Same Plan
Different Performance

Mauro Pagano

Mauro Pagano

Consultant/Developer/Analyst
Oracle = Enkitec = Accenture
DBPerf and SQL Tuning
Training

Tools (SQLT, SQLd360, PLNFND)

SQL is slower....

 Same SQL experiences different performance
in systems that are identical (or supposed to)

* First check the execution plan
 Most of the time plan is different, address it
 But what if the plan is the same?

CBO is innocent (this time, maybe)

* Exec planis where CBO’s job end (kind of)
 Same plan means CBO “worked” the same
* Doesn’t mean everything else IS the same
e Shift focus on next step, SQL execution

Apples vs oranges?

 Make sure the comparison is fair (data)

* All external factors should be similar
— CPU should be similar
— 10 should be similar
— Memory should be similar

“Everything is the same!”

* Plan, data and hardware match, now what?
* Dig into how the SQL is executed

* Wait events and session statistics

* Factors

— configuration, storage layout, load

Old friends get-together

* Wait events
— Do they match?
— Are they close in cardinality?
— Do we spend the same time on them?

e Session statistics

— Do they match?
— Are they close in values?

Back to the plan for a second

* Exec plan is made of lots of small steps

* Each one produces/handles/consumes rows
 Same behaviors in short and long plans

* Keep it simple, focus on the step

* Remove the noise if possible (reduce TC)

Each scenario is a quiz

 SQL is provided
* Changes to the initial setup are disclosed
 Each run in one environment

* |dentify what’s different and why

Setup

Linux x86-64, 11.2.0.3

1 table, 1M rows, 3 columns, no index
— N1 unique

— N2 100 NDV

— C1 100chars long padded string

ldentical hardware, same DDL to create table
Controlled environments to isolate behavior
Simplest SQL to reproduce desired behavior

10

Scenario #1

* SQL

— select /*+ INDEX(TEST1M) */ count(*)
from testlm
where nl between 1 and 1000000

* Environment
— Added index on N1

11

Scenario #1 — Run (A)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 031 0.45 2228 2228 0 1

total 4 0.32 0.45 2228 2228 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=2228 pr=2228 pw=0 time=451619 us)
1000000 1000000 1000000 INDEX RANGE SCAN TEST1M_IDX (cr=2228 pr=2228

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m-ooeee-
db file sequential read 2228 0.00 0.15

12

Scenario #1 — Run (B)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.07 0.08 0 2228 0 1

total 4 0.08 0.08 0 2228 0 1

1 1 1 SORT AGGREGATE (cr=2228 pr=0 pw=0 time=80038 us)

1000000 1000000 1000000 INDEX RANGE SCAN TESTI1IM_IDX (cr=2228 pr=0 pw=0

13

Scenario #1 Solution

Buffer Cache cold/warm

(Part of) the data already in memory
Reduced number of physical reads (pr)
Faster performance because less reads
Number of (same) wait events is lower

Isolated environment likely to read more

14

Scenario #2

* SQL

— select /*+ FULL(TEST1M) */ count(*)
from testlm

° Environment

— No changes from original setup

15

Scenario #2 — Run (A)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 057 1.51 28574 28584 0 1

total 4 057 1.52 28574 28584 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=28584 pr=28574 pw=0 time=1513999 us)
1000000 1000000 1000000 TABLE ACCESS FULL TEST1M (cr=28584 pr=28574

Event waited on Times Max. Wait Total Waited
-- Waited ---------- --m--mmeeee-
db file sequential read 1 0.00 0.00
db file scattered read 240 0.02 1.07

16

Scenario #2 — Run (B)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 1.04 242 14286 28583 0 1

total 4 1.04 242 14286 28583 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=28583 pr=14286 pw=0 time=2424726 us)
1000000 1000000 1000000 TABLE ACCESS FULL TESTIM (cr=28583 pr=14286

Event waited on Times Max. Wait Total Waited
-- Waited ---------- --m--mmeeee-
db file sequential read 5732 0.01 0.89
db file scattered read 4277 0.00 0.75

17

Scenario #2 — Run (A) - Waits

WAIT #140245916217600: nam='db file scattered read' ela= 4834 file#=26 blo
WAIT #140245916217600: nam='db file scattered read' ela= 4020 file#=26 b

WAIT #140245916217600: nam='db file scattered read' ela= 2452 file#=26
WAIT #140245916217600: nam='db file scattered read' ela= 8712 file#=2
WAIT #140245916217600: nam='db file scattered read' ela= 6417 file#=2¢
WAIT #140245916217600: nam='db file scattered read' ela= 2267 filet#=2¢
WAIT #140245916217600: nam='db file scattered read' ela= 2637 file#=2¢€
WAIT #140245916217600: nam='db file scattered read' ela= 2304 file#=26\block#=16898 blocks=126
WAIT #140245916217600: nam='db file scattered read' ela= 1809 file#=26 block#=17026 blocks=126
WAIT #140245916217600: nam='db file scattered read' ela= 2661 file#=26 block#=17154 blocks=

block#=16386 blocks=126
block#=16514 blocks=126
block#=16642 blocks=126
block#=16770 blocks=126

Scenario #2 — Run (B) - Waits

WAIT #140245916165224: nam=
WAIT #140245916165224: nam=
WAIT #140245916165224: nam=

....<<another 38 waits here>>

WAIT #140245916165224: nam=
WAIT #140245916165224: nam=
WAIT #140245916165224: nam=
WAIT #140245916165224: nam=
WAIT #140245916165224: nam=
WAIT #140245916165224: nam=

'db file sequential read’ ela= 124 file#=26 block#=16002 blocks=1
'db file scattered read' ela= 139 file#=26 block#=16004 blocks=
'db file sequential read’ ela= 117 file#=26 block#=16007 blocks={

block#=16113 blocks=1
block#=16116 blocks=1
block#=16118 blocks=2
block#=16121 blocks=2
ock#=16124 blocks=2
vck#=16127 bloc

'db file sequential read’ ela= 132 file#=26
'db file sequential read' ela= 123 file#=2¢
'db file scattered read' ela= 142 file#=26
'db file scattered read' ela= 141 file#=26
'db file scattered read' ela= 135 file#=26 b
'db file sequential read' ela= 119 file#=26 bl

]
(WY

19

Scenario #2 Solution

» Buffer cache status (cold/warm)

* (Part of) the data already in memory
 Reduced number of physical reads (pr)
* Number of (same) wait events is higher

* Wait events details help track it down
— Non-contiguous blocks read

* Slower performance because smaller reads

20

Scenario #3

* SQL

— select /*+ FULL(TEST1M) */ count(*)
from testlm

* Environment

— No changes
— BC warm

21

Scenario #3 — Run (A)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 092 296 14286 28583 0 1

total 4 092 296 14286 28583 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=28583 pr=14286 pw=0 time=2967930 us)
1000000 1000000 1000000 TABLE ACCESS FULL TESTI1M (cr=28583 pr=14286

Event waited on Times Max. Wait Total Waited
-- Waited ---------- --m--mmeeee-
db file sequential read 5732 0.10 1.17
db file scattered read 4277 0.28 1.13

22

Scenario #3 — Run (B)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 01 1.01 28573 28575 0 1

total 4 011 1.02 28573 28575 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=28575 pr=28573 pw=0 time=1019952 us)
1000000 1000000 1000000 TABLE ACCESS FULL TESTI1M (cr=28575 pr=28573

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m--oe--
eng: KO - fast object checkpoint 2 0.00 0.00
direct path read 179 0.03 0.90

23

Scenario #3 — Solution

* Buffered vs Direct Path reads (different waits too)
* (Part of) the data already in memory

* Direct Path
— skips Buffer Cache and reads whole table every time
— consistent performance
— number of wait events is consistent

 Buffered vs Direct Path decision is made AFTER
plan selection (several criteria)

24

Scenario #4

* SQL

— select /*+ FULL(TEST1M) */ count(*)
from testlm

* Environment

— No changes
— BC cold

25

Scenario #4 — Run (A)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 057 3.08 15872 15884 1 1

total 4 057 3.10 15872 15884 1 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=15884 pr=15872 pw=0 time=3086869 us)
1000000 1000000 1000000 TABLE ACCESS FULL TESTIM (cr=15884 pr=15872

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m-ooeee-
db file scattered read 2005 0.05 2.53

26

Scenario #4 — Run (B)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 032 1.66 15872 15881 0 1

total 4 0.32 1.66 15872 15881 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=15881 pr=15872 pw=0 time=1660864 us)
1000000 1000000 1000000 TABLE ACCESS FULL TEST1M (cr=15881 pr=15872

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m-ooeee-
db file scattered read 141 0.05 1.41

27

Scenario #4 — Run (A) - Waits

WAIT #139702845969088:
WAIT #139702845969088:
WAIT #139702845969088:
WAIT #139702845969088:

WAIT #139702845969088:
WAIT #139702845969088:

WAIT #139702845969088:
WAIT #139702845969088:

nam='db file scattered read' ela= 265 file##=25 block#=306 blocks=8
nam='db file scattered read' ela= 257 file##=25 block#=314 blocks=8
nam='db file scattered read' ela= 259 file#=25 block#=322 blocks=8
nam='db file scattered read' ela= 254 file##=25 block#=330 blocks=8

nam='db file scattered read' ela= 217 file#=25 block#=378 blocks=6
nam='db file scattered read' ela= 270 file#=25 block#=386 blocks=8

nam='db file scattered read’' ela= 283 file##=25\block#=394 blocks=8
nam='db file scattered read’' ela= 263 file##=25 block#=402 blocks=&

28

Scenario #4 — Run (B) - Waits

WAIT #139702846026760: nam='db file scattered read' ela= 13508 file##t=25 block#=258 blocks=12€
WAIT #139702846026760: nam='db file scattered read' ela= 9016 file#=25.block#=386 blocks=126

29

Scenario #4 — Solution 1

Different db_file_multiblock read count value

Same number of blocks read from disk
Number of (same) wait events is higher
Wait events details help track it down

— Contiguous blocks read

Slower performance because smaller reads

30

Scenario #4 — Solution 2

Different extent size (64k vs 1M)
Same number of blocks read from disk
Number of (same) wait events is higher

Wait events details help track it down
— Contiguous blocks read

Same params/stats but different storage org
Slower performance because smaller reads

31

Scenario #5

* SQL

— select /*+ FULL(TEST1M) */ count(*)
from testlm

* Env changes

— No changes
— BC cold, MBRC and extent are identical

32

Scenario #5 — Run (A)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.26 0.72 14285 14297 1 1

total 4 0.27 0.72 14285 14297 1 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=14297 pr=14285 pw=0 time=723883 us)
1000000 1000000 1000000 TABLE ACCESS FULL TEST1M (cr=14297 pr=14285

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m-ooeee-
db file scattered read 128 0.04 0.51

33

Scenario #5 — Run (B)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 044 1.29 28574 28586 1 1

total 4 044 1.29 28574 28586 1 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=28586 pr=28574 pw=0 time=1291333 us)
1000000 1000000 1000000 TABLE ACCESS FULL TESTI1M (cr=28586 pr=28574

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m-ooeee-
db file scattered read 240 0.04 0.95

34

Scenario #5 — Solution 1

Different PCTFREE (O vs 50)
Higher number of blocks read for same data

Reads are of the same size hence more reads

Data is more spread out, room for changes

Slower performance because more reads

35

Scenario #5 — Solution 2

Empty blocks below HWM
Higher number of blocks read for same data

Reads are of the same size hence more reads

Data has been deleted, FTS reads everything

Slower performance because more reads

36

Scenario #6

* SQL

— select /*+ FULL(TEST1M) */ count(*)
from testlm

* Env changes

— No changes
— BC cold, MBRC, PCTFREE and extent are identical

37

Scenario #6 — Run (A)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 044 1.29 28574 28586 1 1

total 4 044 1.29 28574 28586 1 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=28586 pr=28574 pw=0 time=1291333 us)
1000000 1000000 1000000 TABLE ACCESS FULL TESTI1M (cr=28586 pr=28574

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----m-ooeee-
db file scattered read 240 0.04 0.95

38

Scenario #6 — Run (B)

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 073 249 28803 58584 0 1

total 4 074 249 28803 58584 0 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation

1 1 1 SORT AGGREGATE (cr=58584 pr=28803 pw=0 time=2492596 us)
1000000 1000000 1000000 TABLE ACCESS FULL TEST1M (cr=58584 pr=28803

Event waited on Times Max. Wait Total Waited
-- Waited ---------- -mmmmmme-
db file scattered read 240 0.23 1.73
cell single block physical read 230 0.01 0.06

39

Scenario #6 — Waits and SesStats

 Wait events show
— single block reads from UNDO tbs for obj#=0

WAIT #140029131327704: nam='db file scattered read' ela= 15412 file#=26 block#=15618 blocks=126 o
WAIT #140029131327704: nam="cell single block physical read' ela= 220 ... bytes=8192
WAIT #140029131327704: nam='db file scattered read' ela= 11786 file#=26 block#=15746 blocks=126 obj#=74828
WAIT #140029131327704: nam="cell single block physical read' ela= 233 ... bytes=8192@bj#=0 >

WAIT #140029131327704: nam="db file scattered read' ela= 5938 file##=26 block#=15874 blocks=126
WAIT #140029131327704: nam="cell single block physical read' ela= 224 ... bytes=8192@bj#=0 >

WAIT #140029131327704: nam="db file scattered read' ela= 12162 file#=26 block#=16002 blocks=126 obj#=74828

j#=74828

obj#=74828

* vSsesstat shows high
— data blocks consistent reads - undo records applied

40

Scenario #6 - Solution

Different concurrency/workload

Higher number of blocks read for same data
Waits -> reads from UNDO tbs

SesStats -> UNDO records applied

Slower performance because more reads +
more work to recreate the correct image

41

Scenario #/
. SQL

— select /* 1st run */ nl,cl

from testlm
where nlin (1,1000,5000)

* Env changes
— Index on TEST1IM(N1)
— BC cold, MBRC, PCTFREE and extent are identical
— No concurrency at the time SQL is executed

42

Scenario #7 — Why so many cr/pr?

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.00 0.75 11 18 0 3

total 4 0.00 0.75 11 18 0 3

3 3 3 INLIST ITERATOR (cr=18 pr=11 pw=0 time=235681 us)
3 3 3 TABLE ACCESS BY INDEX ROWID TEST1IM (cr=18 pr=11
3 3 3 INDEX RANGE SCAN TEST1M IDX (cr=9 pr=5 pw=0
Event waited on Times Max. Wait Total Waited
-- Waited ---------- --m--mmeeee-
db file sequential read 11 0.18 0.52

43

Scenario #7 — Waits and SesStats

* Wait events show
— single block reads from data tbs, same obj#

WAIT #140...: nam='db file sequential read' ela= 7414 file#=26 block#=2356 blocks=1 obj#=75022

WAIT #140...: nam='db file sequential read' ela= 41395 file#=26 bl =131 blocks=1 obj#=74828
WAIT #140...: nam='db file sequential read' ela= 181594 file#=26 k#=78403 blocks=1 obj#=748
e vSsesstat shows high

— table fetch continued row

44

Scenario #7 - Solution

* Row migration, index points to original rowid
* Higher number of blocks read for same data
* Waits -> reads are from data tbs

e SesStats -> table fetch continued row

* Slower performance because more reads +
more work to find all the row pieces

* Similar behavior happens with chained rows

45

Scenario #8
. SQL

— select /* 2nd run */ nl,cl, ora rowscn
from testlm
where rownum <= 5000

* Env changes
— Index on TEST1IM(N1)
— BC cold, MBRC, PCTFREE and extent are identical
— No concurrency at the time SQL is executed

46

Scenario #8 - Why so many seq read?

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0

Fetch 6 0.03 0.22 393 5378 0 5000

5000 5000 5000 COUNT STOPKEY (cr=5378 pr=393 pw=0 time=91193
5000 5000 5000 TABLE ACCESS FULL TEST1M (cr=5378 pr=393

Event waited on Times Max. Wait Total Waited
-- Waited ---------- ----oeeoeee-
db file sequential read 381 0.00 0.19
db file scattered read 2 0.00 0.00

47

Scenario #8 — Waits and SesStats

e Wait events show

— single block reads from data tbs, same obj#

WAIT #1405...:
WAIT #1405...
WAIT #1405...:
WAIT #1405...:

: nam="db file sequential read' ela= 193 file#=26

nam='db file scattered read’ ela= 6434 file#=26 block#=132 blocks=4 obj#=74828

ock#=78670 blocks=1 obj#=74828

lock#=78686 blocks=1 obj#=74828
k#=7890 blocks=1 obj#=74828

nam='db file sequential read' ela= 182 file#=26
nam='db file sequential read' ela= 3445 file#=26 bla

* vSsesstat shows high
— table fetch continued row

48

Scenario #8 - Solution

* Row migration, pseudo col needs row header
* Higher number of blocks read for same data
* Waits -> reads are from data tbs

e SesStats -> table fetch continued row

* Slower performance because more reads +
more work to find all the row pieces

* Similar behavior happens with chained rows

49

Other things to consider

 Same PHV with small differences
— Predicate ordering
— Column projection
* Exadata Optimizations
— Exadata Smart Flash Cache
— Storage indexes
* External to the database

— File system / SAN / Disk caching
— Read-ahead optimizations

50

Conclusions

 Same plan can still run differently
e Storage organization and concurrency impact
* Fix one scenario can introduce another, ie.

— low PCTFREE higher chance of row migration
— high caching slows down buffered mreads

* Find a balance to achieve optimal performance

51

52

References

'DB FILE MULTIBLOCK READ COUNT' AND EXT X
MANAGEMENT (Doc ID 181272.1)

Higher 'direct path read’ Waits in 11g when
Compared to 10g (Doc ID 793845.1)

Why Is My Query Sometimes Slower Than Other
Times with Higher Consistent Gets Although No
Change in Execution Plan? (Doc ID 1558349.1)

Row Chaining and Row Migration (Doc ID 122020.1)

53

Contact Information

ORApeeps
* mauro.pagano@gmail.com

* http://mauro-pagano.com
* @mautro

54

