
Eventual consistency, Data
Quality, and CAP

1

Agenda

• Data Consistency

• Data Quality

• CAP

• Summary

Why are we talking about this?

• Single databases cannot keep scaling up

• Databases needs to be “split” to scale

• Requires application workflows to split on database boundaries

• No transactions across boundaries

• May require data model change

• Access patterns also change

• Sharding/Replication are popular methods to scale out

• Databases are now disjoint- “Distributed, Shared-Nothing”

• Disjoint databases will fail disjointedly

• Introduces inconsistencies at various levels

Data Consistency Types

• Fully consistent across all datasets

• Consistent at individual record level in a table

• Relationally consistent with stale data

• Relationally not consistent with stale data

Application Consistency Types

• Consistency at workflow level

• Consistency at transaction level

• Consistency at data model level

• Consistency at business entity level

Consistency at Transaction Level

DB1

Shard 1

Application

RO

Shard 1

DB3

Shard 3

• Cust_id# 101 address updated on Shard 1

• Subsequent read go to lagged Shard 1 RO

• Transaction based on Shard 1 RO query cause

inconsistency Cust_id#

101

Cust_id# 502

Consistency at Data Model Level

Order

DB

Order

Service

Application

Line

Items

DB

Items

Service

Ref

DB

Transaction

Service

• Application uses multiple services and Databases

• “Order DB” stores Order details

• ”Line Items DB” stores Order’s line items

• ”Ref DB” stores transaction details

• Data model requires referential integrity between Order
(parent) and Line Items (child)

• Data model’s integrity constraint needs to be
maintained at the application level rather than traditional
database level

• Transactions cannot span database boundaries in such
distributed databases

No referential integrity

at database level

Consistency at Business Entity Level

Cust

DB

Pref

DB

Cust

service

Preference

service

Application

Ref

DB

Transactio

nservice

Cust ID generated

Cust ID used as key
2

3

1

• Application uses multiple services and Databases

• “Cust DB” stores Customer details

• ”Pref DB” stores Customer’s preferences

• ”Ref DB” stores transaction details

• Although distributed and asynchronous, Preference and
Transaction service depends on ID generated by Cust
DB

• Cust ID’s failures all subsequent services

Data Quality

• Maintaining business rules within and across data entities
at rest and during state changes

• Impact based on quick detection of data quality issues

• Ability to repair data quality issues

CAP

• Consistency: Ability to read latest data

• Partition: Data distributed across nodes with each node
acting as a partition

• Availability: Ability to access data distributed across nodes
within a system

• CAP = You can choose only one of either C or A in the
presence of P

Distributed Database Failure Categories

• Any logical entity with the same code can fail as a whole

• Cascading node failures can lead to cluster failure

• Cascading replication problems

• Cascading data quality problems

• Cascading capacity problem can lead to poor performance

Design Approach

• Ability to partition by region

• Micro services

• Shard by business entity (e.g., customer)

• CAP on each shard

Design for CAP

• C and A at most granular business entity level

• Transaction lock (TL) at entity level in a separate data store

• Consistent reads with replication lag and TL

• Consistent reads with quorum based reads

• Consistent writes during partition by leveraging TL

• Batch based framework to handle stale TL

13

CAP with 2pc

• Same scenario as before but with DB Links
between all databases

• Distributed transactions with 2 phase
commit

• Provide C and P for transactions

• But a big hit on “A”!

• Network breaks or downtime on ANY of the
3 databases breaks ALL functionality

• Does not scale linearly
Cust

DB

Pref

DB

Cust

service

Preference

service

Application

Ref

DB

Transactio

nservice

Cust ID generated

Cust ID used as key
2

3

1

Transaction Lock

• K/V pair lock at entity level

• Define staleness time (i.e., 5 mins, 15 mins)

• Framework to handle and purge stale data

TL DB
Cust

DB

TL service
Cust

service

Application

1. Cust_id 10, Y, T0

4.Cust_id 10, N, T1

2. Cust_id 10 tran

3. commit

Summary

• Implement data consistency per application work flow and
transaction requirements

• Define eventual consistency at entity level

• Don’t decouple data quality from eventual consistency

• Apply CAP at data partition level

• Manage CAP at entity level to get varying degree of C, A,
and P at micro service level

16

