why are we talking about this? 

• Single databases cannot keep scaling up 

• Databases needs to be “split” to scale 

• Requires application workflows to split on database boundaries 

• No transactions across boundaries 

• May require data model change 

• Access patterns also change 

• Sharding/Replication are popular methods to scale out 

• Databases are now disjoint- “Distributed, Shared-Nothing” 

• Disjoint databases will fail disjointedly 

• Introduces inconsistencies at various levels 

 



Data Consistency Types 

• Fully consistent across all datasets 

• Consistent at individual record level in a table 

• Relationally consistent with stale data 

• Relationally not consistent with stale data 

 



Application Consistency Types 

• Consistency at workflow level 

• Consistency at transaction level 

• Consistency at data model level 

• Consistency at business entity level 

 



Consistency at Transaction Level 
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Consistency at Data Model Level 
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• Application uses multiple services and Databases 

• “Order DB” stores Order details 

• ”Line Items DB” stores Order’s line items  

• ”Ref DB” stores transaction details 

• Data model requires referential integrity between Order 
(parent) and Line Items (child) 

• Data model’s integrity constraint needs to be 
maintained at the application level rather than traditional 
database level 

• Transactions cannot span database boundaries in such 
distributed databases 
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Consistency at Business Entity Level 
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• Application uses multiple services and Databases 

• “Cust DB” stores Customer details 

• ”Pref DB” stores Customer’s preferences 

• ”Ref DB” stores transaction details 

• Although distributed and asynchronous, Preference and 
Transaction service depends on ID generated by Cust 
DB 

• Cust ID’s failures all subsequent services 

 



Data Quality 

• Maintaining business rules within and across data entities 
at rest and during state changes 

• Impact based on quick detection of data quality issues 

• Ability to repair data quality issues 

 



CAP  

• Consistency: Ability to read latest data 

• Partition: Data distributed across nodes with each node 
acting as a partition 

• Availability: Ability to access data distributed across nodes 
within a system 

• CAP = You can choose only one of either C or A in the 
presence of P  



Distributed Database Failure Categories 

• Any logical entity with the same code can fail as a whole 

• Cascading node failures can lead to cluster failure 

• Cascading replication problems 

• Cascading data quality problems 

• Cascading capacity problem can lead to poor performance 



Design Approach 

• Ability to partition by region 

• Micro services 

• Shard by business entity (e.g., customer) 

• CAP on each shard 



Design for CAP 

• C and A at most granular business entity level 

• Transaction lock (TL) at entity level in a separate data store 

• Consistent reads with replication lag and TL 

• Consistent reads with quorum based reads 

• Consistent writes during partition by leveraging TL 

• Batch based framework to handle stale TL 
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CAP with 2pc 

• Same scenario as before but with DB Links 
between all databases 

• Distributed transactions with 2 phase 
commit 

• Provide C and P for transactions 

• But a big hit on “A”! 

• Network breaks or downtime on ANY of the 
3 databases breaks ALL functionality 

• Does not scale linearly 
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Transaction Lock 

• K/V pair lock at entity level 

• Define staleness time (i.e., 5 mins, 15 mins) 

• Framework to handle and purge stale data 
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Summary 

• Implement data consistency per application work flow and 
transaction requirements 

• Define eventual consistency at entity level 

• Don’t decouple data quality from eventual consistency 

• Apply CAP at data partition level 

• Manage CAP at entity level to get varying degree of C, A, 
and P at micro service level 
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