AWR Ambiguity: What to do when the numbers don't add up?

John Beresniewicz (12 yrs at Oracle, presently at Teradata Labs)

an Oaktable inquiry...

(I didn't really understand the question)

...can you send me the AWR?

Top 10 Foreground Events by Total Wait Time						
Event	Waits	Total Wait Time (sec)	Wait Avg(ms)	<pre>% DB Wait time Class</pre>		
db file parallel read DB CPU	139,819	469.8 243	3.36	78.1 User I/O 40.4		
db file sequential read	201,921	52.4	0.26	8.7 User I/0		
db file scattered read	221	.5	2.21	.1 User I/O		
kksfbc child completion	4	.2	37.85	.0 Other		
control file sequential read	249	0	0.10	.0 System I		
Disk file Mirror Read	61	0	0.21	.0 User I/O		
library cache load lock	19	0	0.60	.0 Concurre		
cursor: pin S wait on X	4	0	1.61	.0 Concurre		
Disk file operations I/O	140	0	0.03	.0 User I/O		

CPU + Wait = DB Time 40.4 + 86.8 = 127.2% (>100% WTF???)

Things to keep in mind...

- AWR report presumes accurate instrumentation
 - this liability is unfortunate and unnecessary
- ADDM presumes accurate instrumentation
 - also unfortunate and unnecessary
- Instrumentation is not always accurate
 - this is why you need to understand it

First questions to answer:

- Elapsed time of report?
 - performance analysis is always (ultimately) about time
- Version of Oracle DB?
 - bug lookup, report contents, available data
- System CPU-bound?
 - known instrumentation issues under CPU-stress

Begin at the beginning...

WORKLOAD REPO	SITORY repo	rt for						
DB Name	DB Id	Instance	e Ins	t Num S	startup	Time	Release	RAC
DB12C	1329819247	db12cn1		1 0	4-Apr-1	.5 06:1	9 12.1.0.2.0) NO
Host Name	Platfor	m			CPUs	Cores	Sockets Memo	ory(GB)
oral.dssdhop.	lab Linux x	86 64-bi	 t		72	36	2	252.17
	Snap Id	Snap 1	Fime	Sessio	ons Curs	s/Sess		
Begin Snap: End Snap: Elapsed: DB Time:	410 04 411 04	-Apr-15 -Apr-15 2.02 10.03	06:22:16 06:24:18 (mins) (mins)		61 56	.8		

DB version? 12.1.0.2 Elapsed time 2 minutes (120 secs) CPU bound? NO (36 >> 5; Cores >> AAS)

Next questions to answer:

- What is DB Time over interval?
- What is DB CPU over interval?
- What is (expected) Wait Time over interval?
 - DB Time DB CPU = Wait Time (expected)
- Model: DB Time = CPU Time + Wait Time

DB Time is gold

- Session (foreground) time spent in DB calls
 - measured by Oracle
- Session DB Time has clear instrumentation points:
 - [call entry:start timer]...[call exit:stop timer]
- System DB Time = SUM(Session DB Time)
- We trust DB Time accuracy implicitly

DB CPU is also gold (except on AIX)

- Foreground CPU actually used during reporting period
 - does not include run-queue time
- Measured by OS, collected by Oracle
 - independent instrumentation
- We have high confidence in DB CPU accuracy
 - NOTE: AIX CPU utilization reporting is seriously amiss for hyper-threaded cores

Load Profile has the gold...

Load Profile	Per Second	Per Transaction	Per Exec	Per Call
~~~~~~~				
DB Time(s):	5.0	150.4	0.01	3.13
DB CPU(s):	2.0	60.8	0.00	1.27
Background CPU(s):	0.0	0.4	0.00	0.00

600 600 DB Time = 600 secs(5 * 120)450 Wait Time Time (seconds) 360 DB CPU = 240 secs300 (2*120) 240 Wait Time = 360 secs150 (600 - 240) 0 **DB** Time DB CPU

### Adding measured wait times...

Top 10 Foreground Events by Total Wait Time					
Event	Waits	Total Wait Time (sec)	Wait Avg(ms)	% DB Wait time Class	
db file parallel read db file sequential read	139,819 201,921	469.8 52.4	3.36 0.26	78.1 User I/O 8.7 User I/O	



### What does ASH say?

Slot Time	(Duration)	Slot Count Event	Event Count % Event
06:22:16	(2.0 min)	<b>55</b> db file parallel read db file sequential read CPU + Wait for CPU	<b>41</b> 74.55 <b>8</b> 14.55 <b>6</b> 10.91



## ASH CPU is copper

- ASH shows "ON CPU" when:
  - session is in a database call and NOT in active wait
- Sessions in Waits that use CPU will never show up in ASH as "ON CPU"
- ASH always conforms to the model:
  - every sample is either ON CPU or WAITING
  - thus (estimated) ASH DB Time = ASH CPU + ASH Wait

# What is our conclusion?

Event	Tota	l Wait	Wait	% DB W	Vait
	Waits Time	(sec)	Avg(ms)	time C	Class
db file parallel read	139,819	469.8	3.36	78.1 U	Jser I/O

- "db file parallel read" is consuming significant CPU
  - 162 / 470 ~ 34% of the "wait" is actually CPU
  - 162 * 1000 / 139,819 ~ 1.16 ms/wait
- Is this a bug?
  - Maybe or maybe not, depends on who you ask
  - It does compromise the model (and AWR and ADDM)

### Instrumentation issues and symptoms

Symptom	Possible issue
DB CPU >> ASH CPU (and significant wait time)	CPU used within wait (this was the issue here)
ASH CPU >> DB CPU	System CPU-bound (ASH includes run-queue)
DB Time >> DB CPU + Wait	Un-instrumented wait (in call, not in wait, not on CPU)
DB Time >> ASH DB Time	<ol> <li>Double-counted DB Time</li> <li>ASH dropped samples</li> </ol>

# Some concluding advice

- Don't believe the unbelievable
- Trust DB Time and DB CPU the most
- Be wary of ASH CPU and DB Wait times
- Always get ASH Report with AWR Report
- Don't ponder details if the big picture is not clear

