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Vertica’s amazing features
• Fast joins and aggregates of huge tables
• Fast data load
• Highly compressed data

• Demoralization is almost free 

• Advanced analytics
• HyperLogLog cardinality estimate synopsis

• Business intelligence
• “Self-service”
• Snowflake schema

• Operational Datastore
• Ad hoc analysis
• Customized applications
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Vertica analytics
• Windowing functions (of course)
• Time series

• Interpolation and gap filling
• Event based windows
• Sessionization

• Approximate count distinct
• HyperLogLog synopsis

• R and Distributed R
• Sentiment via “Pulse”
• Geospatial via “Place” 

• 2-D Open Geospatial Consortium (OGC) standards
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Agenda

• Tapjoy
• Architecture
• Data storage
• Tapjoy example
• Approximate count distinct

• HyperLogLog synopsis



Tapjoy



450+
million
Monthly Active Users

8+
thousand
Active Apps

1.5+
million
Daily Ad Engagements
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How It Works Massive Scale, Global Reach, Thousands of Apps



My Vertica & MicroStrategy project
• Built MicroStrategy and Vertica DW together
• Indispensible: 200+ users

• 100 terabytes before compression
• 15 terabytes per day loaded
• 75 terabytes operational data store
• 25 terabytes snowflake for MicroStrategy
• 500 metrics, 40 attributes, 15 dimensions in MicroStrategy 

• Less than three full-time equivalents (FTE)
• Vertica DBA labor is minimal
• MicroStrategy Cloud, so no administration
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Vertica
Architcture



Vertica architecture
• Column store

• Run length encoding
• Shared nothing parallel

• Massive scalability
• Full featured SQL

• Analytic extensions
• High availability

• No master node
• Commodity hardware
• Easy maintenance
• Requires data structure engineering
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Vertica does not have these
• No indexes
• No heap storage
• No block buffer cache
• No PL/SQL
• No alert log
• No redo log
• No wait interface
• No replication

• Referential integrity works strangely
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Vertica inefficiencies
• DELETE is inefficient

• Delete vector

• UPDATE is inefficient
• Deletes old, inserts new

• Single row operations are inefficient
• INSERT … VALUES is inefficient
• No B-tree index for one-row lookup
• No nested-loop query operator
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Data transform in Vertica
• Extract, Load, Transform “ELT”

• Partitions
• Dynamically defined
• Drop and swap
• But limited to about 1000

• Staging tables
• TRUNCATE
• INSERT … SELECT … JOIN
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Vertica conveniences
• Great support and engineers
• Feels like PostgreSQL

• vsql, users & schemas, search_path, …
• Great EXPLAIN and PROFILE
• Good cluster management
• Good resource manager
• Great docs
• Hadoop integration (stage data in native format)
• JSON via “Flex”
• Data Collector tables

• Like Automatic Workload Repository (AWR)
• Management console 
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Vertica
Storage



Vertica Data Storage
• Column store

• Projections
• Sorted

• Run length encoding
• Query execution example

• Write-once read-only
• Deletes and defragmentation

• Parallel
• Segmentation
• Local joins
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Disk data structure = “projection”
• Projection: subset of columns

• Super-projection has all columns (must be one)

• Sorted and compressed
• Almost like Oracle IOTs
• No heap storage

• Each disk file has data from only once column
• Columns glued together at run time

• May be parallel or replicated

• Projection design key to performance

• Can have more than one per table
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Run Length Encoding (RLE)
• Data must be sorted
• Good for low-cardinality data

• Example: sending a fax
• Do not describe each pixel, one a time
• Instead, use “run lengths”
• 50 white, 4 black, 60 white, 5 black, …

• Very efficient, minimal CPU 
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Run Length Encoding (RLE)
• Minimizes IO and disk storage

• But deletes are expensive
• Data not actually deleted
• Additional file listing deleted rows
• Additional processing overhead
• Background cleanup process

• Updates even more expensive
• Insert and a delete
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Example data and projection
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Run Length Encoding, Column Store
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What about DML?
• Rows loaded into memory: WOS

• Sorted columns written to disk: ROS
• Files written once, then read-only

• DELETE operator writes a list of deleted rows
• Called “delete vectors”

• SELECT operator reads delete vectors
• Ignores deleted rows that it had scanned

• UPDATE is DELETE with INSERT

• Background defragmentation
• Tuple mover mergeout
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Clustered Database
• “Move the computation to the data, never move 

the data to the computation”
• Dr. Michael Stonebraker

• “Moving Computation is Cheaper than Moving 
Data”
• Hadoop documentation

http://www.meetup.com/BigDataCloud/events/100027232/
http://hadoop.apache.org/docs/r0.20.2/hdfs_design.html


Parallel,  “share nothing”
• Data distributed: “segmentation”

• Like automatic “sharding”
• Many segmentation choices
• Multiple physical storage designs for single table

• Can replicate instead (dimensions)

• Local joins
• Segment on subset of join key
• Identically Segmented Projections (ISP)
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Local Joins – two node example

Customer ID Name
1 Sam
3 Joe
5 Mary
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Customer ID Name
2 Cathy
4 Bill
6 Jane

Order ID Customer ID Date
1002 3 6/1/1

3
1005 1 7/1/1

3
1006 3 7/7/1

3
1008 5 8/1/1
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Order ID Customer ID Date
1003 4 5/6/1

3
1004 6 7/2/1

3
1007 2 7/8/1

3
1009 4 8/2/1
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Projection design key to performance
• Almost like designing Oracle Index Organized Table

• Compression guidelines:
• Low cardinality columns early in sort order
• Query predicates early in sort order
• Pipelined GROUP BY and MERGE join

• Segmentation guidelines
• Local joins: identically segmented projections
• Replicate dimension lookup tables

• Need data distribution and query SQL
• Use “Database Designer” if you have both, or
• More common: think hard if missing data or SQL
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Referential Integrity (RI)
• Can create primary and foreign keys

• But can insert bad data without error
• Error message at query runtime!

• We do not use Vertica referential integrity
• Check during ETL process with SQL
• Many important constraints cannot be handled by RI

• Example: non-overlapping Type-2 SCD rows 
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Tapjoy
Example



Transactional 
System –

Ruby Apps

• JSON log files

Amazon S3
Storage Area

• Rabbit MQ

Hadoop

RDS
MySQL

Vertica

• ODS
• MSTR

ETL 
1

ETL 
2

ETL 
3

ETL 
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ETLs
1) Hadoop
2) Load 

Vertica
3) Load 

Vertica
4) Aggregation



SQL based ETL within single Vertica 
DB• Operational Data Store (ODS)

• Raw transaction-level data
• 15 minute incremental loads

• MicroStrategy snowflake schema
• One-hour granularity and load
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Snowflake

Dimensions,
Facts

MicroStrategy

ODS

Raw,
Timestamps, 
Device IDs

Ad hoc 
analysis

SQL ETL



SQL ETL
• Two projections on ODS source tables

• One for ad hoc analysis
• Other for MSTR ETL extraction
• MSTR ETL order of magnitude faster
• No significant increase in ODS load times

• Type 2 Slowly changing dimensions
• We use UPDATE here only

• Vertica’s rich, full-featured SQL
• Can deal with complexity 

• Homegrown scheduling framework
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Snowflake schema
• Moderately denormalized

• Child has keys for parent (FK) and all tables above
• DESC columns are NOT denormalized
• Facts have many keys

• Denormalization is very cheap in Vertica
• Run length encoding
• Low cardinality

• Example denormalized fact table:
• 1700 gigabytes total disk storage
• 37 billion rows
• Hourly granularity
• Only 14 kilobytes for denormalized Month column

31



Date early in fact sort order
• Almost all MicroStrategy queries use date filters
• Dates and times are low cardinality

• An obvious choice for start of sort order

• Report execution time scales with date range
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Consistent fact projection design
• Facilitates joining facts via MERGE (details later)
• ETL staging tables also
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Data Volumes
• Full database

• 104 terabytes uncompressed (est.)
• 27 terabytes disk used (volumes are 80% full)
• Compression ratio: 3.8

• MicroStrategy schema, including ETL staging
• 21.4 terabytes uncompressed (est.)
• 2.7 terabytes disk used (10% of total)
• Compression ratio:  7.9
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5 node cluster
• 24 cores per node
• 128 gigabytes RAM per node (5.3 per core)
• 7 terabyte disk per node (RAID 10)
• 1 GB network
• K-Safe = 1

• In the recommended ballpark (Vertica docs PDF)

• No significant complaints about report speed!
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http://my.vertica.com/docs/6.1.x/HardwareDocs/HP_Vertica Planning Hardware Guide.pdf


Unique metrics
and

Count Distinct



Count Distinct Challenges
• Expensive and memory intensive

• Use pre-computed counts?
• Complicates ETL
• Limits analysis to predetermined dimensions
• MicroStrategy likes to sum

• Vertica solutions:
• Approximate Count Distinct
• Approximate Count Distinct Synopsis
• Approximate Count Distinct of Synopsis
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Documentation and Resources
• Vertica blog 

• Avoiding the OLAP Cliff for Count Distinct Queries in 
Vertica

• Vertica documentation
• APPROXIMATE_COUNT_DISTINCT_OF_SYNOPSI

S

• Algorithm
• HyperLogLog: the analysis of a near-optimal
• cardinality estimation algorithm by P. Flajolet, É. Fusy, 

O. Gandouet, and F. Meunier
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http://www.vertica.com/2014/03/05/avoiding-the-olap-cliff-for-count-distinct-queries-in-vertica/
http://www.vertica.com/2014/03/05/avoiding-the-olap-cliff-for-count-distinct-queries-in-vertica/
https://my.vertica.com/docs/7.0.x/HTML/index.htm
https://my.vertica.com/docs/7.0.x/HTML/index.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9475


Two approximate methods
• Create and use stored “synopsis,” or 
• Direct, without “synopsis”

• What is a synopsis?
• Can be aggregated at a new level, avoids double 

counting
• VARBINARY(49154), mumurhash()

• Synopsis workflow
• Create with approximate_count_distinct_synopsis()
• Query with approximate_count_distinct_of_synopsis()
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Example from Documentation
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Pre-computed counts are ugly

41



A much simpler, mode flexible design
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The easy part, adding to MicroStrategy
ApplyAgg() pass-through function
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Replaced ugly ETL with 4 insert/select
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Magic?
• Unlimited query flexibility

• Uncanny accuracy
• Simpler table structure
• Simpler ETL

• No need to pre-compute outside
• Easier to maintain code

• Faster ETL
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Yes, magic!
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Vertica Community Edition

• https://my.vertica.com/community/
• Free
• Up to 1TB
• No time limit.

• Documentation 
• http://my.vertica.com/docs/7.0.x/HTML/index.htm
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https://my.vertica.com/community/
http://my.vertica.com/docs/7.0.x/HTML/index.htm


David.Abercrombie@tapjoy.com
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