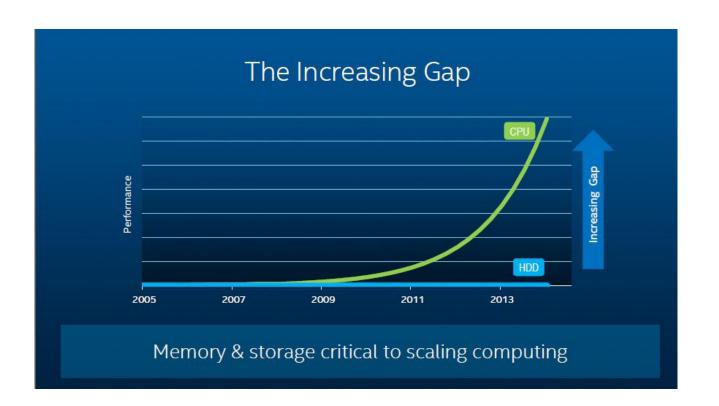
Enterprise-Class Storage We've Come a Long Way, Or Have We?

Kevin Closson Sr. Director / Chief Performance Architect XtremIO, CDT, EMC


ABOUT THE SPEAKER

- Performance Architect in XtremIO
- Former Performance Architect (IC6) in Oracle Exadata Development
- Oaktable Network since 2002
- Inventor of SLOB (The Silly Little Oracle Benchmark) platform testing kit
- Performance optimizations in Oracle Disk Manager Library at Veritas and PolyServe
- 10 years Database Engineering on the Sequent ports of Oracle including the first Unix port of Parallel Server and development platform for Intra-Node Parallel Query
- US Patents in high performance NUMA optimized locking primitives and database caching methods
- Lots of book collaborations and blogging at kevinclosson.net

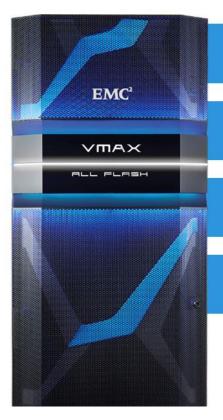
HDD – The Root of All That Is Evil (?)

Eight 2.5GB IBM 3380 Disk Systems: 20GB Estimated value: \$648,000 - \$1,137,600 Weight: 2,000,000 grams (4,400 pounds)

Enterprise Storage

HISTORICAL ENTERPRISE ARRAY

Focus on features, host connectivity, protocols, capacity and performance


Generation	Models	Production years	Disks (Max)	Memory (Max)
Symm2	4000, 4400, 4800	1992	24	
Symm3	3100, 3200, 3500	1994	32 / 96 / 128	4 GB
Symm 4.0	3330/5330, 3430/5430, 3700/5700	1996	32 / 96 / 128	8 GB / 16 GB
Symm 4.8	3630/5630, 3830/5830, 3930/5930	1998	32 / 96 / 256 / 384	8 GB / 16 GB
Symm 5.0	8430, 8730	2000	96 / 384	32 GB
Symm 5.5	8230, 8530, 8830	2001	48 / 96 / 384	32 GB
DMX, DMX2	DMX-1000, DMX-2000, DMX-3000	2003	144 / 288 / 576	
DMX3, DMX4	1500, 2500, 3500, 4500	2005	240 / 960 / 1440 / 2400	64 / 144 / 216 / 256 GB
VMAX	VMAX, VMAX-SE, VMAX 10K, VMAX 20K, VMAX 40K	2009+	1080 / 2400 /3200	512 / 1024 / 2048 GB
VMAX 3	VMAX 100K, 200K, 400K	2015	1440 / 2880 / 5760	2TB / 8TB / 16 TB

Is Evolution Always Incremental?

THE VENERABLE ARRAY GOES ALL FLASH

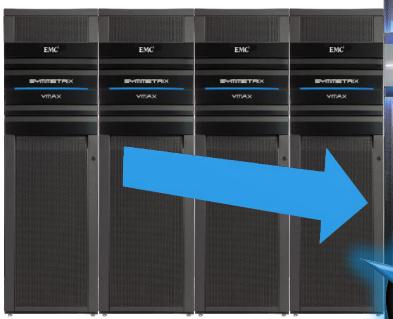
4M IOPS, <.5ms LATENCY 150GB/s BANDWIDTH

3.8TB SSD FOR HIGHEST IOP/TB/FLOOR TILE

APPLIANCE-LIKE PACKAGING SOFTWARE INCLUDED

SIMPLE, SIMPLE, SIMPLE ONE TIER, ANY SKEW, NO HDDS

* Performance numbers based on 8 Engine , RRH, OLTP2


PREVIOUS TO CURRENT GEN REFRESH

EMC²

FLASH

800TB USABLE

VMAX 20K 9 BAY

*Results based on 9 Bay VMAX 20K compared to VMAX 450F with 800TB usable capacity

6X MORE PERFORMANCE

40% TCO

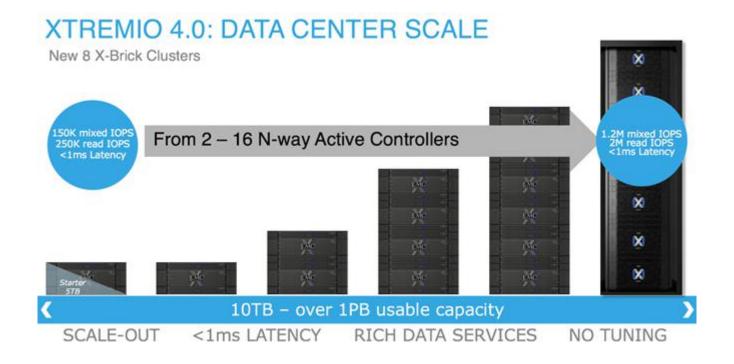
87% LESS ENERGY

92% LESS FOOTPRINT

98% FEWER DRIVE REPLACEMENTS

VMAX ALL FLASH SINGLE BAY

IS IT REALLY JUST THIS?



There's More To All Flash Array Than The Simple SDD vs HDD

ALL FLASH ARRAY - NOT ALL CREATED EQUAL

DSSD - COMPLETELY NEW CLASS!

D.I.Y. OR CONVERGED

Let's Go Back In Time Again ...For Another Perspective

Home / M2392K-FUJITSU-Fujitsu Swallow 6 Drive-Refurbished

IT Procurement Made Simple

M2392K-FUJITSU-FUJITSU SWALLOW 6 DRIVE-REFURBISHED

SKU: M2392K

Email to a Friend
Be the first to review this product

\$399.00
Availability: Usually Ships in 24 to 48 hours

Qty:

ADD TO CART REQUEST A QUOTE

Add to Wishlist +Add to Compare

- Fujitsu Swallow-6. (SMD Storage Module Device)
- 2GB Capacity
 - 12 8" platters
 - 12ms position time
 - Each platter delivered ~80 IOPS
 - Roughly 1,000 IOPS
 - But...the head electronics limited to 3MBs
 - 8K IOPS == 384
 - 4K IOPS == 768
 - 2K IOPS == 1,536 (platters can't get there)
- No worries. Systems had multiples of these drives...
- Right?

- So attach multiple Fujitsu Swallow-6 to a host (as DAS)
- Example Sequent Balance (circa '87)
 - Connect up to 8 Swallow drives
 - But, main memory (RAM) was 32MB
 - Only 4MB of that for I/O buffers
 - So, with an Oracle block size of 4K that's a whopping 1024 concurrent I/O in flight.
 - No matter, at least there was only 53MB/s bus bandwidth
 - What happens to CPU utilization at bus saturation?

Everything is always a CPU problem

Did I Forget To Say That Everything Is A CPU Problem?

We've Come A Long Way

But...

In Some Key Areas So Very Little Has Changed

"It's Simple, So It Must Be Easy. Right?"

SO LITTLE HAS CHANGED

Just because something is simple that doesn't mean it is easy.

SO LITTLE HAS CHANGED

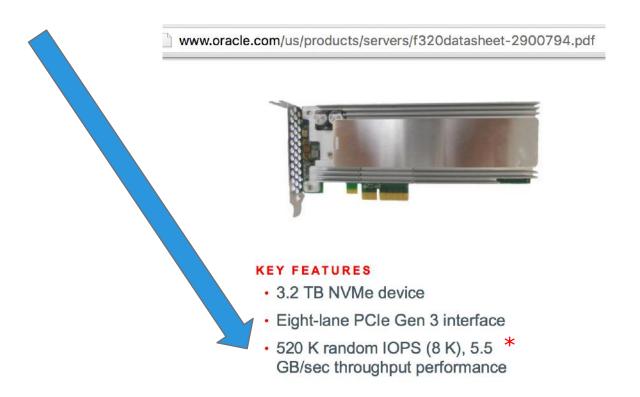
• In 2016 it's simply true that platform performance for Oracle is simple.

But is it easy?

Are we getting in our own way?

We're Still Getting In Our Own Way

GETTING IN OUR OWN WAY


- Going out of our way to cripple data flow
 - If Fibre Channel, configure modern Oracle servers with 2 x 8GFC paths
 per socket
 - Story time
 - If dNFS, more 10GbE NICS. Period!
- Bad server choices
 - Avoid 2-hop NUMA servers at all cost unless chopping it up with virtualization
 - 4 Socket EP versus 2 Socket EP and 4 Socket EX
 - Pich the *right* Xeon SKU
- Throwing hardware at bad query plans

We Still Think Performance Is The Sum Of Components

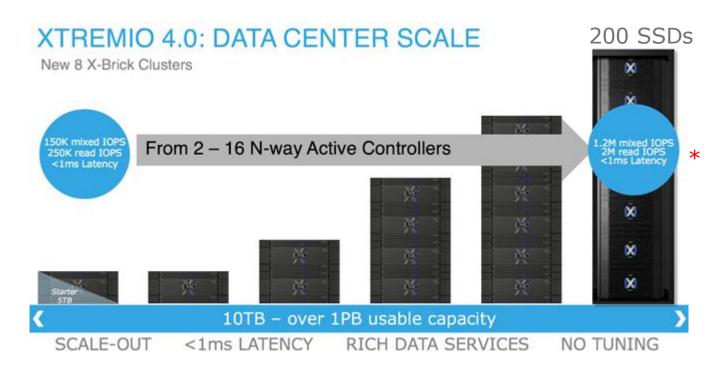
PERFORMANCE IS NOT THE SUM OF COMPONENTS

Note: X6-2 Cells have 8 of these each. (520K * 8 == 4,160,000)

PERFORMANCE IS NOT THE SUM OF COMPONENTS

Flash Metrics		Maximum SQL Flash Bandwidth	Maximum QL Flash ad IOPS	Maximum SQL Flash Write IOPS	PCI Flash Capacity (raw)
Full Rack	нс	301 GB/s	/ Each S	SSD is rated at	5.5GB/s
	EF	350 GB/s		5.5 == 616GB	•
Half Rack	HC	150 GB/s	112	J.J == 0100D	73, but
	EF	175 GB/s	,250,000	2,072,000	179.2 TB
Quarter Rack	HC	64 GB/s	,125,000	1,036,000	38.4 TB
	EF	75 GB/s	1,125,000	1,036,000	76.8 TB
Eighth Rack	HC	32 GB/s	562,500	518,000	19.2 TB
	EF	38 GB/s	562,500	518,000	38.4 TB

when running database workloads. A slightly different full rack combination, with 10 database servers and 12 Extreme Flash storage servers, can achieve up to **5.6 Million** random **8K read and 5.2 Million random 8K write I/O operations per second (IOPS)** from SQL, which is an industry record for database workloads.

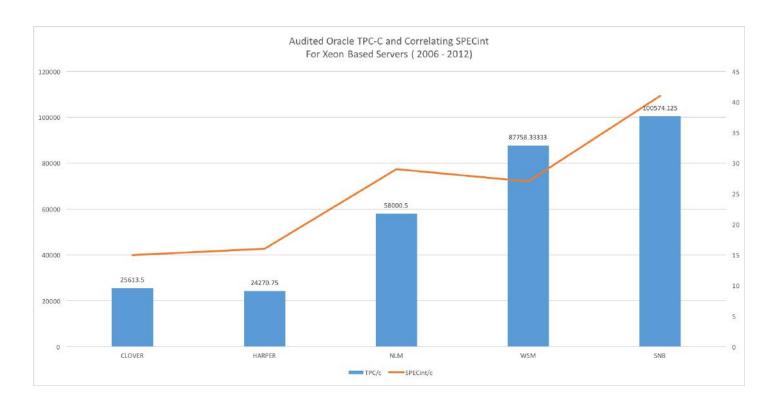

```
Per host GB per second:

((5600000 / 10) * 8192) / 2^30 == 4.27 (5600000 / 10) == 560K
((4500000 / 8 ) * 8192) / 2^30 == 4.29 (4500000 / 8 ) == 562K
```

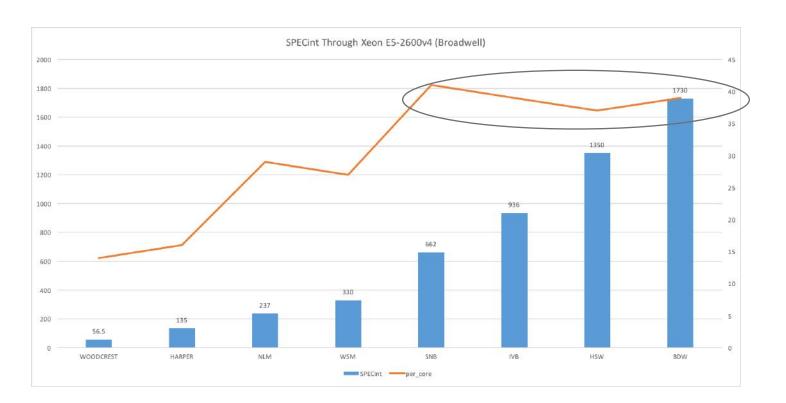
IOPS/SSD: 4,500,000 / (8 * 14) == 40,178

EMC²

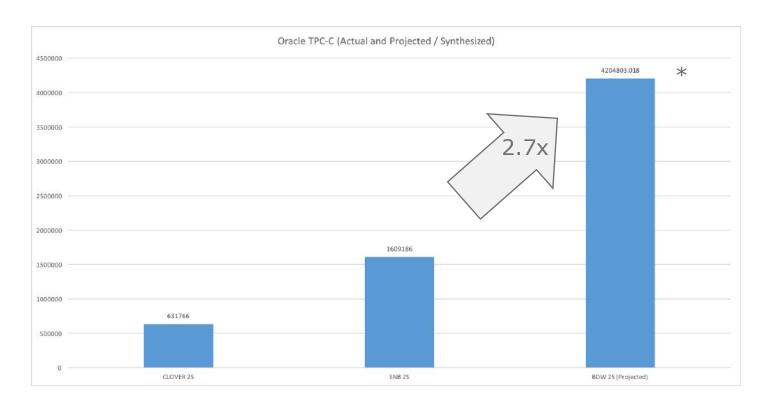
PERFORMANCE IS NOT THE SUM OF COMPONENTS



* IOPS/SSD: 2,000,000 / (8 *25) ==10,000



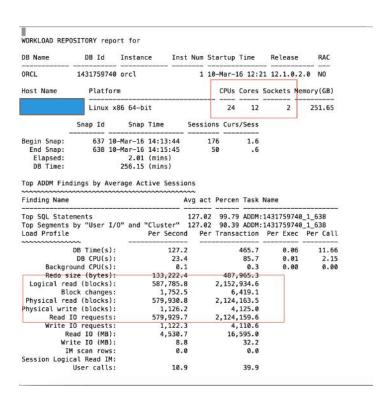
Modern Systems Are Probably Better Than You Think



* 6/26/12: Oracle 11g 8S E7-8800 4,803,718 TpmC

Lab Example

MODERN SERVER IOPS CAPACITY


6-core HSW-EP Parts!

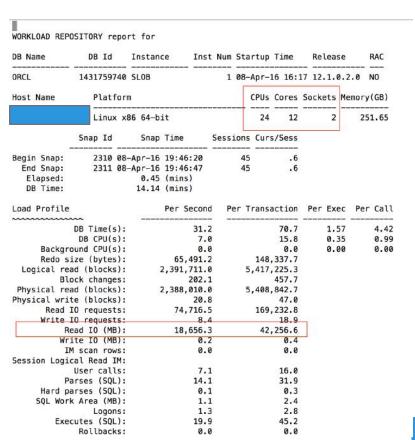
```
$ cat /proc/cpuinfo | grep 'model name'
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3,40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3,40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3,40GHz
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
model name
                : Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz
```


MODERN SERVER IOPS CAPACITY

- 48,327 IOPS/c
- To put that in perspective X6-2 hosts are 22 core BDW-EP
 - 560K / 44 == 12,727

BLOCKING I/O ALWAYS REFLECTS LATENCY

Top 10 Foreground Events by Total Wait Time

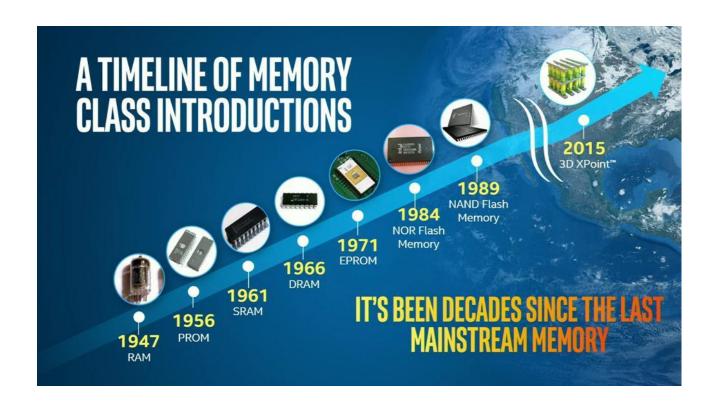

Event	Waits	Total Wait Time (sec)	Wait Avg(ms)	% DB Wait time Class
db file sequential read	70,096,937	14K	0.20	91.2 User I/0
DB CPU		2828.9		18.4
library cache: mutex X	3,225	2.7	0.83	.0 Concurre
latch: row cache objects	193	1.7	8.56	.0 Concurre
read by other session	4,913	1.2	0.24	.0 User I/O
latch: cache buffers chains	8,671	1	0.12	.0 Concurre
latch free	2,205	.7	0.30	.0 Other
latch: call allocation	26	.5	18.96	.0 Other
Disk file operations I/O	1,682	.4	0.26	.0 User I/O
latch: enqueue hash chains	11	.1	10.27	.0 Other
^L				

Wait Classes by Total Wait Time

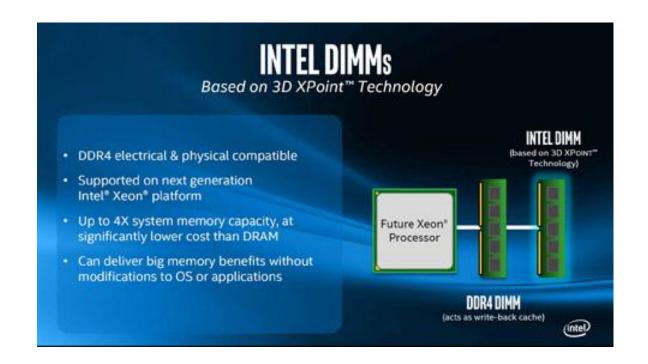
MODERN SERVER I/O BANDWIDTH

- 18+ Gigabytes/sec
- DB CPU 7
 - 10.4 GBPS/c
- 17 (71%) threads remaining for all other processing

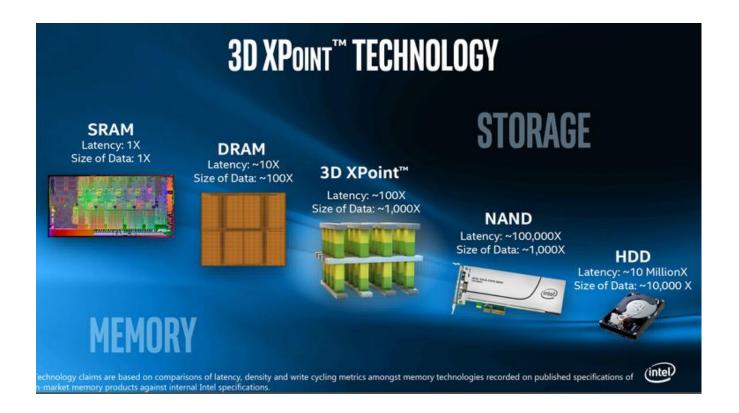
The Future Is Quite Bright And Not Too Distant

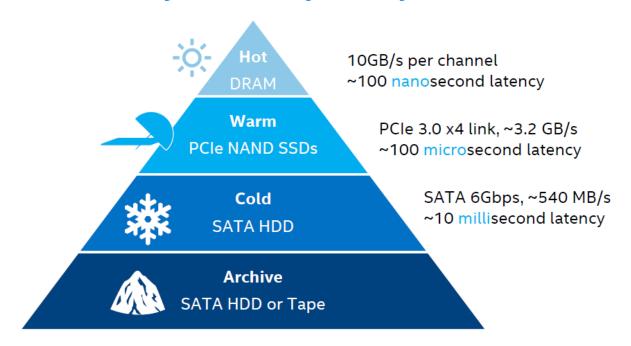


THE LESS THINGS STAY THE SAME THE MORE THEY CHANGE

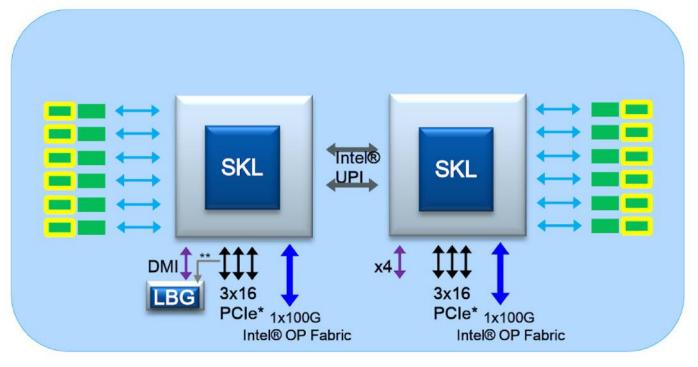

- Machines are not (always) machines (VM vs physical)
- A CPU is not always a CPU (Threaded CPUs)
- Memory is not (always) predictable (NUMA)
- Clock frequency is not (always) predictable (TurboBoost)

- And soon...
- Main memory is not (always) DRAM





Storage and Memory Hierarchy Today



Storage Hierarchy Tomorrow DRAM: 10GB/s per channel, ~100 nanosecond latency Server side and/or AFA **Business Processing** ~6GB/s per channel High Performance/In-Memory Analytics ~250 nanosecond latency Scientific Cloud Web/Search/Graph PCIe 3.0 x4 link, ~3.2 GB/s <10 microsecond latency Big Data Analytics (Hadoop) Object Store / Active-Archive Warm PCIe 3.0 x4, x2 link Swift, lambert, hdfs, Ceph <100 microsecond latency NVMe 3D NAND SSDs Cold **NVMe 3D NAND SSDs** SATA 6Gbps SATA or SAS HDDs Minutes offline Low cost archive Comparisons between memory technologies based on in-market product specifications and internal Intel specifications.

Sad it doesn't say Database or RDBMS or OLTP anywhere ⊗

INTEL "SKYLAKE" XEON (SKL-EP)

So It Is Really More Than...

IS IT REALLY JUST THIS?

E Marie Carlos C