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Why TCP/IP Headers are Great

IP headers + TCP headers = 384 bytes

This Is usually non-privileged data, and it's easy to get
It provides the following interesting data:

o Origin IP address and TCP port

o Destination IP address and TCP port

o TCP sequence number, etc, etc

In addition, by observing with tcpdump, we get:

o Packet timestamp
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The Fundamental Metrics

 |n a protocol with call-and-response semantics, the following
are enough to learn a lot:
o Arrival time
o Completion time
o Session identifier
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Derived Metrics

« Straightforward metrics over an observation interval
o Queries per second (throughput)
o Busy time
o Total execution time
* Derived via Little's Law, the Utilization Law, etc
o Average concurrency
o Average response time
o Utilization
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Capturing TCP/IP Network Traffic

tcpdump -s 384 -i any -nnq -tttt \
'tcp port 3306 and (((ip[2:2] - ((ip[0]&0xf)<<2))
- ((tcp[12]&0xf0)>>2)) I= 0)"' > tcp-file.txt
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Capturing TCP/IP Network Traffic

« Beware of dropped packets!
« Sometimes writing to a file with -w works better.
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A Sample of the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246
2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896
2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168
2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
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A Sample of the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246
2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896
2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168
2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

2012-02-10 10:30:57.818202 IP
10.124.62.89.56520 > 10.124.62.75.3306: tcp
142
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Transforming the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246
2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896
2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168
2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

pt-tcp-model tcp-file.txt > requests.txt

# start-timestamp end-timestamp elapsed host:port

/7 1328887857.818202 132888/7857.818440 0.000238 10.124.62.89:56520
10 1328887857.819916 1328887857.820229 0.000313 10.124.62.89:56520
14 1328887857.822832 132888/7857.823071 0.000239 10.124.62.89:56520
15 1328887857.824518 1328887857.824828 0.000310 10.124.62.89:56520
13 1328887857.822784 132888/7/857.823108 0.000324 10.124.62.89:56523
16 1328887857.826182 1328887857.826419 0.000237 10.124.62.89:56520
19 1328887857.827202 1328887857.827438 0.000236 10.124.62.101:57780
20 1328887857.827348 1328887857.827661 0.000313 10.124.62.106:54368
12 1328887857.821355 1328887857.821611 0.000256 10.124.62.101:57779
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About The Following Graphs

ne following plots are from several samples

ney range from ~10s to ~2m in duration

oplication load was low to moderate

ne application is a Ruby On Ralls e-commerce site
ne database has a mixed workload (not just RoR)
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Black-Box Performance Analysis
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Step 1: Plot on a Time-Series Chart
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What do the Anomalies Mean?
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Stalls Explained

ne points are plotted in order of completion.
ney complete in the order their dependencies are met.
nat's why the spikes slope to the right slightly.

— - -
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The Stalls are SELECT FOR UPDATE.

| actually captured 4096 bytes of the packet, not 384

| used pt-query-digest to inspect the queries in the protocol
The dependencies are caused by explicit locking
Completions cluster together when they are all waiting for

the same lock
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Can Completion Times Reveal More?

 Maybe we can compare completion counts -vs- arrivals?
* The following charts show counts per 5ms.
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Subtraction and Coarser Aggregation

 5ms is too fine-grained
 |t's too hard to compare scatter plots
e Subtract arrivals from completions, 200ms at a time
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Why Does This Work?

« On average, arrivals ~= completions in any interval
. When a stall occurs on an interval boundary,
o The first interval gets many arrivals that don't complete

o The second interval gets more completions

o The graph dips, then spikes

www.percona.com



Detecting Performance Variations

* Most statistics (max, quantile, avg, stdev) are unhelpful
* Variance-to-mean ratio (index of dispersion) is very useful.

Variance

Mean

* Normalized measure of the dispersion of response times.
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Plotting the Index of Dispersion

A spike means response times
are widely dispersed.
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Interpreting Index of Dispersion

* Highly variable == highly optimizable
« Uniform, consistent performance Is preferable
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All the Plots Together
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In the Real World

https:/ /twitter.com/#!/aaronbbrown? 77 /status/123469227985354752

Search Q Home Profile Messages Who To Follow

e @AaronBBrown777
Aaron Brown

Non-ideal TCP traffic entering the load

balancer skitch.com/aaronbbrown/f9...

(created with help from pt-tep-model by
xaprb & @percona)
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In the Real World
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Part 2.
Forecasting Scalability and
Performance
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Defining Scalabllity

« Scalability is a mathematical function (equation)
* The X-axis is the number of worker units
* The Y-axis is throughput
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The Scalability Function

Throughput

1 Worker Units

www.percona.com



Linear Scalability

Throughput

1 - Worker Units

www.percona.com



Also Linear Scalabllity

Throughput

1 - Worker Units
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Not Linear Scalability

Throughput

1 - Worker Units
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What Causes Non-Linearity?

]— What causes this?
&

Throughput

Worker Units
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Factor #1: Serialization

 Amdahl's Law: if not all work can be parallelized, speedup Is
limited to the reciprocal of the serialized portion.
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Factor #1: Serialization

 Amdahl's Law: if not all work can be parallelized, speedup Is
limited to the reciprocal of the serialized portion.
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Factor #2: Crosstalk

« Universal Scalability Law: scalability degrades in proportion
to the number of crosstalk channels, which is O(n*2).
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Degradation of Throughput

* Most systems have both serialization and crosstalk.

Linear Scalability ——
Amdahl’'s Law

Universal Scalability
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Scalability Modeling Algorithm

Measure throughput and concurrency

Perform a regression against the Universal Scalability Law
o This determines the sigma and kappa coefficients

o 77?7

Profit!
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What Inputs Do We Need?

* Throughput is easy (queries per second)
« Concurrency is a little more subtle:
o Sort the arrivals and departures by timestamp
o Each arrival increments concurrency
o Each departure decrements it
« Compute the average concurrency per time interval
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The Concurrency Calculation

Observation Time: 7
Total Query Time: 8
Average Concurrency: 8/7

Q1
-
0 1 2 3 4 5 6 7 Time
A A
\J \J
Arrive: T=0 Arrive: T=3  Complete: T=4 Complete: T=7
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Using pt-tcp-model
You can compute these metrics with pt-tcp-model.

sort -n -k1,1 requests.txt > sorted.txt
pt-tcp-model --type=requests sorted.txt > sliced.txt
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Determine Kappa and Sigma

* Use R, gnuplot or other tools to fit the model to the data and
derive:
o Coefficient of serialization (sigma)
o Coefficient of crosstalk (kappa)
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Results on a Partial Dataset

5000 +t Pealc capacity is C=4270 at N=9 T
A000 +
5
I
5 3000 r
3
2
=
o 2000 ¢
o sigma = 0.144815
. kappa = 0.009988
Modeled
0 Measured o

0 2 4 6 8 10 12 14 16 18

M (concurrency)
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Results on the Full Dataset

5000 +t Pealc capacity is C=4270 at N=9 T
A000 +
5
I
5 3000 r
3
2
=
o 2000 ¢
o sigma = 0.144815
. kappa = 0.009988
Modeled
0 Measured o

0 2 4 6 8 10 12 14 16 18

M (concurrency)
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How to Approach the USL

« The USL can be useful as a best-case or worst-case model
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How to Approach the USL

 The USL can be useful as a best-case or worst-case model
* Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that

o Use it as a point of reference for "we can improve this"
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How to Approach the USL

 The USL can be useful as a best-case or worst-case model
* Worst-Case Bounds
o The USL models worst-case scalability
o Your system should scale better than that
o Use It as a point of reference for "we can improve this"
« Best-Case Bounds
o Many systems don't scale as well as they should
o When forecasting past observable limits, be pessimistic
o "l expect this system to scale worse than predicted"
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How to Approach the USL

The USL can be useful as a best-case or worst-case model
Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that

o Use It as a point of reference for "we can improve this"
Best-Case Bounds

o Many systems don't scale as well as they should

o When forecasting past observable limits, be pessimistic
o "l expect this system to scale worse than predicted"

The USL is a model.
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Forecasting Performance

* Performance = Response Time
 Little's Law: N = XR
o concurrency = throughput * response time

 Thus R = N/X. You can model this just like scalability, with
the same caveats.

0004 L Peak capacity is at N=13

€ 00035 |

% 0.003 |

E 0.0025 |

§ 0002 |

= OB R™2 = 0.975060
0001 | Modeled

Repairman Queueing

0.0005 . . . . IMeaSLIJred .
o 2 4 6 8 10 12 14

N (concurrency)
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Validate Your Input

 The USL works best on a well-behaved data set

* You may need to remove outliers

* You may need to select well-behaved windows of time
« Beware of mixed or variable workloads

« "Black box" plotting is a good place to start
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Resources

Percona Toolkit

O

Neil J. Gunther's book

o Guerrilla Capacity Planning
Percona White Papers

o "MySQL Performance Analysis..."
o "Forecasting MySQL Scalability..."
O

These slides

O
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