
Salesforce
Using Edition-Based Redefinition
for Near-Zero-Downtime Releases

Lee Horner

DB Architect

Email: Ihorner@salesforce.com

Twitter: @leehorner

Agenda

• Salesforce.com Overview

• Enterprise Cloud Challenges at Massive Scale

• Implementing Edition-Based Redefinition (EBR)

• EBR Phased Rollout

• Planned Maintenance Benefits

Salesforce Overview

Delivering Enterprise Cloud Transactions at Scale
​Further Improving Response Times

Transactions Per Quarter

259B Transactions in Q3FY16

63% YoY Growth (Q3FY15-Q3FY16)

Average Page Time

209ms Latency in Q3FY16

Flat (Reduction) YoY

B

70B

140B

210B

280B

Q4FY13 Q2FY14 Q4FY14 Q2FY15 Q4FY15 Q2FY16

200ms

220ms

240ms

260ms

280ms

Q4FY13 Q2FY14 Q4FY14 Q2FY15 Q4FY15 Q2FY16

Global Enterprise Cloud Data Centers
​Expanding Multiple Sites Worldwide

San Jose (SJL)

SF Dev (SFM) Chicago (CHI)

Washington DC

 (WAS)

Ashburn (ASG)

London (LON)

Frankfurt (FRA)

Paris (PAR)
Tokyo (TYO)

Existing

In Development

Phoenix (PHX) Dallas (DAL)

Designed for Enterprise Scalability and Reliability
​Disaster Recovery is Key Design Requirement

• We scale horizontally through multiple

production Salesforce instances

– 47 Core

– 47 Sandbox (used for Customer UAT)

• Every core production (NA, EU, AP)

instance has an exact replica (mirror) in a

second data center

• Every sandbox (CS) instance also has an

exact replica in a second data center

Data Center 1 Data Center 2

NA13 CS15

NA4 CS17

DR

Primary

DR Sandbox

Primary Sandbox

NA13

NA4

CS15

CS17

​Very large average DB

sizes

• Core DB: 35+TB

• Sandbox DB: 50+TB

​Scale vertically through

RAC Clusters

​Heavy use of Data

Guard

Tremendous Focus on Core DB Reliability
​While also ensuring high performance

Encrypted

Async DB

Replication

Data Guard

Replication

Primary Instance

Application

Servers

Production

DB Cluster

Standby

DB Cluster

Secondary Instance

Data Guard

Replication

Application

Servers

Production

DB Cluster

Standby

DB Cluster

Overview of Oracle DB at Salesforce.com

• We have classes of schemas for PL/SQL and tables, tables and PL/SQL do not co-exist

inside schemas

• Metadata enables customisation of each customer’s view of the service

– Implications: requires large shared pools

• Use of multitenancy inside our tables

– Implemented our own version of “multi-tenancy”

– Each DB contains one version of each app table

– Each row has a unique customer id

– Careful security measures are in place to ensure customers see only their data

– More details see https://developer.salesforce.com/page/Multi_Tenant_Architecture

Salesforce Application Upgrades Before 2010

• Major releases used to take 6 hours per

release

– Minimal use of “upgrade time” triggers

– Large “batch” DML operations inside the planned

maintenance window

• We knew we could do better

• Redesigned the upgrade process and

moved to a technique of triggers that are

aware of the major release version and

upgrade only DB triggers

Application

Servers

App PL/SQL

Tables Tables Tables

10g DB

Triggers Triggers Triggers

Salesforce Application Upgrades in 2010

• Major releases require many DDL

operations to introduce new tables,

columns, index changes

• Deliver 3 major releases and many minor

update releases per year

• Minimal downtime for major releases

– 30 minute “upgrade pre-release scripts”

– With <5 minute restart

• No downtime for minor update releases

App PL/SQL

Tables Tables Tables

Triggers Triggers Triggers

10g DB

Application

Servers

App PL/SQL

Application Upgrades at Salesforce

• Each new major release has it’s own “release specific” trigger code

• Implemented through the use of package variables

• Each app server connection establishes context and sets the “release version”

CREATE OR REPLACE TRIGGER app_trigger.t_v24_accounts

AFTER UPDATE

ON app_data.accounts

BEGIN

 IF app_plsql.global_context.getAppVersion = app_plsql.release.release_version.RELEASE_24 THEN

 ….;

 END IF;

END t_v24_accounts;

/

Application Upgrades at Salesforce

• This technique reduced planned maintenance from 6 hours to 30 minutes per major

release

• Why 30 minutes?

– Quiesce the database and the app servers

– Run DDL and recompile PL/SQL

– Restart app servers

• Could continue to iterate and improve our custom code to reduce this further

• Essentially attempting to do something very similar to EBR

• EBR will provide us with what we implemented but out of the box

Implementing EBR

Wait Didn’t We Invent That Already?
​What is Edition-Based Redefinition

* http://docs.oracle.com/cd/E11882_01/appdev.112/e10471/adfns_editions.htm#ADFNS020

Oracle Definition* of EBR:

“Edition-based redefinition enables you to upgrade the database component of an

application while it is in use, thereby minimizing or eliminating down time.”

Application Upgrades at Salesforce

• We “editions enabled” our schemas containing tables and PL/SQL

• We created editioning views against all tables

• We can load new versions on our PL/SQL code inside new editions

• We can perform DDL on tables without invalidating PL/SQL

Salesforce Implementation of EBR
​Following Oracle Recommended Best Practices

• How are we implementing EBR

– All schemas containing data are editions enabled

– All application PL/SQL schemas are editions enabled

– All application schemas refer to editioning views inside our schemas containing data

– No application schemas have any grants on any tables

Salesforce Implementation of EBR
​EBR Running Current Edition

• All schemas are editioned

• All Application PL/SQL code no longer

refers to tables directly

• All tables have a corresponding editioning

view

App PL/SQL

Tables Tables Tables

Triggers Triggers Triggers

11g DB

Application

Servers

Editioning
View

Editioning
View

Editioning
View

Salesforce Implementation of EBR
​EBR Running New Edition

• A new release is made by creating a new

edition

• Upgrade time triggers can be implemented

as cross edition triggers

• When moving to a new release we change

the running edition

App PL/SQL

Triggers Triggers Triggers

Editioning
View

Editioning
View

Editioning
View

App PL/SQL

Tables Tables Tables

Triggers Triggers Triggers

11g DB

Application

Servers

Editioning
View

Editioning
View

Editioning
View

EBR Phased Rollout

Rolling out EBR at Salesforce
​Taking a Phased Approach

• We are conservative when rolling out significant changes

• Initial rollout to two production environments (GUS and 1 Sandbox)

• Remaining instances upgraded in subsequent release

​EBR will be implemented in

the 30 minute planned

maintenance window of a

major release

​EBR is implemented with no

new maintenance for our

customers

​EBR is implemented to

minimize application changes

Rolling out EBR at Salesforce
​Taking a Phased Approach

Phased EBR Releases
​Ensures High-Quality Deployments

Core and

Sandbox

Instance

Release
Initial

Sandbox

Release

Remaining Sandbox and all Core instances will be updated

The last required maintenance windows for Release Pre-Scripts

Spring ‘16 Release (200) Summer ‘16 Release (202) Winter ‘17 Release

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

202 and forward, no more downtime for DB schema updates

The Rollout of EBR at Salesforce

• Steps to implement EBR

– Editions enable all schemas containing data and application PL/SQL

– Revoke all access to base tables

– Rename all base tables

– Drop all triggers on base tables

– Build editioning views on base tables using the original name

– Grant access on all editioning views to PL/SQL schemas

– Recreate all triggers (against editioning views)

– Recompile all PL/SQL

– Almost all of this generated through data dictionary queries

Impact of Phased Rollout of EBR
​A Staggered Rollout Will Have Implications

• For a release we effectively doubled our requirements for automated testing and

performance testing

• Must ensure the correctness of both the EBR and the non-EBR version of the service

• Easier to test against an unchanging DB (offline), trigger-based version also increased the

testing requirements

• This is more work for developers working on upgrade code

• The elapsed time of the planned maintenance will be completely predictable

Planned DB Maintenance

Benefits

Benefits of EBR at Salesforce

• Reduces planned maintenance for major releases

– The 11gR2 fine grained dependency model means no PL/SQL/editioning view invalidations

– More non-blocking DDL inside 11gR2 such as ALTER TABLE ADD COLUMN

• When we reduced the downtime from 6 hours to 30 minutes it increased the number of

triggers required

• We now have two versions of triggers on the table

– One for release N and another for release N+1

• With EBR we place these triggers in separate editions

• There will be a performance improvement with the reduction of triggers

thank y u

