
Deep dive - Oracle sharding at eBay Inc.

John Kanagaraj, Data Architect, eBay Inc.
November 2014

1

Agenda

•eBay Scale – A quick glance

•Problems at scale

•The eBay Approach

•Q & A

2

Speaker Qualifications

3

•Data Architect / Database Engineer at eBay Inc.

•Worked with Oracle Databases and UNIX for too long 

•Frequent speaker, Author and Technical editor

•Started working with NoSQL recently

•http://www.linkedin.com/in/johnkanagaraj

•See my “Oracle vs NoSQL” slide deck on LinkedIn

http://www.linkedin.com/in/johnkanagaraj

Volume Velocity Variety

6PB Consumed

2TB Daily Average

700M Active Items

300M Active Site Users

8K Average Application

Connections/DB

5-15 Years of History

4PB Largest Table

16M Analytic Queries

14K Users

4M Batch Queries

900K Ad Hoc Queries

200B+ eBay

Queries/day

4K eBay Batch Runs/day

25GB/sec Peak Site

Traffic

37PB Read

3PB Write

16+TB/day Semi-

Structured Data

36 TB/hour x-Platform

Data Transfers

800+ Oracle Instances

300+ MongoDB Nodes

300+ MySql Nodes

200+ Cassandra Nodes

3.5PB+ Structured Data

10PB Semi-Structured

Data (80% compressed)

10K+ Name/Value Pairs

Offline

Online

Architectural Forces at Internet Scale

• Scalability driven by unpredictability

– Capacity needs to increase linearly with load: usually not the case

– Designing for 5-10x growth in data, traffic, users, etc. costs $$$$$$

• Availability: True 24x7x365

– Resilience to failure (MTBF)

– Rapid recoverability from failure (MTTR)

– Graceful degradation and appropriate timeouts

• Latency

– User experience latency, esp. with Multi Data Center

– Data latency and the CAP Theorem in play

• Manageability

– Simplicity leads to Maintainability and better MTTR

– In-depth diagnostics at all layers and levels

• Cost

– Development effort and complexity

– Operational cost (TCO)

Best Practices for Scaling

• Partition Everything (Functional/Horizontal)

• Asynch as much as possible

• Automate Everything

• Plan for Failure

• Expect (and cater for) Inconsistency

Scaling Patterns

• Split every problem into manageable chunks
– By data, load, and/or usage pattern

– Repeat after me: If you can’t split it, you can’t scale it

• Motivations for splitting
– Scalability: Horizontally and independently

– Availability: Isolate failures to specific segments

– Manageability: Decouple different segments and

functional areas

– Cost: can use less expensive hardware, both for

deployments and tech refreshes

– Survivability: Test out new hardware/upgrades, etc. in

“small batches”

Scale out

S
c
a

le
 u

p

Shard T
e

c
h

 r
e
fr

e
s
h

T
e

c
h

 r
e
fr

e
s
h

Shard

Database splits

Monolithic Functional Split Horizontal Split

Partitioning Everything

Pattern: Functional Segmentation

– Segment processing into pools, services, and stages

– Segment data along usage boundaries (beware: PL/SQL and Transactions!)

Pattern: Horizontal Split

– Load-balance processing

• Within a pool, all servers are created equal

– Split (or “shard”) data along primary access path

• Partition by range, modulo of a key, lookup, etc.

Corollary: No Session State and Relationships*

– User session flow moves through multiple application pools

– Absolutely no session state in application tier

– Breaks relationships (joins, enforcement of foreign keys)

Partition Everything: Databases

• Pattern: Functional Segmentation
– Segment databases into functional areas

– Group data using standard data modeling techniques

• Cardinality (1:1, 1:N, M:N)

• Data relationships

• Usage characteristics

– Logical hosts

• Abstract application’s logical representation from host’s physical location

• Support colocating and separating hosts without code change

Over 1000+ logical databases on ~400 physical hosts

Partition Everything: Databases

• Pattern: Horizontal Split
– Split (or “shard”) databases horizontally along primary access path

– Different sharding strategies for different use cases

• Deterministic function on key

• Lookup- or range-based

• Aligned on stronger key

– Aggregation / routing in eBay’s custom built Data Access Layer (DAL)

• Abstracts developers from split logic, logical-physical mapping

• Routes CRUD operation(s) to appropriate shard(s)

• Supports rebalancing and read routing through configuration change

Partition Everything: Application Tier

• Pattern: Functional Segmentation
– Segment functions into separate application pools

– Minimizes DB / resource dependencies, esp. number of connections!

– Allows for parallel development, deployment, and monitoring

• Pattern: Horizontal Split

– Within pool, all application servers are created equal

– Routing through standard load-balancers

– Allows for rolling updates

• Needed when dealing with thousands of App servers in hundreds of pools

Why Oracle?

• Store and persist data - That’s what databases are for !!

• Relational Database - Tables, Columns, Constraints… (within database)

• ACID properties – Sets Oracle Apart from NoSQL…

– Atomic

– Consistent

– Isolation

– Durable

• Interface to access and manipulate data via SQL (which many NoSQL's lack…)

• High performance and scalability Within certain well-known boundaries…

• Backup, Redundancy and Data Movement DR/Active Standbys, GoldenGate,…

• Procedural options Only when necessary

14

Data modeling: Core strength and necessity!

• 400+ Site Data Models

• > 200 Logical host families

• > 1000 expanded logical hosts

• ~ 75,000 columns (excluding 3rd-parties)

– Mostly NUMBER or VARCHAR2, some DATE and few LOB

• ~ 2000 sequences

• Very small number of Views, Triggers, and Stored Procedures

– Vastly reduced PL/SQL dependency

– Always keep functional segmentation in mind!

15

What’s in a Logical Host?

• eBay construct denoting a data source

• Maps to one or more physical databases

• Enables data source abstraction for code

• Structural unit for availability and scalability

• Groups objects along functions and products

• Groups database objects in the data models

– One logical host = One data model

– 400 + and counting

16

eBay Sharding Patterns

•Deterministic Function

•Lookup based

•Aligned Host

17

Deterministic Function

• Location is based on a deterministic function of a primary key or “hint” from a

previous interaction

• Sequence-controlled PK ensures global uniqueness and host number fidelity

• eBay’s custom Data Access Layer (DAL) understands/supports this

• Pros:

– Simple (single key access pattern)

– No performance overhead

• Cons:

– Physical scale-out’s upper-bound limited by the function’s boundaries

– Re-sharding requires code changes and data re-organization

– Records cannot be relocated since PK decides shard location

Logical to Physical: Scale-Out Scenario

18

Logical Host Family

Logical Host or “shard“

Physical Database

19

Lookup Based

• Needed a custom balanced pattern as well for uneven patterns

• Extra Indirection from a Lookup database

• Requires read lookup table to map ID to host numbers

• Allocation can be round-robin or modulo

• Location is based on lookup using ID

• Uses sequence-controlled PK to ensure global uniqueness

• Pros:

– User records can be relocated without impacting code (not tied to key)

– Scale-out as needed. Practically, no preset upper limit on host count

• Cons:

– Additional round trip to lookup. Thread Local Caching used to mitigate

– Additional layer to be managed

– Useful only for Read-mostly scenarios

20

Data Architecture

20

Typical Lookup Architecture

DB 10 DB 19 DB 20 DB 25

Key assignment

during initial creation

Lookup Key -> host-id

host-id = 0..n

Batch Migration when needed for relocation

host-id = 10 host-id = 10

1

2

Lookup Key Host ID Backup Host ID

1031002 10 19

1031003 19 8

21

Aligned Host

• Paradigm for storing related data aligned along the “stronger” key

• Motivations:

– Multi-Data-Center compliant

– Provides locality of reference for stronger key

– Improved capacity management

• Key Concepts

– Related items cannot be relocated

– Allows for Tiered solutions for selected data

– Location continues to be based on ID range lookups

Wrap up

• Breaks traditional understanding of relational concepts

• Data should allow isolation and segregation

• Multiple sharding patterns are needed for various access patterns

• Needs strong routing and data access layer support

• Accepted, understood and implemented Data Architecture standards and patterns

• Scale up via Tech Refresh is necessary but much more manageable

• Real Scale-out via Functional segmentation and Sharding is possible!

22

Q & A

23

