
The Case for Manual SQL Tuning

November, 2011

©2011 Dan Tow, All Rights Reserved

dantow@singingsql.com

www.singingsql.com

SingingSQL Presents:

Overview

•Assumptions

•What is manual SQL tuning?

•A seemingly simple example

•Scenarios

•The role of manual tuning in solving any scenario

SQL Tuning Assumptions

•Oracle’s Cost-based Optimizer (CBO) does a

perfectly good job on most SQL, requiring no

manual tuning for most SQL.

•The CBO must parse quickly, use the data and

indexes that it has, make assumptions about what it

does not know, and deliver exactly the result that the

SQL calls for.

•On a small fraction of the SQL, the constraints on

the CBO result in a performance problem.

What is Manual SQL Tuning?

•Find SQL worth tuning, ignoring the great majority

that already performs just fine.

•Find the true optimum execution plan (or at least

one you verify is fast enough), manually, without the

CBO’s constraints or assumptions.

•Compare your manually chosen execution plan, and

its resulting performance, with the CBO’s plan and

consider why the CBO did not select your plan, if it

did not.

•Choose a solution that solves the problem.

A Seemingly Simple Example

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

A Seemingly Simple Example

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

All Scenarios: T1 is very large, much more

XXXXXXXXXX poorly cached than the other tables.

F1 T1 F1

F2 T2 T3 F3

F4 T4 T5 F5

Scenario #1

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

T5.CCol5 has 2 values, but the value assigned to :B6

is super-rare, and the other filters are not nearly as

selective, but the CBO plan now drives from the less

selective filters on T4.

F1 T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #1, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5='VeryRareValue'

T5.CCol5 has 2 values, but the value assigned to :B6 is super-rare, and the

other filters are not nearly as selective.

Solution1: :B6 should be hardcoded to the super-rare value,

ideally, and we need a histogram on T5.CCol5. The CBO will

do the right thing once provided with this added data.

F1 T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #2

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3
AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

Neither of the two filters on T4 are very selective by

themselves, but they are highly anti-correlated, so they are

super-rare, together, contrary to the CBO assumption of

statistical independence between filters. As a result, the

optimizer makes the wrong choice to drive from the

moderately-selective filter on T5.

F1 T1 F1

F2 T2 T3 F3

 F4* T4 T5 F5x

Scenario #2, Solution

SELECT /*+ leading(t4) use_nl(t4 t2 t1 t3 t5) */ ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3
AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The filters on T4 are highly anti-correlated, so they are super-rare, together.

Solution2_1: Use hints or a stored outline to force leading

access to T4 and nested-loops to the rest.

F1 T1 F1

F2 T2 T3 F3

 F4* T4 T5 F5*

Scenario #2, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3
AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The filters on T4 are highly anti-correlated, so they are super-rare, together.

Solution2_2: Use dynamic sampling at a higher-than-

default level so Oracle picks up the anti-correlated

conditions at parse time. (This adds cost for every hard

parse of this SQL, though.)

F1 T1 F1

F2 T2 T3 F3

 F4* T4 T5 F5*

Scenario #2, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

--AND T4.CCol4=:B1

AND T4.DCOLX BETWEEN :B2 AND :B3
AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The filters on T4 are highly anti-correlated, so they are super-rare, together.

Solution2_3: Denormalize T4 with a new column

DColX=DECODE(CCol4,'<ValueGiven:B1>',DCol4,NULL),

and replace the T4 filters with DColX BETWEEN :B2 AND

:B3. Consider a histogram and index on DColX. Preferably

use triggers to populate DColX. (In an advanced-enough

version, a functional index could replace DColX.)

F1 T1 F1

F2 T2 T3 F3

 F4* T4 T5 F5*

Scenario #3

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1
AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The only moderately selective conditions are the conditions on

CCol4 and CCol5 on T4 and T5, but neither one of these is

selective enough, by itself, although, together as

independently selective conditions, they reduce the result to a

small number of rows. The SQL is very high-load, justifying

denormalization if necessary to solve the problem.

F1 T1 F1

F2 T2 T3 F3

 F4* T4 T5 F5*

Scenario #3, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T1.CCol4=:B1
AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T1.CCol5=:B6

The only moderately selective conditions are the conditions on CCol4

and CCol5 on T4 and T5, but neither one of these is selective enough,

by itself.

Solution3_1: Denormalize CCol4 and CCol5 to T1, using

triggers to keep the new columns rigorously in sync, and

create an index on T1(CCol4,CCol5) and alter the conditions on

these columns to reference the new columns T1.CCol4 and

T1.CCol5. The CBO will then do the right thing.

F1 xxxxT1 F1,4,5*

F2 T2 T3 F3

 T4 T5

Scenario #3, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T1.CCol4=:B1
AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T1.CCol5=:B6

The only moderately selective conditions are the conditions on CCol4

and CCol5 on T4 and T5, but neither one of these is selective enough,

by itself.

Solution3_2: Discover that the denormalization needed for

Solution3_1 already exists, and use it.

F1 xxxxT1 F1,4,5*

F2 T2 T3 F3

 T4 T5xx

Scenario #3, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1
AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The only moderately selective conditions are the conditions on CCol4

and CCol5 on T4 and T5, but neither one of these is selective enough,

by itself.

Solution3_3: Assuming that not-quite-perfectly-up-to-date data

is OK, consider a materialized view of this 5-way join, including

all the columns this SQL needs, and allow query-rewrite, here.

Index (CCol4, CCol5) on this materialized view, and the CBO

will do the right thing with the existing SQL.

F1 NewMatView F

Scenario #4

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The conditions on CCol3 and CCol5 are highly anticorrelated,

so that the combination of these conditions is highly selective

even though the combination (assuming statistical

independence of filters, as the optimizer does assume) looks

unselective. The filter on CCol4 looks more selective, by itself,

so the optimizer chooses to reach T1 through the wrong query

branch, at much higher runtime.

F1 T1 F1

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #4, Solution

SELECT /*+ leading(t3 t5) use_nl(t3 t5 t1) */ ...
FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The conditions on CCol3 and CCol5 are highly anticorrelated.

Solution4: Force a join order, with hints or with a stored

outline, that begins with a join of T3 and T5, and follows the

join keys, using nested loops, from there. Dynamic sampling

cannot find this anticorrelation. No change at the database

level apart from artificial, incorrect stats can bring the

optimizer to this choice without forcing it.

t3F1 T1 F1

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #5

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

After driving (correctly) to T3 as the leading table, the optimizer

chooses to join to T1 before joining to T5 because a little less logical

I/O is required that way, and the optimizer cost function assumes

(roughly) that all logical I/O is equally likely to result in physical I/O,

In fact, however, T5 is far smaller and better cached than T1, so the

join to T5 first, picking up its useful filter before joining to T1, results

in much less physical I/O and therefore a much faster runtime.

F1 T1 F1

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #5, Solution

SELECT /*+ leading(t3 t5) use_nl(t3 t5 t1) */...
FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

We need T3, T5, T1, but we are getting T3, T1, T5 because the cost

function misestimates relative hit ratios.

Solution5: Force a join order, with hints or with a stored outline, and

force nested loops to join keys, from there. No change at the

database level apart from artificial, incorrect stats can solve this

without overriding the natural optimizer choice, and incorrect stats

would handicap the optimizer when optimizing other SQL, likely

causing more harm than benefit.

F1 T1 F1

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #6

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The only way to reach T1 with low-enough physical I/O is reach it

through the branch from T3 and to pick up the moderately selective

T1 filter on CCol1 at the same time that it follows nested loops from

FKey3, but it has no index on FKey3 at all. :B4 is always set to the

same value, <B4Val>.

F1 *T1 F1*

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #6, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

We need to reach T1 through the not-yet-indexed foreign key and F1 filter

at the same time.

Solution6_1: Create a new index on T1(FKey3,CCol1). This index may be

useful for other queries that will reach T1 through Fkey3, alone, and it will

also achieve the objective of picking up the filter before reaching T1 in this

particular query, but at the cost of a very large new two-column index. If

CCol1 is changed routinely during the life of T1 rows (as for a status

column, for example), maintenance of this index will be expensive.

F1 *T1 F1*

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #6, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

We need to reach T1 through the not-yet-indexed foreign key and F1 filter

at the same time.

Solution6_2: Create a new index on T1(CCol1,FKey3). The index entries

needed for this query will be stored closer together, resulting in better self-

caching during query execution and less physical I/O to this index. If CCol1

is changed routinely during the life of T1 rows, maintenance of this index

will be very expensive, with changes to CCol1 resulting in putting the new

index entry far from the old entry, badly fragmenting the index over time.

F1 *T1 F1*

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #6, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

--AND T1.FKey3=T3.PKey3
AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

--AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

AND DECODE(T1.CCol1,'<B4Val>',T1.FKey3,NULL)=T3.PKey3

We need to reach T1 through the not-yet-indexed foreign key and F1 filter

at the same time.

Solution6_3: Create a new index on

T1(DECODE(CCol1,'<B4Val>',FKey3,NULL)) and replace the T1 join and

filter with AND DECODE(T1.CCol1,'<B4Val>',T1.FKey3,NULL)=T3.PKey3

This index is much more compact and easy to maintain.

F1 *T1 F1*

F2 T2 T3 F3*

 F4 T4 T5 F5*

Scenario #7

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4
AND T3.CCol3=:B5

AND T5.CCol5=:B6

The condition on CCol1 is the correct driving condition, but the

optimizer cannot use the index on CCol1 because :B4 is number-

type, while CCol1 is a varchar2, so there is an implicit type

conversion on CCol1 that disables use of the existing index on

T1.CCol1.

F1 *T1 F1*

F2 T2 T3 F3

 F4 T4 T5 F5

Scenario #7, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4
AND T3.CCol3=:B5

AND T5.CCol5=:B6

The condition on CCol1 has an implicit type conversion disabling an

index.

Solution7_1: Change :B4 to character-type, but watch out for a

subtle change in functionality and consider a new column constraint

on CCol1.

F1 *T1 F1*

F2 T2 T3 F3

 F4 T4 T5 F5

Scenario #7, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4
AND T3.CCol3=:B5

AND T5.CCol5=:B6

The condition on CCol1 has an implicit type conversion disabling an

index.

Solution7_2: Create a new functional index on

T1(to_number(CCol1)). This fixes the problem without change to the

SQL, but it is wasteful since we already have an index on

T1(CCol1), and Solution7_1 requires no new index.

F1 *T1 F1*

F2 T2 T3 F3

 F4 T4 T5 F5

Scenario #8

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3
AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

T1.FKey3 is a varchar2, but T3.PKey3 is number-type and the most

selective filter in the query, by far, is the condition on the indexed

column T5.CCol5. There is already an index on T1(FKey3).

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #8, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=TO_CHAR(T3.PKey3)
AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The join of T1 and T3 has an implicit type conversion that disables

use of the foreign-key index.

Solution8_1: Make the type conversion explicit on the other side,

but note that this subtly changes functionality and may call for a new

column constraint on FKey3.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #8, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3
AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The join of T1 and T3 has an implicit type conversion that disables

use of the foreign-key index.

Solution8_2: Create a new index on T1(TO_NUMBER(FKey3)), but

note that this has functional implications and needs a large new

index that Solution8_1 doesn’t need.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #8, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3
AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The join of T1 and T3 has an implicit type conversion that disables

use of the foreign-key index.

Solution8_3: Change the database design, if possible, to make the

keys type-consistent and migrate to the new design.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #9

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The optimizer already chooses an optimally efficient execution plan.

We are getting a very high rowcount with a minimum number of

logical and physical I/Os per row, already. Performance is still

unacceptable, though, because runtime is very high.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #9, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The plan is already optimal, but returns so many rows it still runs

long.

Solution9_1: Parallelize the query so that the necessary logical and

physical I/O are handled by multiple parallel threads. Watch out for

excessive load spikes, and avoid object parameters that will

parallelize SQL that does not need it with damaging results.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #9, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The plan is already optimal, but returns so many rows it still runs

long.

Solution9_2: Consider whether the users even need to run this

query, if this is an over-broad report that contains more detail than

users will ever need.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #9, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The plan is already optimal, but returns so many rows it still runs

long.

Solution9_3: Consider an application-design change so that this

query is no longer needed or is needed much less often if it serves

some sort of middleware function.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #10

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The optimizer already chooses the optimally efficient execution

plan. We are getting a small rowcount with a minimum number of

logical and physical I/Os per row, already, and the query is already

very fast, but the cumulative load and runtime are unacceptably

high because this runs hundreds of thousands of times/day.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Scenario #10, Solution

SELECT ...

FROM

T1, T2, T3, T4, T5

WHERE T1.FKey2=T2.PKey2

AND T1.FKey3=T3.PKey3

AND T2.FKey4=T4.PKey4

AND T3.FKey5=T5.PKey5

AND T4.CCol4=:B1

AND T4.DCOL4 BETWEEN :B2 AND :B3

AND T1.CCol1=:B4

AND T3.CCol3=:B5

AND T5.CCol5=:B6

The plan is already optimal and fast, but this runs very frequently and is therefore still

high-load.

Solution10: Eliminate the query from the application or to run it

much less often. If it is running in a loop, for each row from a parent

query, fold the functionality of the child query into the parent,

perhaps. If it serves some sort of monitor function, consider whether

the monitor could fire far less often, with longer sleeps between

searches.

F1 *T1 F1

F2 T2 T3 F3

 F4 T4 T5 F5*

Observations about the Scenarios

•The CBO already delivered the best plan possible

at parse time, in most scenarios.

•Where the CBO failed to deliver the best plan

possible at parse time, it had good reason, given

its limited information.

•Most example scenarios (8 out of 10) can be

solved without overriding the CBO, but all

scenarios still require action that the CBO

cannot take without help.

More Observations

•The 10 examples are a small sample of the

possible scenarios, especially if we looked at more

complex SQL.

•Problems often combine, with SQL having

multiple issues at a time – solving one issue

doesn’t necessarily solve the whole problem.

•The solutions to several of the scenarios are

expensive, so we need to be sure of the right

answer before taking action!

The role of manual tuning in

solving any scenario

•Is the optimizer choosing the best plan?

•If not, why not?

•How much worse is the current plan?

•How can we get the best plan, and at what cost?

•What is the best plan, and if the CBO

isn’t finding it, is there any better way

to find it than manual tuning?!?

And to answer all of the above…

Questions?

