
<Insert Picture Here> 

Edition-based redefinition: 
the key to online application upgrade 
Bryn Llewellyn 
Distinguished Product Manager, 
Database Division, Oracle HQ 



The following is intended to outline our general 
product direction. It is intended for information 
purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be 
relied upon in making purchasing decisions. 
The development, release, and timing of any 
features or functionality described for Oracle’s 
products remain at the sole discretion of Oracle. 



Online Application Upgrade 
    – the final piece of the HA jigsaw puzzle 

High Availability 

Survive 
hardware failure 

Make planned 
changes to software 

Change infrastructure: 
Operating system 
Oracle Database  

Change application’s 
database objects 

 

Change objects’ 
physical characteristics 



Online Application Upgrade 
    – the final piece of the HA jigsaw puzzle 

High Availability 

Survive 
hardware failure 

Make planned 
changes to software 

Change infrastructure: 
Operating system 
Oracle Database  

Change application’s 
database objects 

 

Change objects’ 
physical characteristics 

Change objects’ 
meaning: 

patching and upgrading 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Scope 
•  This presentation explains capabilities, new in Oracle 

Database 11.2, and enhanced in 12.1, that support 
online upgrade of the database tier of an application 

•  The online upgrade of other tiers of the application will 
need their own specific solutions – not discussed in 
this presentation 

•  The take-away from this presentation is that Oracle 
Database offers both an isolation mechanism to allow 
pre- and post-upgrade schemas to co-exist, and a 
way for client code to choose the particular isolated 
environment that it wants  



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Online Application Upgrade 
•  Supporting online application upgrade means 

maintaining uninterrupted availability of the 
application 

•  But end-user sessions can last tens of minutes or 
longer 
•  Users of the old app don’t want to abandon an ongoing 

session 

•  Users wanting to start a session must use the new app, 
but cannot wait until no-one is using the old app 

•  This implies that it must be possible to use the 
pre-upgrade application and the post-upgrade 
application at the same time – a.k.a. hot rollover 



The challenge 
•  The installation of the upgrade into the production 

database must not perturb live users of the 
pre-upgrade application 
•  Many objects must be changed in concert. The changes must 

be made in privacy 

•  Transactions done by the users of the pre-upgrade 
application must by reflected in the post-upgrade 
application 

•  For hot rollover, we also need the reverse of this: 
•  Transactions done by the users of the post-upgrade 

application must by reflected in the pre-upgrade application 



The solution: edition-based redefinition 
•  EBR brings these key features: the edition, the 

editioning view, and the crossedition trigger 

•  Code changes are installed in the privacy of a new edition 

•  Data changes are made safely by writing only to new columns 
or new tables not seen by the old edition 

•  An editioning view exposes a different projection of a table 
into each edition to allow each to see just its own columns 

•  A crossedition trigger propagates data changes made by 
the old edition into the new edition’s columns, or (in hot-
rollover) vice-versa 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Case study 

•  The HR sample schema, that ships with Oracle 
Database, represents phone numbers in a single 
column: 

•  Diana Lorentz      590.423.5567 
•  John Russell        011.44.1344.429268 

•  Users now need to ring phone numbers from any 
country in the world 

•  So we want a uniform representation with two 
columns: Country Code; and Number Within Country. 



Case study 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Application versioning: the challenge 
•  Scenario – for now think only about synonyms, 

views, and PL/SQL units 

•  The application has 1,000 mutually dependent code objects 

•  In general, there’s more than one schema 

•  They refer to each other by name – in general, by schema-
qualified name 

•  The upgrade needs to change 10 of these 



Application versioning: the challenge 

 
 

1,000 v1 objects 
 
 

 
990 unchanged v1 objects 

+ 
10 changed v2 objects 

 

Pre-upgrade app 

Post-upgrade app 



Application versioning: the challenge 
•  Of course, you can’t change the 10 objects in place 

because this would change the pre-upgrade app 

•  How can an old and a new occurrence of the “same” 
object co-exist? 

•  Before EBR, the only dimensions that determine 
which object you mean, when one object refers to 
another, are its name and its owner 

•  In short, the naming mechanisms, historically, were 
not rich enough to support online application upgrade 



The solution: editions 
•  EBR introduces the new nonschema object type, 

edition – each edition can have its own private 
occurrence of “the same” object 

•  A database must have at least one edition 

•  You create a new edition as the child of an existing 
edition – and an edition can’t have more than one 
child 

•  A database session specifies which edition to use 
 
(of course, the database has a default edition) 



The solution: editions 
•  Through 11.1, an object is identified by its name and 

its owner 

•  From 11.2, an editioned object is identified by its 
name, its owner, and the edition where it was created 

•  However, when you identify it you can mention only 
its name and owner. This reference is interpreted in 
the context of a current edition 

•  in SQL execution 

•  in the text of a stored object 



Editions: semantic model 
•  When you create a new edition, every editioned 

object in the parent edition is copied into the new 
edition 



Editions: implementation model 

Object_4 

Object_3 

Object_2 

Object_1 

Pre-upgrade 
edition 



Editions: implementation model 

Object_4 

Object_3 

Object_2 

Object_1 

Object_2 

Object_1 

Pre-upgrade 
edition 

Post-upgrade 
edition 

is child of 

(inherited) 

(inherited) 

(inherited) 

(inherited) 

Object_4 

Object_3 



Editions: implementation model 

Object_4 

Object_3 

Object_2 

Object_1 

Object_4* 

Object_3* 

Object_2 

Object_1 

Pre-upgrade 
edition 

Post-upgrade 
edition 

is child of 

(actual) 

(actual) 

(inherited) 

(inherited) 



Editions: implementation model 

Object_4 

Object_3 

Object_2 

Object_1 

(Object_4*) 

Object_2 

Object_1 

Pre-upgrade 
edition 

Post-upgrade 
edition 

is child of 

(dropped) 

(actual) 

(inherited) 

(inherited) 

Object_3* 



Editions 
•  If your upgrade needs only to change synonyms, 

views, or PL/SQL units, you now have all the tools 
you need 

•  Simply run the scripts that you, anyway, have written 
using a new edition while the application stays online 

•  Then change the default edition and let new session 
start in the new edition 

•  No “package state discarded” errors ever again! 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Editionable and noneditionable 
object types 

•  Not all object types are editionable 

•  Synonyms, views, and PL/SQL units of all kinds (including, 
therefore, triggers and libraries), and are editionable 

•  Objects of all other object types – for example tables – are 
noneditionable 

•  You version the structure of a table manually 

•  Instead of changing a column, you add a replacement column 

•  Then you rely on the fact that a view is editionable 



The solution: editioning views 
•  An editioning view may only project and rename 

columns 



Editioning views 
•  You can’t have more than one editioning view for a 

particular table in a particular edition 

•  The EV must be owned by the table’s owner 

•  Application code should refer only to the logical world 

•  You can create table-style triggers (before or after 
statement or each row) on an editioning view using 
the “logical” column names 

•  A SQL optimizer hint can request an index on the 
physical table by specifying the “logical” column 
names 



Editioning views 
•  Any SQL statement that refers to one, or several, EVs 

will get the same exectution plan as the statement 
you’d get if you replaced each of those references, by 
hand, with a reference to the table that the EV covers 

•  So using an EV in front of every table brings no 
performance consequences 

•  Tests have proved this 



Editioning views 
•  If you can tolerate only read access to the underlying 

data for an editioning view that the upgrade will 
change*, you now have all the tools you need 

•  Like all views, an editioning view can be read-only 

•  Ordinary SQL updates can be used safely to install 
values in the replacement columns – there’s no DML 
that might be missed because of SQL’s read-
consistency 
 
* Think of “configuration data” 
  plus… it’s probably acceptable to freeze the catalog of wares 
  for a store’s online shopping site 



The next couple of slides reflect 
new-in-12.1 functionality 

•  The granularity of the editioned state of an object 
•  In 11.2, the granularity is the whole schema 

•  From 12.1, the granularity is the indvidual object 

•  A materialized view or an index on a virtual column is 
allowed to depend on an editioned PL/SQL function or 
an editioned view 



Editioned and noneditioned objects 
  – slight return 

•  An object whose type is noneditionable is never 
editioned 

•  An object whose type is editionable is editioned only 
when you request it for that object (requires that the 
owner is editions-enabled) 

•  Theorem: a noneditioned object cannot ordinarily 
depend on an editioned object 

•  For example, a table cannot depend on an editioned UDT 

•  If you want to use a type as the datatype for a column, 
that UDT must not be editioned 



Materialized views and 
indexes on virtual columns 

•  Objects of these kinds have metadata that is explicitly 
set by the create and alter statements 

•  the evaluation edition explicitly specifies the name of the 
edition in which the resolution of editioned names, within the 
closure of the object’s dependency parents (at compile time), 
and those objects that are identified during SQL execution (at 
run time) 

•  The edition range explicitly specifies the set of adjacent 
edtitions in which the optimizer will consider the object when 
computing the execution plan 



Tables with UDT columns 

•  An ordinary (as opposed to virtual) column cannot 
specify the evaluation edition or edition range 
metadata 

•  Therefore, a UDT that defines the datatype for a table 
column must remain noneditioned. 

•  In an EBR exercise, if the aim is to redefine the UDT, 
then the “classic” replacement column paradigm is 
used 

•  A spec doesn’t depend on its body. So the body of an 
ADT, where the code is, can be editioned. (The 
appropriate one is found at run time.) 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



What if DML cannot stop during upgrade? 
•  If the upgrade needs to change the structure that 

stores transactional data – like the orders customers 
make using an online shopping site – then the 
installation of values into the replacement columns 
must keep pace with these changes 

•  Triggers have the ideal properties to do this safely 

•  Each trigger must fire appropriately to propagate 
changes to pre-upgrade columns into the post-
upgrade columns – and vice versa 



The solution: crossedition triggers 
•  Crossedition triggers directly access the table. 

•  The new crossedition trigger has special firing rules 

•  You create crossedition triggers in the Post_Upgrade 
edition 
•  The paradigm is: don’t interfere with the Pre_Upgrade edition 

•  The firing rules rules assume that 
•  Pre-upgrade columns are changed – by ordinary application 

code – only by sessions using the Pre_Upgrade edition 

•  Post-upgrade columns are changed only by sessions using 
the Post_Upgrade edition 



The solution: crossedition triggers 
•  A forward crossedition trigger is fired by application 

DML issued by sessions using the Pre_Upgrade 
edition 

•  A reverse crossedition trigger is fired by application 
DML issued by sessions using the Post_Upgrade 
edition 

•  The SQL that a crossedition trigger issues always 
executes in the edition that owns it: 
the Post_Upgrade edition 
 
(even though, for a forward crossedition trigger, the session is 
using the Pre_Upgrade edition) 



Why such a long name? 
•  DDL stands for data definition language 

•  “create or replace” and “alter” re-define an existing 
object 

•  These bare commands are in-place redefinition 

•  Online table redefinition (there’s that word again) 
creates a secret copy, keeps it in step, and then does 
the twizzle. Similar for online index rebuild 

•  This is copy-based redefinition 

•  Edition-based redefinition lets you redefine many 
objects in concert 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



The design before EBR 
•  Application code accesses tables directly, in the 

ordinary way 



Readying the application for editions 
•  Put an editioning view in front of every table 

•  The EV and the table it covers can’t have the same name 

•  Rename each table to an obscure but related name (e.g. an 
exotic name that ends with underscore). 

•  Create an editioning view for each table that has the same 
name that the table originally had 

•  NOTE: 
•  If a schema has an object, whose type is noneditionable, that 

depends on an object whose type is editionable, then the adoption 
plan must accommodate this (using new-in-12.1 functionality) by 
controlling the granularity of the edtioned state of objects, whose 
type is editionable, at the granularity of the individual object 

•  Else, the editioned state can be conveniently set for the whole 
schema 



Readying the application for editions 
•  Revoke privileges from the tables and grant them to 

the editioning  views 

•  Move VPD policies to the editioning  views 

•  “Move” triggers to the editioning views 

•  Just drop the trigger and re-run the original (or mechanically 
edited) create trigger statement to recreate it on the editioning 
view 



Readying the application for editions 
•  Of course, 

•  All indexes on the original Employees remain valid but 
User_Ind_Columns now shows the new values for 
Table_Name and Column_Name 

•  All constraints (foreign key and so on) on the original 
Employees remain in force for Employees_ 
 
 

•  NOTE: this readying work must be done by the 
developers of an application that adopts EBR 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Case study 



Maintain_Emps Employees 

Pre_Upgrade 

ID Ph. …

Employees_ 

Starting point. 
Pre-upgrade app in normal use. 

edition 

editioning view 

table 

PL/SQL package 



Maintain_Emps Employees 

Pre_Upgrade 

ID Ph. …

Employees_ 

Starting point. 
Pre-upgrade app in normal use. 



Post_Upgrade 

Pre_Upgrade 

Employees Maintain_Emps 

Start the edition-based 
redefinition exercise. 
 
Create the new edition as the 
child of the existing one. 
 
This is fast because initially all 
the editioned objects are just 
inherited. 

ID Ph. …

Employees_ 

Maintain_Emps Employees 



Pre_Upgrade 

ID Ph. …

Employees_ 

Cntry # 

Create the replacement 
columns in the underlying 
table. 
 
The editioning view shields 
the app from this change. 

Post_Upgrade 

Employees Maintain_Emps 

Maintain_Emps Employees 



Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

ID Ph. …

Employees_ 

Cntry # 

Change Employees to select 
the new columns. 
 
 
 
Change Show_Employees to 
implement the new behavior. 

Maintain_Emps Employees 



ID Ph. …

Employees_ 

Cntry # 

Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

Fwd Xed 

Create the forward crossedition 
trigger. 

Maintain_Emps Employees 

crossedition trigger 



ID Ph. …

Employees_ 

Cntry # 

Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

Fwd Xed 
Rvrs Xed 

Create the reverse crossedition 
trigger. 

Maintain_Emps Employees 



Rvrs Xed 

ID Ph. …

Employees_ 

Cntry # 

Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

Fwd Xed 

Apply the transform to the data 
for the new app to use 

Maintain_Emps Employees 



Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

Fwd Xed 
Rvrs Xed 

ID Ph. …

Employees_ 

Cntry # 

Hot rollover period. 

Maintain_Emps Employees 



Maintain_Emps Employees 

Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

ID Ph. …

Employees_ 

Cntry # 

The Pre_Upgrade edition 
is retired. 
 
 
 
The edition-based redefinition 
exercise is complete. 
 



<Insert Picture Here> 

Case study – continued 
 
Rolling back the upgrade 



Rolling back an online app upgrade 
•  Rolling back an application upgrade that’s been 

installed classically is easy until you go live with the 
post-upgrade application 
•  Presumably you took a backup at the start of the offline 

period and you just restore to that 

•  But once you go live with the post-upgrade 
application, you can’t rollback to the pre-upgrade one 
•  If you did this, you’d lose transactions made during the live 

use of the post-upgrade application 

•  It’s just the same with online application upgrade 
•  Your grace-period ends when you go live with the post-

upgrade application 



Rolling back an online app upgrade 
•  If you haven’t gone live with the post-upgrade 

application 

•  Drop the Post_Upgrade edition (cascade) 

•  Set any new replacement columns you created unused 

•  At a convenient later time, recoup the space 



Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

Fwd Xed 
Rvrs Xed 

ID Ph. …

Employees_ 

Cntry # 

The hot rollover period 
never started ! 

Maintain_Emps Employees 



Post_Upgrade 

Pre_Upgrade 

Maintain_Emps Employees 

Fwd Xed 
Rvrs Xed 

ID Ph. …

Employees_ 

Cntry # 

The pristine Pre_Upgrade 
is intact ! 

Maintain_Emps Employees 



Agenda: optional section 
•  … 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  EBR task flow 

•  Conclusion / Q&A 



EBR task flow 

Pre-EBR app in use 



EBR task flow 

offline: ready the app 
for EBR 

Pre-EBR app in use 

EBR-ready 
 Pre_Upgrade app in use 



EBR task flow 

Create the new edition 
Do the DDLs 

Transform the data 

EBR-ready 
 Pre_Upgrade app in use 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 



EBR task flow 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 

Do the touch test 



EBR task flow 

Rollback 
EBR-ready 

 Pre_Upgrade app in use 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 



Create the new edition 
Do the DDLs 

Transform the data 

EBR task flow 

EBR-ready 
 Pre_Upgrade app in use 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 



EBR task flow 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 

Do the touch test 



EBR task flow 

Open up for 
Post_Upgrade DMLs 

Hot rollover period: 
Post_Upgrade & Pre_Upgrade apps 

in concurrent use 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 



EBR task flow 

Retire the 
Pre_Upgrade app 

Hot rollover period: 
Post_Upgrade & Pre_Upgrade apps 

in concurrent use 

Post_Upgrade app continues in use 
Pre_Upgrade is retired 

“ground state” is regained 



EBR task flow 

Post_Upgrade app continues in use 
Pre_Upgrade is retired 

“ground state” is regained 



Create the new edition 
Do the DDLs 

Transform the data 

EBR task flow – summary 

Rollback 

offline: ready the app 
for EBR 

Open up for 
Post_Upgrade DMLs 

Retire the 
Pre_Upgrade app 

Pre-EBR app in use 

EBR-ready 
 Pre_Upgrade app in use 

Hot rollover period: 
Post_Upgrade & Pre_Upgrade apps 

in concurrent use 

Post_Upgrade app continues in use 
Pre_Upgrade is retired 

“ground state” is regained 

Pre_Upgrade app still in use  
Post_Upgrade app 
ready for touch test 

Do the touch test 



Agenda 
•  Scope of this presentation 

•  The challenge and the solution stated 

•  Case study stated 

•  Explanation of the edition 

•  Explanation of the editioning view 

•  Explanation of the crossedition trigger 

•  Readying an application for EBR 

•  Case study explained 

•  Conclusion / Q&A 



Edition-based redefinition 
•  EBR brings the edition, the editioning view, and the 

crossedition trigger 
 
•  Code changes are installed in the privacy of a new edition 

 
•  Data changes are made safely by writing only to new columns 

or new tables not seen by the old edition 
 
•  An editioning view exposes a different projection of a table 

into each edition to allow each to see just its own columns 
 

•  A crossedition trigger propagates data changes made by 
the old edition into the new edition’s columns, or (in hot-
rollover) vice-versa 



Evolutionary capability improvements 
•  Some table DDLs that used to fail if another session 

had outstanding DML now always succeed 
 

•  Others, that cannot succeed while there’s outstanding 
DML, are now governed by a timeout parameter 
 

•  Online index creation and rebuild now never cause 
other sessions to wait 
 

•  The dependency model is now fine-grained: 
e.g. adding a new column to a table, or a new 
subprogram to a package spec, no longer invalidates 
the dependants 



E-Business Suite 12.2 
•  The GA of E-Business Suite 12.2 was announced 

in October 2013 

•  From now on, all patches are done as EBR exercises 

•  Critical business operations will not be interrupted 

•  Revenue generating activities will stay on line 

•  The short downtime required by patching will be 
predictable 

•  The units change: 
downtime will be measured 
not in days, not in hours 
but in minutes! 
 



Nota bene 
•  Online application upgrade is a high availability 

subgoal 
•  Traditionally, HA goals are met by features that the 

administrator can choose to use at the site of the 
deployed application 
•  independently of the design of the application 
•  without the knowledge of the application “vendor” 

•  The features for online application upgrade are used 
by the application “vendor” 
•  when preparing the application for EBR 
•  when implementing an EBR exercise 

•  Site administrators, of course, will need to understand 
the features 



Next steps… 
•  Read the edition-based redefinition chapter 

in the Oracle Database Development Guide (12.1) 

•  Read my whitepaper: 
published on the High Availability subpage 
under the Database page on OTN 

•  Internet search for edition-based redefinition 



<Insert Picture Here> 

A	
Q	
&	



