
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

SQL - the best analysis
language for Big Data!

NoCOUG Winter Conference 2014

Hermann Bär, hermann.baer@oracle.com

Data Warehousing Product Management,

Oracle

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

The On-Going Evolution of SQL

4 5

• Introduction of

Window functions

• Enhanced Window

functions (percentile,etc)

• Rollup, grouping sets, cube

• Statistical functions

• SQL model clause

• Partition Outer Join

• Data mining I

• Data mining II

• SQL Pivot

• Recursive WITH

• ListAgg, Nth value window

• Pattern matching

• Top N clause

• Data Mining III

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

SQL for Analysis and Reporting

 Dramatically enhanced analysis capabilities with SQL

– Native support, e.g. OBI EE

– Embedding into SQL views

 Simplified development

– Investment protection through ANSI standard compliance

 Increased performance

– New language constructs enable more efficient plans

– Internal optimizations

Benefits

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Fundamental Concepts

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

Key Concepts

 Partitions

– Groupings of rows within a query result set

 Orderings

– Rows can be ordered within a partition

 Windows (logical or physical)

– A moving group of rows within a partition

– Defines the range of an aggregate calculation

 Current Row

Same for all functions - Unified SQL

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Reporting Aggregates

SELECT person, region, sales

 SUM (sales) OVER (PARTITION BY (region)) r_sales

 SUM (sales) OVER () t_sales

FROM sales_table

ORDER BY region, s_rank;

Compare total sales of regions with total sales

PERSON REGION SALES R_SALES T_SALES

Adams East 200 530 1130

Connor East 180 530 1130

Baker East 150 530 1130

Donner West 300 600 1130

Edward West 200 600 1130

Witkowski West 100 600 1130

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

SELECT timekey, sales,

 LAG(sales,12)OVER(ORDER BY timekey) as sales_last_year,

 (sales - sales_last_year) as sales_change

FROM sales;

Lag/Lead Functions
 How does sales compare versus this month last year?

TIMEKEY SALES SALES LAST

YEAR

SALES CHANGE

2009-01 1100 - -

..

2010-01 2000 1100 900

2010-02 1800 1200 600

…

2011-01 1900 2000 -100

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

SQL for Analysis and Reporting
 Simplified SQL development

select avg(b.event_datetime - a.prior_event_datetime) as avg_wait
from
 (select
 a.*
 , rownum as row_number
 from
 (select
 order_id
 , event_datetime
 as prior_event_datetime
 , new_event_cd as prior_event_cd
 from order_pipeline_events
 where
 warehouse_id = 'RNO1'
 and event_datetime > sysdate - 2
 order by
 order_id
 , prior_event_datetime
 , prior_event_cd
) a
) a ,
 (select
 b.*
 , rownum as row_number
 from
 (select
 order_id
 , event_datetime
 , new_event_cd as event_cd
 from order_pipeline_events
 where
 warehouse_id = 'RNO1'
 and event_datetime > sysdate - 2
 order by
 order_id
 , event_datetime
 , event_cd
) b
) b
where
 a.order_id = b.order_id
 and a.prior_event_cd = '1001'
 and b.event_cd = '1002'
 and a.row_number = b.row_number - 1;

Select avg(event_datetime - prior_event_datetime) as

 avg_wait

from

 (select

 new_event_cd as event_cd

 , event_datetime

 , lag(new_event_cd) over

 (partition by order_id order by event_datetime,

 new_event_cd)

 as prior_event_cd

 , lag(event_datetime) over

 (partition by order_id order by event_datetime,

 new_event_cd)

 as prior_event_datetime

 from order_pipeline_events

 where

 warehouse_id = 'RNO1'

 and event_datetime > sysdate - 2

)

where

 prior_event_cd = '1001'

 and event_cd = '1002';

Without analytical function With analytical function

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

SQL Pattern Matching

“What’s this about?”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

Pattern Matching in Sequences of Rows
The Challenge – a real-world business problem

“ … detect if a phone card went from phone A to phone B to phone C... and

back to phone A within ‘N‘ hours... ”

 Prior to Oracle Database 12c pattern recognition in SQL is difficult

– Use multiple self joins (not good for *)

 T1.handset_id <> T2.handset_id <>T3.handset_id AND…. T1.sim_id=‘X’

AND T2.time BETWEEN T1.time and T1.time+2….

– Use recursive query for * (WITH clause, CONNECT BY)

– Use Window Functions (likely with multiple query blocks)

“… and detect if pattern above occurs at least ‘N’ times within 7 days …”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

Provide native SQL
language construct

Align with well-known
regular expression
declaration (PERL)

Apply expressions across
rows

Soon to be in ANSI SQL
Standard

Pattern Matching in Sequences of Rows
Objective

EVENT TIME LOCATION

A 1 SFO

A 1 SFO

A 2 ATL

A 2 LAX

B 2 SFO

C 2 LAX

C 3 LAS

A 3 SFO

B 3 NYC

C 4 NYC

>
 1

 m
in

A 2 ATL

A 2 LAX

B 2 SFO

C 2 LAX

“Find one or more event A followed by one B

followed by one or more C in a 1 minute interval”

A+ B C+ (perl)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

Finding Patterns in Big Data
Typical use cases in today’s world of fast exploration of big data

Financial

Services

Money

Laundering

Fraud

Tracking

Stock

Market

Law

&

Order

Monitoring

Suspicious

Activities

Retail

Returns

Fraud Buying

Patterns

Session-

ization
Telcos

Money

Laundering
SIM Card

Fraud

Call

Quality

Big

Data

Utilities

Network

Analysis

Fraud

Unusual

Usage

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

SQL Pattern Matching

Conceptual Example

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

SQL Pattern Matching in Action

1. Define the partitions/buckets and ordering needed to identify the

‘stream of events’ you are analyzing

2. Define the pattern of events and pattern variables identifying the

individual events within the pattern

3. Define measures: source data points, pattern data points and

aggregates related to a pattern

4. Determine how the output will be generated

Basic steps for building the SQL command

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Find a W-shape pattern
in a ticker stream:

• Output the beginning
and ending date of the
pattern

• Calculate average price
in the second ascent

• Find only patterns that
lasted less than a week

SQL Pattern Matching in Action
Example: Find A Double Bottom Pattern (W-shape) in ticker stream

days

Stock price

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

SQL Pattern Matching in Action
Example: Find W-Shape*

SELECT . . .

FROM ticker MATCH_RECOGNIZE (

 . . .

)

days

Stock price

New syntax for
discovering patterns using
SQL:

 MATCH_RECOGNIZE ()

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

SQL Pattern Matching in Action
Example: Find W-Shape*

SELECT …

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

days

Stock price

Find a W-shape pattern
in a ticker stream:

• Set the PARTITION BY
and ORDER BY clauses

We will continue to look at
the black stock only from
now on

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

SQL Pattern Matching in Action
Example: Find W-Shape*

days

Stock price

SELECT …

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)

Find a W-shape pattern
in a ticker stream:

• Define the pattern – the
“W-shape”

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

SQL Pattern Matching in Action
Example: Find W-Shape*

SELECT …

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

days

Stock price

X

Find a W-shape pattern
in a ticker stream:

• Define the pattern – the
first down part of the “W-
shape”

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

SQL Pattern Matching in Action
Example: Find W-Shape*

SELECT …

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

days

Stock price

X Y

Find a W-shape pattern
in a ticker stream:

• Define the pattern – the
first up part of “W-shape”

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

SQL Pattern Matching in Action
Example: Find W-Shape*

days

Stock price

SELECT …

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

 W AS (price < PREV(price)),

 Z AS (price > PREV(price)))

X Y W Z

Find a W-shape pattern
in a ticker stream:

• Define the pattern – the
second down (w) and the
second up(z) of the “W-
shape”

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

SQL Pattern Matching in Action
Example: Find W-Shape*

days

Stock price

SELECT …

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

MEASURES FIRST(x.time) AS first_x,

 LAST(z.time) AS last_z

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

 W AS (price < PREV(price)),

 Z AS (price > PREV(price)))

X Z

Find a W-shape pattern
in a ticker stream:

• Define the measures to
output once a pattern is
matched:

• FIRST: beginning date

• LAST: ending date

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Find a W-shape pattern
in a ticker stream:

• Output one row each
time we find a match to
our pattern

SQL Pattern Matching in Action
Example: Find W-Shape*

1 9 13 19 days

Stock price

SELECT first_x, last_z

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 MEASURES FIRST(x.time) AS first_x,

 LAST(z.time) AS last_z

 ONE ROW PER MATCH

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

 W AS (price < PREV(price)),

 Z AS (price > PREV(price)))

First_x Last_z

1 9

13 19

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Find a W-shape pattern
in a ticker stream:

• Extend the pattern to find
W-shapes that lasted
less than a week

SQL Pattern Matching
Example: Find W-Shape lasts < 7 days*

1 9 13 19 days

Stock price

SELECT first_x, last_z

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 MEASURES FIRST(x.time) AS first_x,

 LAST(z.time) AS last_z

 ONE ROW PER MATCH

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

 W AS (price < PREV(price)),

 Z AS (price > PREV(price) AND

 z.time - FIRST(x.time) <= 7))

X Z

Can refer to previous variables

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Find a W-shape pattern
in a ticker stream:

• Calculate average price
in the second ascent

SQL Pattern Matching
Example: Find average price within W-Shape*

1 9 13 19 days

Stock price

SELECT first_x, last_z, avg_price

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 MEASURES FIRST(x.time) AS first_x,

 LAST(z.time) AS last_z,

 AVG(z.price) AS avg_price

 ONE ROW PER MATCH

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

 W AS (price < PREV(price)),

 Z AS (price > PREV(price) AND

 z.time - FIRST(x.time) <= 7))))

Average stock price: $52.00

* For conceptual clarity, the statement is simplified and ignores an always-true start event.

 See the notes or documentation for further explanation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

SQL Pattern Matching

1. Define the partitions/buckets and ordering needed to identify the ‘stream of

events’ you are analyzing

 Matching within a stream of events (ordered partition of data)

 MATCH_RECOGNIZE (PARTITION BY stock_name ORDER BY time MEASURES …

2. Define the pattern of events and pattern variables identifying the individual

events within the pattern

 Use framework of Perl regular expressions (conditions on rows)

– PATTERN (X+ Y+ W+ Z+)

 Define matching using Boolean conditions on rows

– DEFINE X AS (price > 15)

“Declarative” Pattern Matching

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

SQL Pattern Matching, cont.

3. Define measures: source data points, pattern data points and

aggregates related to a pattern

 MEASURES FIRST(x.time) AS first_x,

LAST(z.time) AS last_z,

AVG(z.price) AS avg_price

4. Determine how the output will be generated

 ONE ROW PER MATCH

“Declarative” Pattern Matching

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

SQL Pattern Matching
MATCH_RECOGNIZE Syntax

<table_expression> := <table_expression> MATCH_RECOGNIZE

 ([PARTITION BY <cols>]

 [ORDER BY <cols>]

 [MEASURES <cols>]

 [ONE ROW PER MATCH | ALL ROWS PER MATCH]

 [SKIP_TO_option]

 PATTERN (<row pattern>)

 [SUBSET <subset list>]

 DEFINE <definition list>

)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

SQL Pattern Matching

I’ll get my hands dirty …

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

ACME Data Set

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

SQL Pattern Matching

Real world use cases

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Hot Off the Press …
OTN Forum SQL and PL/SQL, 01/31/2014

https://community.oracle.com/message/12240648

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Hot Off the Press …
OTN Forum SQL and PL/SQL, 01/31/2014

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 45

 if (lineNext == null) {

 next = "";

 } else {

 next = lineNext.getQuantity();

 }

 if (!q.isEmpty() && (prev.isEmpty() || (eq(q, prev) && gt(q, next)))) {

 state = "S";

 return state;

 }

 if (gt(q, prev) && gt(q, next)) {

 state = "T";

 return state;

 }

 if (lt(q, prev) && lt(q, next)) {

 state = "B";

 return state;

 }

 if (!q.isEmpty() && (next.isEmpty() || (gt(q, prev) && eq(q, next)))) {

 state = "E";

 return state;

 }

 if (q.isEmpty() || eq(q, prev)) {

 state = "F";

 return state;

 }

 return state;

 }

 private boolean eq(String a, String b) {

 if (a.isEmpty() || b.isEmpty()) {

 return false;

 }

 return a.equals(b);

 }

 private boolean gt(String a, String b) {

 if (a.isEmpty() || b.isEmpty()) {

 return false;

 }

 return Double.parseDouble(a) > Double.parseDouble(b);

 }

 private boolean lt(String a, String b) {

 if (a.isEmpty() || b.isEmpty()) {

 return false;

 }

 return Double.parseDouble(a) < Double.parseDouble(b);

 }

 public String getState() {

 return this.state;

 }

 }

 BagFactory bagFactory = BagFactory.getInstance();

 @Override

 public Tuple exec(Tuple input) throws IOException {

 long c = 0;

 String line = "";

 String pbkey = "";

 V0Line nextLine;

 V0Line thisLine;

 V0Line processLine;

 V0Line evalLine = null;

 V0Line prevLine;

 boolean noMoreValues = false;

 String matchList = "";

 ArrayList<V0Line> lineFifo = new ArrayList<V0Line>();

 boolean finished = false;

 DataBag output = bagFactory.newDefaultBag();

 if (input == null) {

 return null;

 }

 if (input.size() == 0) {

 return null;

 }

Pattern Matching with SQL Analytics
Java vs. SQL: Stock Markets - Searching for ‘W’ Patterns in Trade Data

SELECT first_x, last_z

FROM ticker MATCH_RECOGNIZE (

 PARTITION BY name ORDER BY time

 MEASURES FIRST(x.time) AS first_x,

 LAST(z.time) AS last_z

 ONE ROW PER MATCH

 PATTERN (X+ Y+ W+ Z+)

 DEFINE X AS (price < PREV(price)),

 Y AS (price > PREV(price)),

 W AS (price < PREV(price)),

 Z AS (price > PREV(price) AND

 z.time - FIRST(x.time) <= 7))

250+ Lines of Java and PIG 12 Lines of SQL

20x less code, 5x faster

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 46

Analytical SQL in the Database
 Summary

 Ranking functions

– rank, dense_rank, cume_dist, percent_rank, ntile

 Window Aggregate functions (moving and cumulative)

– Avg, sum, min, max, count, variance, stddev, first_value,
last_value

 LAG/LEAD functions

– Direct inter-row reference using offsets

 Reporting Aggregate functions

– Sum, avg, min, max, variance, stddev, count,
ratio_to_report

 Statistical Aggregates

– Correlation, linear regression family, covariance

 Linear regression

– Fitting of an ordinary-least-squares regression line to a set
of number pairs.

– Frequently combined with the COVAR_POP,
COVAR_SAMP, and CORR functions

 Descriptive Statistics

– DBMS_STAT_FUNCS: summarizes numerical columns of a table
and returns count, min, max, range, mean, stats_mode, variance,
standard deviation, median, quantile values, +/- n sigma values,
top/bottom 5 values

 Correlations

– Pearson’s correlation coefficients, Spearman's and Kendall's (both
nonparametric).

 Cross Tabs

– Enhanced with % statistics: chi squared, phi coefficient, Cramer's V,
contingency coefficient, Cohen's kappa

 Hypothesis Testing

– Student t-test , F-test, Binomial test, Wilcoxon Signed Ranks test,
Chi-square, Mann Whitney test, Kolmogorov-Smirnov test, One-way
ANOVA

 Distribution Fitting

– Kolmogorov-Smirnov Test, Anderson-Darling Test, Chi-Squared
Test, Normal, Uniform, Weibull, Exponential

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 47

Summary

 Comprehensive analysis with SQL out of the box

– ANSI compliant features with some additional extensions

 Common language SQL speeds up adoption

– Widely known and used

– Common syntax reduces learning curve

 Comprehensive support for SQL based pattern matching

– Supports a wide range of use cases

– Simplifies application development

– Simplifies existing SQL code

New Database 12c SQL Analytics

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 48

SQL - the best development language for Big Data?

Yes, because SQL is….

SIMPLER FASTER RICHER

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 49

Where to get more information

 SQL Analytics Home Page on OTN

– http://www.oracle.com/technetwork/database/bi-

datawarehousing/sql-analytics-index-1984365.html

– Oracle By Example – Pattern matching

– Podcasts for pattern matching and SQL analytics

– Data Sheet

– Whitepapers

 Patterns Everywhere - Find then fast!

 Patterns Everywhere - Find then fast! (Apple iBook)

 Data Warehouse and SQL Analytics blog

– http://oracle-big-data.blogspot.co.uk/

http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://www.oracle.com/technetwork/database/bi-datawarehousing/sql-analytics-index-1984365.html
http://oracle-big-data.blogspot.co.uk/
http://oracle-big-data.blogspot.co.uk/
http://oracle-big-data.blogspot.co.uk/
http://oracle-big-data.blogspot.co.uk/
http://oracle-big-data.blogspot.co.uk/
http://oracle-big-data.blogspot.co.uk/

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 50

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 51

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 52

