Database Performance in a Virtualized World

NoCOUG Winter Conference 2012 Eric Jenkinson

Agenda

- Organizational Challenges
- Types of virtualization
- CPU Scheduling and Resource Allocation
- What you as a DBA need to do to thrive in a virtualized environment

Organizational Issues in Virtualized Environments

- Knowledge of virtualization technology is not well understood outside of the server group
- Limited visibility into the virtualization technology stack
- "Throwing Hardware at the Problem" is easier.
- VM Sprawl
- DBAs, especially Oracle DBAs, are less likely to adopt virtualization

Hypervisor

- Provides an abstraction of the physical hardware to the guests
- Manages the execution of the guest OS
- Manages the physical hardware resources
- Two hypervisor types
 - Type 2
 - Type 1

Type 2 Hypervisor

- Hosted
- Hypervisor runs as an application
- Hypervisor does not have direct control of hardware
- Examples
 - VMWare Server
 - Oracle VirtualBox

Type1 Hypervisor

- Bare metal
- Has full control of hardware
- Examples
 - VMWare ESX, ESXI
 - Oracle VM

CPU Rings

- Ordered from most privileged (ring 0) to least privileged (ring 3)
- OS and device drivers operate in ring 0
- Applications run in ring3

Full Virtualization

- Guest OS is unaware of virtualization
- Hypervisor traps privileged OS calls and reprocesses them
- Guest OS kernel is not modified
- Support
 - VMWare on old hardware

Paravirtualization

- Guest OS is aware of virtualization
- Guest OS Kernel modified to make hyper-calls instead of privileged calls
- Paravirtualization
 support in Linux Kernel
 2.6.23 and higher

Hardware Assisted Virtualization

- CPU support for Virtualization
- Root Mode ring below ring 0
- Privileged calls trapped and sent hypervisor
- Guest OS does not need to be modified
- Support
 - VMWare and Oracle VM

Hardware Assisted Virtualization with Paravirtualized Drivers

- Hybrid approach
- Guest OS does not have to be modified
- CPU virtualization support is required
- Paravirtualized drivers are required
- Support
 - VMWare and Oracle VM

VMWare ESX Architecture

- VMKernel
 - CPU scheduler
 - Memory
 - Device Drivers
- Virtualization types
 - Binary Translation
 - Paravirtualized Drivers
 - Hardware AssistedVirtualization

Xen / Oracle VM Architecture

- Three components
 - Xen Hypervisor
 - Domain 0 (dom0)
 - Domain U (domU)
- Two domain types
 - Privileged
 - dom0
 - Unprivileged
 - domU (Guest VMs)

Resource Over Commitment

- Number of vCPUs can exceed the number of physical processors
- Sum of memory allocated to VM can exceed the amount of memory of the host
 - Oracle VM only through Max Memory

ESX CPU Relaxed Co-Scheduling

- A vCPU can be in one of three states
 - Waiting for a CPU to become available
 - Has a CPU and executing
 - Has a CPU and idle
- Relaxed CPU co-scheduling
 - Per vCPU
 - vCPUs that advance too much are individually stopped

ESX CPU Relaxed Co-Scheduling

- A vCPU is making progress if running or idle at the guest level
- Progress of each vCPU is tracked individually
 - Skew is measures as the difference between the slowest vCPU and other vCPUs
 - Skew does not grow if the vCPUs make equal progress during the co-scheduling period
- Skew enforcement
 - vCPUs that advance too much are stopped once the skew is reduced the stopped vCPUs may start individually

Oracle VM – Xen Credit Scheduler

- Proportional fair CPU scheduler
- Each domain is assigned a weight and cap
 - Weight: a domain with 256 received twice as much CPU as a domain with 128
 - Cap maximum amount of CPU a domain can consume even if there are idle CPUs
- Automatically load balances vCPU across all available CPUs on SMP host

Oracle VM – Xen Credit Scheduler

- Each physical CPU manages a run queue of vCPUs sorted by priority
 - Priority UNDER and OVER
- When inserting a vCPU to a queue it is put after all vCPU of equal priority
- When vCPU runs it consume credits. Until all credits are consumed its priority is UNDER
- Fair CPU scheduling, I/O can be skewed

Memory Management

- Transparent Page Sharing
- Memory Ballooning
 - Requires Guest Additions to be installed
- Memory Compression
 - Compress memory pages that need to be swapped to disk
- ESX Swapping Demand Paging
- Oracle VM only has memory ballooning at this time
 - Page sharing and demand paging is in Xen unstable

Distributed Resource Scheduling (DRS)

- Both VMWare and Oracle VM have the ability to move VMs across physical servers
- The goal is to provide consistent resources to running VMs
- Moves VMs from heavily loaded servers to servers with a lighter load
- With out rules or affinity groups in place, DRS can be a source of "random" performance issues

So what am I as as a DBA supposed to do with this?

My Experience

- Most performance problems fall under these areas
 - Poor knowledge of the virtualization stack
 - Poor or no VM placement policies
 - Poor or no resource prioritization
 - Little to no visibility into the virtualization stack
- The rest are the same problems that can exist in a purely physical environment

Visibility is a Must

- VMWare: Request a read only account in vSphere
- Oracle VM: Oracle Enterprise Manager
 - Can be a problem with Oracle VM 2
- VMWare: esxtop OVM: top, vmstat, sar with paravirtualized kernel
- Third Party tools
 - Quest Spotlight for Oracle
 - Confio Ignite for VM

Recognize Default Settings

Recognize Default Settings

Recognize Default Settings

- VMWare (CPU and Memory)
 - Reservation: minimum amount allocated/available at VM power on
 - Limit: maximum amount of the resource
 - Shares: Priority in acquiring the resource
- Oracle VM (CPU only)
 - Priority: The higher the priority, the more physical
 CPU cycles given to the VM
 - Processor Cap: The maximum amount of CPU a VM can consume

The Problem with Defaults/Unlimited

The Problem with Defaults/Unlimited

The Problem with Defaults/Unlimited

Virtual CPU Recommendations

- Set values for Limit/Shares or Priority/Cap to match business value
- Use only the vCPUs required and no more
- Monitor stolen time (OVM) and ESX Ready time to ascertain competition between VMs
- Watch out for CPU over commitment with VM that have many vCPUs

Virtual Memory Recommendations

VMWare

- Use Reservation to avoid ballooning and swapping
 - SGA + PGA + processes overhead
- Ensure VMWare Tools are installed (and up to date) to provide ballooning
- Oracle VM
 - Set Memory = SGA + PGA + process overhead

Storage I/O

- Avoid sparse or dynamic growth virtual disks
- Follow Oracle and Storage vendor's best practices for Oracle Databases
- Use Storage IO Control (VMWare) to prioritize
 VM access to datastore
- Use dedicated datastores (VMWare) to avoid sharing disk workloads

Network I/O

- Avoid having multiple high storage I/O VMs on the same physical host
- Insure paravirtualized drivers are installed
- Host server should have 1Gb min 10Gb recommended network adapter

When Requesting a VM

- Request paravirtulaized drivers / VMWare tools to be installed
- Plan CPU and memory requirements and priority
 - Avoid "Cookie Cutter VMs"
- Know the business importance of this database
- Find where the VM is going to be placed and who its neighbors are

Questions/Answers

Thank you!