
Vertica Technical
Overview

for Oracle users
Northern California Oracle Users

Group August 2014, San Ramon, CA
David Abercrombie

Vertica’s amazing features
• Fast joins and aggregates of huge tables
• Fast data load
• Highly compressed data

• Demoralization is almost free

• Advanced analytics
• HyperLogLog cardinality estimate synopsis

• Business intelligence
• “Self-service”
• Snowflake schema

• Operational Datastore
• Ad hoc analysis
• Customized applications

2

Vertica analytics
• Windowing functions (of course)
• Time series

• Interpolation and gap filling
• Event based windows
• Sessionization

• Approximate count distinct
• HyperLogLog synopsis

• R and Distributed R
• Sentiment via “Pulse”
• Geospatial via “Place”

• 2-D Open Geospatial Consortium (OGC) standards
3

Agenda

• Tapjoy
• Architecture
• Data storage
• Tapjoy example
• Approximate count distinct

• HyperLogLog synopsis

Tapjoy

450+
million
Monthly Active Users

8+
thousand
Active Apps

1.5+
million
Daily Ad Engagements

6

How It Works Massive Scale, Global Reach, Thousands of Apps

My Vertica & MicroStrategy project
• Built MicroStrategy and Vertica DW together
• Indispensible: 200+ users

• 100 terabytes before compression
• 15 terabytes per day loaded
• 75 terabytes operational data store
• 25 terabytes snowflake for MicroStrategy
• 500 metrics, 40 attributes, 15 dimensions in MicroStrategy

• Less than three full-time equivalents (FTE)
• Vertica DBA labor is minimal
• MicroStrategy Cloud, so no administration

7

Vertica
Architcture

Vertica architecture
• Column store

• Run length encoding
• Shared nothing parallel

• Massive scalability
• Full featured SQL

• Analytic extensions
• High availability

• No master node
• Commodity hardware
• Easy maintenance
• Requires data structure engineering

9

Vertica does not have these
• No indexes
• No heap storage
• No block buffer cache
• No PL/SQL
• No alert log
• No redo log
• No wait interface
• No replication

• Referential integrity works strangely
10

Vertica inefficiencies
• DELETE is inefficient

• Delete vector

• UPDATE is inefficient
• Deletes old, inserts new

• Single row operations are inefficient
• INSERT … VALUES is inefficient
• No B-tree index for one-row lookup
• No nested-loop query operator

11

Data transform in Vertica
• Extract, Load, Transform “ELT”

• Partitions
• Dynamically defined
• Drop and swap
• But limited to about 1000

• Staging tables
• TRUNCATE
• INSERT … SELECT … JOIN

12

Vertica conveniences
• Great support and engineers
• Feels like PostgreSQL

• vsql, users & schemas, search_path, …
• Great EXPLAIN and PROFILE
• Good cluster management
• Good resource manager
• Great docs
• Hadoop integration (stage data in native format)
• JSON via “Flex”
• Data Collector tables

• Like Automatic Workload Repository (AWR)
• Management console

13

Vertica
Storage

Vertica Data Storage
• Column store

• Projections
• Sorted

• Run length encoding
• Query execution example

• Write-once read-only
• Deletes and defragmentation

• Parallel
• Segmentation
• Local joins

15

Disk data structure = “projection”
• Projection: subset of columns

• Super-projection has all columns (must be one)

• Sorted and compressed
• Almost like Oracle IOTs
• No heap storage

• Each disk file has data from only once column
• Columns glued together at run time

• May be parallel or replicated

• Projection design key to performance

• Can have more than one per table
16

Run Length Encoding (RLE)
• Data must be sorted
• Good for low-cardinality data

• Example: sending a fax
• Do not describe each pixel, one a time
• Instead, use “run lengths”
• 50 white, 4 black, 60 white, 5 black, …

• Very efficient, minimal CPU

17

Run Length Encoding (RLE)
• Minimizes IO and disk storage

• But deletes are expensive
• Data not actually deleted
• Additional file listing deleted rows
• Additional processing overhead
• Background cleanup process

• Updates even more expensive
• Insert and a delete

18

Example data and projection

19

Run Length Encoding, Column Store

20

What about DML?
• Rows loaded into memory: WOS

• Sorted columns written to disk: ROS
• Files written once, then read-only

• DELETE operator writes a list of deleted rows
• Called “delete vectors”

• SELECT operator reads delete vectors
• Ignores deleted rows that it had scanned

• UPDATE is DELETE with INSERT

• Background defragmentation
• Tuple mover mergeout

21

Clustered Database
• “Move the computation to the data, never move

the data to the computation”
• Dr. Michael Stonebraker

• “Moving Computation is Cheaper than Moving
Data”
• Hadoop documentation

http://www.meetup.com/BigDataCloud/events/100027232/
http://hadoop.apache.org/docs/r0.20.2/hdfs_design.html

Parallel, “share nothing”
• Data distributed: “segmentation”

• Like automatic “sharding”
• Many segmentation choices
• Multiple physical storage designs for single table

• Can replicate instead (dimensions)

• Local joins
• Segment on subset of join key
• Identically Segmented Projections (ISP)

23

Local Joins – two node example

Customer ID Name
1 Sam
3 Joe
5 Mary

24

Customer ID Name
2 Cathy
4 Bill
6 Jane

Order ID Customer ID Date
1002 3 6/1/1

3
1005 1 7/1/1

3
1006 3 7/7/1

3
1008 5 8/1/1

3

Order ID Customer ID Date
1003 4 5/6/1

3
1004 6 7/2/1

3
1007 2 7/8/1

3
1009 4 8/2/1

3

Projection design key to performance
• Almost like designing Oracle Index Organized Table

• Compression guidelines:
• Low cardinality columns early in sort order
• Query predicates early in sort order
• Pipelined GROUP BY and MERGE join

• Segmentation guidelines
• Local joins: identically segmented projections
• Replicate dimension lookup tables

• Need data distribution and query SQL
• Use “Database Designer” if you have both, or
• More common: think hard if missing data or SQL

25

Referential Integrity (RI)
• Can create primary and foreign keys

• But can insert bad data without error
• Error message at query runtime!

• We do not use Vertica referential integrity
• Check during ETL process with SQL
• Many important constraints cannot be handled by RI

• Example: non-overlapping Type-2 SCD rows

26

Tapjoy
Example

Transactional
System –

Ruby Apps

• JSON log files

Amazon S3
Storage Area

• Rabbit MQ

Hadoop

RDS
MySQL

Vertica

• ODS
• MSTR

ETL
1

ETL
2

ETL
3

ETL
4

ETLs
1) Hadoop
2) Load

Vertica
3) Load

Vertica
4) Aggregation

SQL based ETL within single Vertica
DB• Operational Data Store (ODS)

• Raw transaction-level data
• 15 minute incremental loads

• MicroStrategy snowflake schema
• One-hour granularity and load

29

Snowflake

Dimensions,
Facts

MicroStrategy

ODS

Raw,
Timestamps,
Device IDs

Ad hoc
analysis

SQL ETL

SQL ETL
• Two projections on ODS source tables

• One for ad hoc analysis
• Other for MSTR ETL extraction
• MSTR ETL order of magnitude faster
• No significant increase in ODS load times

• Type 2 Slowly changing dimensions
• We use UPDATE here only

• Vertica’s rich, full-featured SQL
• Can deal with complexity

• Homegrown scheduling framework
30

Snowflake schema
• Moderately denormalized

• Child has keys for parent (FK) and all tables above
• DESC columns are NOT denormalized
• Facts have many keys

• Denormalization is very cheap in Vertica
• Run length encoding
• Low cardinality

• Example denormalized fact table:
• 1700 gigabytes total disk storage
• 37 billion rows
• Hourly granularity
• Only 14 kilobytes for denormalized Month column

31

Date early in fact sort order
• Almost all MicroStrategy queries use date filters
• Dates and times are low cardinality

• An obvious choice for start of sort order

• Report execution time scales with date range

32

Consistent fact projection design
• Facilitates joining facts via MERGE (details later)
• ETL staging tables also

33

Data Volumes
• Full database

• 104 terabytes uncompressed (est.)
• 27 terabytes disk used (volumes are 80% full)
• Compression ratio: 3.8

• MicroStrategy schema, including ETL staging
• 21.4 terabytes uncompressed (est.)
• 2.7 terabytes disk used (10% of total)
• Compression ratio: 7.9

34

5 node cluster
• 24 cores per node
• 128 gigabytes RAM per node (5.3 per core)
• 7 terabyte disk per node (RAID 10)
• 1 GB network
• K-Safe = 1

• In the recommended ballpark (Vertica docs PDF)

• No significant complaints about report speed!

35

http://my.vertica.com/docs/6.1.x/HardwareDocs/HP_Vertica Planning Hardware Guide.pdf

Unique metrics
and

Count Distinct

Count Distinct Challenges
• Expensive and memory intensive

• Use pre-computed counts?
• Complicates ETL
• Limits analysis to predetermined dimensions
• MicroStrategy likes to sum

• Vertica solutions:
• Approximate Count Distinct
• Approximate Count Distinct Synopsis
• Approximate Count Distinct of Synopsis

37

Documentation and Resources
• Vertica blog

• Avoiding the OLAP Cliff for Count Distinct Queries in
Vertica

• Vertica documentation
• APPROXIMATE_COUNT_DISTINCT_OF_SYNOPSI

S

• Algorithm
• HyperLogLog: the analysis of a near-optimal
• cardinality estimation algorithm by P. Flajolet, É. Fusy,

O. Gandouet, and F. Meunier
38

http://www.vertica.com/2014/03/05/avoiding-the-olap-cliff-for-count-distinct-queries-in-vertica/
http://www.vertica.com/2014/03/05/avoiding-the-olap-cliff-for-count-distinct-queries-in-vertica/
https://my.vertica.com/docs/7.0.x/HTML/index.htm
https://my.vertica.com/docs/7.0.x/HTML/index.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9475

Two approximate methods
• Create and use stored “synopsis,” or
• Direct, without “synopsis”

• What is a synopsis?
• Can be aggregated at a new level, avoids double

counting
• VARBINARY(49154), mumurhash()

• Synopsis workflow
• Create with approximate_count_distinct_synopsis()
• Query with approximate_count_distinct_of_synopsis()

39

Example from Documentation

40

Pre-computed counts are ugly

41

A much simpler, mode flexible design

42

The easy part, adding to MicroStrategy
ApplyAgg() pass-through function

43

Replaced ugly ETL with 4 insert/select

44

Magic?
• Unlimited query flexibility

• Uncanny accuracy
• Simpler table structure
• Simpler ETL

• No need to pre-compute outside
• Easier to maintain code

• Faster ETL

45

Yes, magic!

46

Vertica Community Edition

• https://my.vertica.com/community/
• Free
• Up to 1TB
• No time limit.

• Documentation
• http://my.vertica.com/docs/7.0.x/HTML/index.htm

47

https://my.vertica.com/community/
http://my.vertica.com/docs/7.0.x/HTML/index.htm

David.Abercrombie@tapjoy.com

	Slide Number 1
	Vertica’s amazing features
	Vertica analytics
	Agenda
	Slide Number 5
	Slide Number 6
	My Vertica & MicroStrategy project
	Slide Number 8
	Vertica architecture
	Vertica does not have these
	Vertica inefficiencies
	Data transform in Vertica
	Vertica conveniences
	Slide Number 14
	Vertica Data Storage
	Disk data structure = “projection”�
	Run Length Encoding (RLE)
	Run Length Encoding (RLE)
	Example data and projection
	Run Length Encoding, Column Store
	What about DML?
	Clustered Database
	Parallel, “share nothing”
	Local Joins – two node example
	Projection design key to performance
	Referential Integrity (RI)
	Slide Number 27
	Slide Number 28
	SQL based ETL within single Vertica DB
	SQL ETL
	Snowflake schema
	Date early in fact sort order
	Consistent fact projection design
	Data Volumes
	5 node cluster
	Slide Number 36
	Count Distinct Challenges
	Documentation and Resources
	Two approximate methods
	Example from Documentation
	Pre-computed counts are ugly
	A much simpler, mode flexible design
	The easy part, adding to MicroStrategy�ApplyAgg() pass-through function
	Replaced ugly ETL with 4 insert/select
	Magic?
	Yes, magic!
	Vertica Community Edition
	Slide Number 48

