OPERCOI\IA

Extracting Performance and
Scalability Metrics from TCP

Percona Inc
2012

About us

* Prepared by Baron Schwartz
 Chief Performance Architect, Percona Inc

* Presented by Vadim Tkachenko
« CTO, Percona Inc

 Percona
« Consulting, Support, Development for MySQL

=N
o

High 0
Pertormaince

» “High Performance MySQL”, 2"9,3" editions [§iSa)

OREILLY"

 MySQLPerformanceBlog.com

www.percona.com

Agenda

Fundamental Metrics of Performance

Capturing TCP Data

« Part 1: Black-Box Performance Analysis

o Detecting Stalls and Locking

o Detecting Performance Variations

Part 2: Forecasting Scalability and Performance
o A Mathematical Model of Scalability

o Evaluating Results Against the Model

o Real-World Applications

Why TCP/IP Headers are Great

IP headers + TCP headers = 384 bytes

This Is usually non-privileged data, and it's easy to get
It provides the following interesting data:

o Origin IP address and TCP port

o Destination IP address and TCP port

o TCP sequence number, etc, etc

In addition, by observing with tcpdump, we get:

o Packet timestamp

www.percona.com

The Fundamental Metrics

 |n a protocol with call-and-response semantics, the following
are enough to learn a lot:
o Arrival time
o Completion time
o Session identifier

www.percona.com

Derived Metrics

« Straightforward metrics over an observation interval
o Queries per second (throughput)
o Busy time
o Total execution time
* Derived via Little's Law, the Utilization Law, etc
o Average concurrency
o Average response time
o Utilization

www.percona.com

Capturing TCP/IP Network Traffic

tcpdump -s 384 -i any -nnq -tttt \
'tcp port 3306 and (((ip[2:2] - ((ip[0]&0xf)<<2))
- ((tcp[12]&0xf0)>>2)) I= 0)"' > tcp-file.txt

www.percona.com

Capturing TCP/IP Network Traffic

« Beware of dropped packets!
« Sometimes writing to a file with -w works better.

www.percona.com

A Sample of the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246
2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896
2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168
2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

www.percona.com

A Sample of the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246
2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896
2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168
2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

2012-02-10 10:30:57.818202 IP
10.124.62.89.56520 > 10.124.62.75.3306: tcp
142

www.percona.com

Transforming the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64
2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246
2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896
2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168
2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142
2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

pt-tcp-model tcp-file.txt > requests.txt

start-timestamp end-timestamp elapsed host:port

/7 1328887857.818202 132888/7857.818440 0.000238 10.124.62.89:56520
10 1328887857.819916 1328887857.820229 0.000313 10.124.62.89:56520
14 1328887857.822832 132888/7857.823071 0.000239 10.124.62.89:56520
15 1328887857.824518 1328887857.824828 0.000310 10.124.62.89:56520
13 1328887857.822784 132888/7/857.823108 0.000324 10.124.62.89:56523
16 1328887857.826182 1328887857.826419 0.000237 10.124.62.89:56520
19 1328887857.827202 1328887857.827438 0.000236 10.124.62.101:57780
20 1328887857.827348 1328887857.827661 0.000313 10.124.62.106:54368
12 1328887857.821355 1328887857.821611 0.000256 10.124.62.101:57779

www.percona.com

About The Following Graphs

ne following plots are from several samples

ney range from ~10s to ~2m in duration

oplication load was low to moderate

ne application is a Ruby On Ralls e-commerce site
ne database has a mixed workload (not just RoR)

44> =

www.percona.com

Black-Box Performance Analysis

www.percona.com

Step 1: Plot on a Time-Series Chart

4
3+
@
E
8
@
E 2f
l_
2
a
&
i
1
- i
+
++$ ++
L + + |
g TTT S TR TR AR RS R A T AR S A A A A A

Time

www.percona.com

What do the Anomalies Mean?

4
3l ; : :
. E - + .
. i : '
= : .
a I] ;]
@ | : : _
E 2| ! ! .
= : :
E ! !
i [| b
& ! !
o H i + -
i T
s ' +]
+ +
1k N :
+
- * i -
i b B R T T = S + t+ |
% +
L + i]
()~
Time

www.percona.com

Stalls Explained

ne points are plotted in order of completion.
ney complete in the order their dependencies are met.
nat's why the spikes slope to the right slightly.

— - -

www.percona.com

The Stalls are SELECT FOR UPDATE.

| actually captured 4096 bytes of the packet, not 384

| used pt-query-digest to inspect the queries in the protocol
The dependencies are caused by explicit locking
Completions cluster together when they are all waiting for

the same lock

www.percona.com

Can Completion Times Reveal More?

 Maybe we can compare completion counts -vs- arrivals?
* The following charts show counts per 5ms.

35 |] 35 L]
+
30t +] 30 |]
+ +
. w
w25 + + . qu 25 + o+ .
= + + + + 4+ s +
Lo + + o +
5 + + + + o ++ + + +
-+ + o+ + w + + + +
o 20 + H++ + + o+ o+ . c 20 t + o+ + o+ o+ + 1
n +H H o+ + o+ + + + o + HH H ++F o+ + +
@ + HE A HE + + ++H H o+ 4+ T H H o+ + ++ + # +H +H o+
= + + & HH + 4+ HH o+ FEHE o+ ++ = + HH + + + H HE O+ +
= + + + + 4+ HHE FH HH e HHE R T R+ = + + o+ W AHE HEE A R R i
< 15 b+ #++wm 4+ B W HE P I R+ E 15 P4+ k4 4+ Wb b 4 b e B b
DR AH+ H o+ +F S + A HH HE A A+ EHEH R
R RHE R MM R - DR TR OH HOE R H
+H+ O+
+4H 4+ HH 4 B S R 4 + ++H HHHE 4 i i+ A HE R i 4 R A + ++
0 H O H e+ H R H#++++ + O+ + + + 0 +H H# R+ ++ ++ + o+ + ++
t t t t f
Time Time

www.percona.com

Subtraction and Coarser Aggregation

 5ms is too fine-grained
 |t's too hard to compare scatter plots
e Subtract arrivals from completions, 200ms at a time

www.percona.com

Why Does This Work?

« On average, arrivals ~= completions in any interval
. When a stall occurs on an interval boundary,
o The first interval gets many arrivals that don't complete

o The second interval gets more completions

o The graph dips, then spikes

www.percona.com

Detecting Performance Variations

* Most statistics (max, quantile, avg, stdev) are unhelpful
* Variance-to-mean ratio (index of dispersion) is very useful.

Variance

Mean

* Normalized measure of the dispersion of response times.

www.percona.com

Plotting the Index of Dispersion

A spike means response times
are widely dispersed.

Ll il Hll i

Interpreting Index of Dispersion

* Highly variable == highly optimizable
« Uniform, consistent performance Is preferable

www.percona.com

All the Plots Together

Response Time (Seconds)
o

+
IR A

“*W“W‘““WMWMWWW
| IR Mm

In the Real World

https:/ /twitter.com/#!/aaronbbrown? 77 /status/123469227985354752

Search Q Home Profile Messages Who To Follow

e @AaronBBrown777
Aaron Brown

Non-ideal TCP traffic entering the load

balancer skitch.com/aaronbbrown/f9...

(created with help from pt-tep-model by
xaprb & @percona)

www.percona.com

In the Real World

TCP Port 80
1800 T T T T T T T T T T T T T T T T T T
arrivals
1600 |- -
1400 —
1200 |- il
'E 1000 "
3
Z
5
2. 800 |- 3
600 —
Pl 'W\ _
200 |- il
0 . . | . N 1 2 1 p A 1 L " | . . 1
16:49:00 16:49:30 16:50:00 16:50:30 16:51:00 16:51:30 16:52:00 16:52:3(
Time (UTC)

www.percona.com

Part 2.
Forecasting Scalability and
Performance

www.percona.com

Defining Scalabllity

« Scalability is a mathematical function (equation)
* The X-axis is the number of worker units
* The Y-axis is throughput

www.percona.com

The Scalability Function

Throughput

1 Worker Units

www.percona.com

Linear Scalability

Throughput

1 - Worker Units

www.percona.com

Also Linear Scalabllity

Throughput

1 - Worker Units

www.percona.com

Not Linear Scalability

Throughput

1 - Worker Units

www.percona.com

What Causes Non-Linearity?

]— What causes this?
&

Throughput

Worker Units

www.percona.com

Factor #1: Serialization

 Amdahl's Law: if not all work can be parallelized, speedup Is
limited to the reciprocal of the serialized portion.

> >

Vv VvV YV

%
%
%

www.percona.com

Factor #1: Serialization

 Amdahl's Law: if not all work can be parallelized, speedup Is
limited to the reciprocal of the serialized portion.

> >

AV VARV
AV VAR V4

www.percona.com

Factor #2: Crosstalk

« Universal Scalability Law: scalability degrades in proportion
to the number of crosstalk channels, which is O(n*2).

C > >

i 4 Sl

N) = 1+o(N—1)4sN(N—1)

U

—
VOV

www.percona.com

Degradation of Throughput

* Most systems have both serialization and crosstalk.

Linear Scalability ——
Amdahl’'s Law

Universal Scalability

www.percona.com

Scalability Modeling Algorithm

Measure throughput and concurrency

Perform a regression against the Universal Scalability Law
o This determines the sigma and kappa coefficients

o 77?7

Profit!

www.percona.com

What Inputs Do We Need?

* Throughput is easy (queries per second)
« Concurrency is a little more subtle:
o Sort the arrivals and departures by timestamp
o Each arrival increments concurrency
o Each departure decrements it
« Compute the average concurrency per time interval

www.percona.com

The Concurrency Calculation

Observation Time: 7
Total Query Time: 8
Average Concurrency: 8/7

Q1
-
0 1 2 3 4 5 6 7 Time
A A
\J \J
Arrive: T=0 Arrive: T=3 Complete: T=4 Complete: T=7

www.percona.com

Using pt-tcp-model
You can compute these metrics with pt-tcp-model.

sort -n -k1,1 requests.txt > sorted.txt
pt-tcp-model --type=requests sorted.txt > sliced.txt

www.percona.com

Determine Kappa and Sigma

* Use R, gnuplot or other tools to fit the model to the data and
derive:
o Coefficient of serialization (sigma)
o Coefficient of crosstalk (kappa)

www.percona.com

Results on a Partial Dataset

5000 +t Pealc capacity is C=4270 at N=9 T
A000 +
5
I
5 3000 r
3
2
=
o 2000 ¢
o sigma = 0.144815
. kappa = 0.009988
Modeled
0 Measured o

0 2 4 6 8 10 12 14 16 18

M (concurrency)

www.percona.com

Results on the Full Dataset

5000 +t Pealc capacity is C=4270 at N=9 T
A000 +
5
I
5 3000 r
3
2
=
o 2000 ¢
o sigma = 0.144815
. kappa = 0.009988
Modeled
0 Measured o

0 2 4 6 8 10 12 14 16 18

M (concurrency)

www.percona.com

How to Approach the USL

« The USL can be useful as a best-case or worst-case model

www.percona.com

How to Approach the USL

 The USL can be useful as a best-case or worst-case model
* Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that

o Use it as a point of reference for "we can improve this"

www.percona.com

How to Approach the USL

 The USL can be useful as a best-case or worst-case model
* Worst-Case Bounds
o The USL models worst-case scalability
o Your system should scale better than that
o Use It as a point of reference for "we can improve this"
« Best-Case Bounds
o Many systems don't scale as well as they should
o When forecasting past observable limits, be pessimistic
o "l expect this system to scale worse than predicted"

www.percona.com

How to Approach the USL

The USL can be useful as a best-case or worst-case model
Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that

o Use It as a point of reference for "we can improve this"
Best-Case Bounds

o Many systems don't scale as well as they should

o When forecasting past observable limits, be pessimistic
o "l expect this system to scale worse than predicted"

The USL is a model.

www.percona.com

Forecasting Performance

* Performance = Response Time
 Little's Law: N = XR
o concurrency = throughput * response time

 Thus R = N/X. You can model this just like scalability, with
the same caveats.

0004 L Peak capacity is at N=13

€ 00035 |

% 0.003 |

E 0.0025 |

§ 0002 |

= OB R™2 = 0.975060
0001 | Modeled

Repairman Queueing

0.0005 IMeaSLIJred .
o 2 4 6 8 10 12 14

N (concurrency)

www.percona.com

Validate Your Input

 The USL works best on a well-behaved data set

* You may need to remove outliers

* You may need to select well-behaved windows of time
« Beware of mixed or variable workloads

« "Black box" plotting is a good place to start

www.percona.com

Resources

Percona Toolkit

O

Neil J. Gunther's book

o Guerrilla Capacity Planning
Percona White Papers

o "MySQL Performance Analysis..."
o "Forecasting MySQL Scalability..."
O

These slides

O

www.percona.com

http://www.percona.com/software/
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://goo.gl/kUQNz

baron@percona.com

www.percona.com/live

