

GOLDENGATE REPLICATION

CONFLICT DETECTION AND

RESOLUTION

AND ITS CHALLENGES

Lorrie Yang

NoCoug, Nov 2015

My GoldenGate Journey

 Supported 2-way and 3-way replication with

legacy Advanced Replication

 Started with GoldenGate 10

 Supported GoldenGate 11.1

 Supporting GoldenGate 11.2 and 12.1 one way, 2

way and 3+ way replication.

 Supporting combination of GoldenGate and

standby.

Agenda

 GoldenGate usage, is it a good fit your app?

 GoldenGate requirements

 GoldenGate basic concepts

 GoldenGate conflict detection and resolution

 Other GoldenGate advanced setup

 Operational challenges of multi-way replication

AUDIENCE SURVEY

GoldenGate Usage

 One way replication

 One time data migration across DB platforms

 Ongoing master to slave database copies for business or technical
reasons

 GoldenGate vs. DataGuard

 Two way replication

 For data redundancy as well as load sharing.

 Three way plus/multi-way replication

 Complexity

 Workload increases exponentially (next page)

 Combination of GoldenGate and Data Guard

 GoldenGate active on primary database but dormant on standby

Multi-way replication workload

comparison in simplest case

N-way # of extract

at each site

of pumps

at each site

of

replicats at

each site

Total # of

processes at

each site

Total # of

processes

for all sites

2 1 1 1 3 6

3 1 2 2 5 15

4 1 3 3 7 28

5 1 4 4 9 45

6 1 5 5 11 66

N 1 N-1 N-1 2N-1 N*(2N-1)

Visual comparison of 2, 3 and 6 way

GoldenGate is NOT application

transparent !!!

Requirements on application

 Each replicated table must have a primary key, or unique key, or a set of columns
(specified by KEYCOLS in extract parameter file) to uniquely identify a row.
(Referred as replication key for simplicity in this presentation.)

 Restriction on some data types.

 In a multi-master setup, each replicated table should have conflict rules defined and
configured. New column may need be added for conflict resolution purpose.

 Common practice

 Artificial primary key column populated by a sequence

 Last updated timestamp column or and/or site column

 DDL replication consideration.

 Monitor replication data exceptions and perform manual data fix when data is out
of sync

 Have a process to check data is in sync on an on-going basis.

 There can be further requirements on application code due to business need (at end
of this presentation)

Requirements on DBAs

 Install GoldenGate software.

 Make necessary database parameter and configuration changes for
GoldenGate. For example,

 ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION=true;

 Create necessary database users to be used by GoldenGate
extract and/or replicat.

 Create GoldenGate parameter files for extract, pipe and replicat

 Create extract, pipe, replicat

 Install XAG software and configure it to automatically failover
GoldenGate if database is RAC.

 GoldenGate error monitoring and performance tuning

Basic Concepts

 Manager

 Extract – the data change grabber at source database

 Pump – the shipper

 Replicat – the change applier at target database

 Trail files consumed by pump(s) or by replicat(s)

 EXTTRAIL <directory>/file_prefix

 RMTTRAIL <directory>/file_prefix

 Good practice - Have a good name convention

 GGSCI 1> info all

 Program Status Group Lag at Chkpt Time Since Chkpt

 MANAGER RUNNING

 EXTRACT RUNNING E1xxxxxx 00:00:09 00:00:01

 EXTRACT RUNNING P2xxxxxx 00:00:00 00:00:02

 REPLICAT RUNNING R2xxxxxx 00:00:00 00:00:05

Advanced Configurations

 Conflict detection and resolution (today’s subject)

 Source and target tables have different definitions

 Data filtering and manipulation

 Performance tuning

Conflict Detection and Resolution

 Majorly for 2 way replication and above

 Conflict

 how is it detected

 Types

 Set up

 Resolution

 built-in

 customized

Conflict Detection

 What is considered a data conflict?

 A conflict is a mismatch between the before image

of a record in the trail and the current record in the

target table.

 How is current record on the target table found?

 By replication key

Conflict Type

 Insert conflict

 Uniqueness violation on replication key, primary key or unique key

 Update row missing

 The row can not be found by the replication key.

 Update row exists

 The row is found by replication key but before image of incoming record doesn’t match current
record on compared columns in target database.

 Delete row missing

 The row can not be found by the replication key.

 Delete row exists

 The row is found by replication key but before image of incoming record doesn’t match current
record on compared columns in target database.

Enable Conflict Detection

 Specify the columns that replicats use to detect update
and delete conflict in replicat file

 MAP scott.table1, TARGET scott.table1, &

 COMPARECOLS (ON UPDATE <columns>, ON DELETE
<columns>)

 Different ways to specify <columns>

 ALL (highest workload, best data convergence)

 KEY (replication key)(fastest, least data quality)

 KEYINCLUDING (col1, …)

 ALLEXCLUDING (col1, …)

 KEYANDMOD (key and modified columns)

COMPARECOLS requires that

 The before image must be present in the trail file

 Specified columns must exist in the target database

 Can only compare scalar data types

 Scalar data types

 Numeric, Date, Character

 Non Scalar data columns must be excluded from the
comparison. For example, LOBs, user defined, spatial,
reference, raw etc.

Put before image into DB log files

 DB default logging is not enough

 Enable DB level force logging and minimum supplemental logging

 ALTER DATABASE FORCE LOGGING; -- force logging of all transactions

 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA; --add row chaining info into log

 ALTER SYSTEM SWITCH LOGFILE;

 Enable schema or table level supplemental logging

 ADD SCHEMATRANDATA (when DDL replication is included)

 ADD TRANDATA

 By default, log primary key unconditionally weather the key is changed or not and log scheduling
columns (primary key, unique key, and foreign key columns) if one of them is changed.

 NOSCHEDULINGCOLS – unconditionally log only PK and UK.

 ALLCOLS - unconditional supplemental logging of all supported columns

 COLS (col1, col2) – log listed columns

 NOKEY – used in conjunction with COLS.

Effect of ADD TRANDATA scott.table1 ALLCOLS

 SQL> select * from dba_log_groups

 where table_name=‘TABLE1';

OWNER LOG_GROUP_NAME

------------------------------ ------------------------------

TABLE_NAME LOG_GROUP_TYPE ALWAYS GENERATED

------------------------------ ---------------------------- ----------- --------------

SCOTT GGS_18413

TABLE1 USER LOG GROUP ALWAYS USER NAME

SCOTT SYS_C006351

TABLE1 PRIMARY KEY LOGGING ALWAYS GENERATED NAME

SCOTT SYS_C006352

TABLE1 UNIQUE KEY LOGGING CONDITIONAL GENERATED NAME

SCOTT SYS_C006353

TABLE1 FOREIGN KEY LOGGING CONDITIONAL GENERATED NAME

SCOTT SYS_C006354

TABLE1 ALL COLUMN LOGGING ALWAYS GENERATED NAME

Put before image into GG trail file

 In extract parameter file

 All columns will be captured when there is no PK, UK column(s), or alternate key specified
by TABLE …KEYCOLS (columns)

 LOGALLSUPCOLS in GG12.

 Record the before image of all supplemental logged columns for both UPDATE and DELETE
operations.

 NOLOGALLSUPCOLS is default.

 GETUPDATEBEFORES and NOCOMPRESSUPDATES below GG12

 IGNOREUPDATEBFORES and COMPRESSUPDATES are default

 TABLE scott.table1 COLS (col1, col2), must include key columns in the list

 TABLE scott.table1 COLSEXCEPT (col1, col2), does not exclude key columns

 TABLE scott.table1, GETBEFORECOLS (ON UPDATE <option>, ON DELETE <option>);
<options> are

 ALL – all supported columns (highest workload)

 KEY – this the default.

 KEYINCLUDING (col1, col2)

 KEYANDMOD – include modified columns

 ALLEXCLUDING (col1, col2)

Conflict Resolution

Out of the box
Conflict type Conflict detail Resolution available

Insert conflict on replication key

(unique constraint conflict)

Insert row exists Overwrite

Ignore

Discard

USEMIN, USEMAX

Update conflict 1 Update row missing

(The row can not be found by the replication

key.)

Overwrite

Ignore

Discard

Update conflict 2 Update row exists

(The row is found by replication key but

before image of incoming record doesn’t

match current record on compared columns in

target database.)

Overwrite

Ignore

Discard

USEMIN, USEMAX

USEDELTA

Delete conflict 1 Delete row missing

(The row can not be found by the replication

key.)

Ignore

Discard

Delete conflict 2 Delete row exists

(The row is found by replication key but

before image of incoming record doesn’t

match current record on compared columns in

target database.)

Overwrite

Ignore

Discard

(note that overwrite will require before image

of all columns be sent through thus not

suitable for tables with many columns)

Difference between Discard and

Ignore

 Discard

 Retain the current value in the target database, and

write the data in the trail record to the discard file.

 Ignore

 Retain the current value in the target database, and

ignore the trail record. No record is written into

discard file.

Conflict Resolution

out of the box

 Example

 MAP scott.table1, TARGET scott.table1, &

 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &

 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT,IGNORE)), &

 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
&

 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, IGNORE)), &

 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT,
OVERWRITE)), &

 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX
(last_updated)));

Conflict Resolution

customized solutions

 When built-in resolution can not satisfy your need.

 Uniqueness conflict on non primary key column as an

example.

Conflict Resolution

other considerations

 Adjust sequences used to populate primary or unique keys

 Using triggers to populate resolution based columns such as last updated timestamp is
preferred,

 Use same database/host time zone for replicated databases if timestamp based resolution is
chosen.

 Group tables with parent child relationship, or tables that can have logical relationship in one
transaction in same replication pipe

 Exception table or discard files

 Discard file

 DISCARDFILE <directory>/replicat.dsc, MEGABYTES 50, APPEND

 DISCARDROLLOVER at 12:00

 Exception table

 MAP scott.table1, TARGET scott. gg_exception, EXCEPTIONSONLY, INSERTALLRECORDS &

 COLMAP (…);

Conflict Resolution

other considerations

 REPERROR (error, response) in replicate file

 Can be global or at each table level (in MAP statement)

 REPERROR (

 DEFAULT |DEFAULT2|SQL error|

 ABEND - default behavior

 IGNORE - ignore the error.

 DISCARD - send to discard file

 EXCEPTION - to be handled by MAP exception statement

 TRANSABORT - abort at transaction level

 TRANSDISCARD

 TRANSEXCEPTION

 RETRYOP [MAXRETRIES n] – useful for transit error

)

Operational challenges

 For a multi-master replicated environment that

doesn’t allow application downtime

 Application release must be backward/forward

compatible with DB code (tables, packages.)

May have to complete all database table changes in

all replicated databases before/after application

code change.

 Column addition/deletion on replicated tables

Q & A

