
Sane SAN 2010
James Morle, Scale Abilities Ltd

1

1. Introduction

It has been ten years since I wrote my original whitepaper, Sane SAN. Iʼll refer to that paper as Sane SAN
2000 from now onwards to keep the terminology clear. Whilst a great deal has changed since that
whitepaper, many things remain pretty much the same as they were at the start of the millennium. That
situation is changing with emerging technologies, and this will mark revolutionary changes in the way we use
persistent storage with our databases.

2. Think Differently About Storage

I have a single goal with this paper: To get you to think differently about storage. Storage has increasingly
become a ʻblack boxʼ; the domain of a different team, an independent piece of hardware that should be
revered. The storage array is so expensive and so mission critical that it has become the Emperorʼs New
Clothes: Nobody will say anything bad about it for fear of looking foolish themselves. Some database
administrators would even admit to being a little scared about mentioning anything negative about this
intimidating monolith. To those DBAs I would say: You are not alone!
I want to change some of this right now by sharing a significant observation that I have repeatedly made over
the last ten years of working on storage platforms of every possible shape and size:

Storage Performance Has Been Terrible For Years

It would appear that I am somewhat late with this revelation:
“I/O certainly has been lagging in the last decade” - Seymour Cray, 1976
There are many reasons why it is so poor. The fact that the magnetic disk is based on physical moving parts
is certainly a big factor, but when that is combined with over-stretched CPUs in the storage array and
colliding workloads across disparate systems then it is no wonder that things donʼt quite perform as well as
they might. The storage arrays that start off running with reasonable performance also generally degrade
very quickly.
So why is this happening - why do storage arrays always end up running so slowly? The answer is simple:
Storage arrays are complex. When things become complex, they become difficult to understand, particularly
for those not working with them on a daily basis. When things become difficult to understand, itʼs human
nature to look for a shortcut, and that shortcut is available in force with storage: “The Best Practice”.
“Best Practice” is really where it all goes wrong with storage, and it is because the arrays get so complex that
best practices are applied with such fervour. How do you know when something is really and truly the “best”
practice rather than just “standard” practice?
Some of these practices make perfect sense. The Stripe and Mirror Everything (SAME 2000) methodology
as used by default in Oracleʼs ASM makes a lot of sense1, for example. Itʼs not perfect for everything, but it is
certainly good enough for most requirements. Crucially, SAME dramatically reduces the complexity of the
storage layout.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 2

1 Technically it is better to use MASE - Mirror and Stripe Everything, in that order. I guess it didnʼt sound so
snappy as SAME, though.

The trick is to build something that is as simple as possible, and then apply the “Right Practices” for the job
in hand. And if you donʼt like the rules, cheat! If a “Best Practice” does not work for your system, you know
best - no Best Practice is mandatory.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 3

3. Sane SAN 2000 - A Review

Letʼs review the main observations and points of Sane SAN 2000 ([SANE 2000]) and go on to see if any of
them are still valid in 2010 and whether any of them might be candidates for Right Practices moving
forwards.
When [SANE 2000] was written, SAN and NAS devices were relatively new. In fact, the paper even had to
explain what a NAS device actually is. In the paper I suggest that SAN-based storage arrays had a slight
edge on NAS devices in terms of mission critical performance. Performance of both devices has dramatically
increased since then, so maybe the balance of power has changed. Letʼs see later on in the paper.
[SANE 2000] also pointed out that drives were getting progressively slower over time when measuring IOPs
per gigabyte. Capacity was increasing quickly, but performance was not increasing at the same rate. We will
recalculate the relative performance of storage within this paper and evaluate the current state of play.
The main point of [SANE 2000] was to recommend the adoption of MicroSANs. The proposal was to cordon
off discrete sets of channels and drives in the storage array to ensure sufficient dedicated spindles for the
IOPs requirement of the database. The emphasis with the MicroSAN was to provide a consistent and
guaranteed minimum level of service, regardless of other workloads in the array. The counter argument to
this is that it is better to spread everything as wide as possible to maximise resources. Again, weʼll evaluate
the wisdom of the MicroSAN later in this paper.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 4

4. So Whatʼs New?

Ten years have passed since the writing of [SANE 2000] and much has changed. Or has it? Until very
recently, the only changes to mainstream storage arrays have been:

• More/faster processors in the array

• Better backplanes

• Uprated connectivity bandwidth

• Larger capacity drives

• Support for slow SATA drives

• Moderately faster drives
Looking at that list, it seems to me that the storage industry has been focused on incremental improvement -
nobody in the storage array market has been coming up with anything revolutionary. Storage arrays are
basically the same as in 2000, but a bit quicker. The following chart [HENN 2007] shows the ʻaccess time
gapʼ between DRAM and disk storage between 1980 and 2005:

This chart shows that, when viewed with a logarithmic scale, neither the performance of DRAM nor disk have
actually changed much at all over time. Itʼs not surprising - there are limitations of physics involved here that
will prevent a performance improvement of multiple orders of magnitude. The fact is that magnetic storage
can never close this gap between DRAM speed and storage speed.

Thanks to the huge increase in storage capacity, and some dubious advertising about efficient sharing of
information by storing it in one array, we have now gone from having perhaps two or three databases in a ten
shelf storage array to being able to store every bit and byte of data in the enterprise with the same number of
shelves. Things have gotten worse!
In very recent times the situation has started to get much more interesting, and it all started with the iPod.

Semiconductor-based Storage
Semiconductor-based storage, or Solid State Disk, has been around for many, many years - there is nothing
new about it at all. The part that is new, and the part that was driven by the iPod, is the commoditisation of

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 5

flash memory components, and the subsequent shift in affordability. There are various types of SSD, the two
main ones being flash memory and DRAM memory as they are the mainstream technologies of today. There
are other technologies in the wings, though, and what everybody refers to today as ʻSSDʼ (which is flash
memory) can only really be thought of as “version 1.0” of solid-state storage. There has been much written
about the advantages of SSD by myself and others so I wonʼt go into all that now, except to highlight the two
main features, both of which are a result of eliminating the moving parts of a hard drive:

• It is much more resistant to contention issues

• It is much better at random I/O (no seek time)
I donʼt want to suggest that SSD is contention-free — flash memory has all manner of blocking operations,
particularly when writes are taking place. DRAM is pretty much contention-free, though, and can shoulder a
good deal of the potential contention burden when used in conjunction with flash memory.
In a recent blog post [BLOG 001] I made the somewhat bold prediction that SSD, specifically flash memory
for now, will hit price parity with magnetic disk within 3-4 years. This is a really big deal, because it means
that the barriers to entry are completely eliminated for wide-spread adoption of SSD. If the hardware/
software interface can make the best of this change, it will be a major turning point in database performance.
It also means that the storage vendors will have to, for the first time, be slaves to Mooreʼs Law, which is
something that their current lengthy product development cycles are not used to.

10 Gigabit Ethernet, Good NFS Clients and Direct NFS
One of the age-old objections to deployment of storage using the NFS protocol has been reliability and
performance when compared to Fibre Channel. This is something that has not only gone away, but has
actually reversed - Ethernet-based storage arrays now have much greater bandwidth interconnects than
their Fibre Channel cousins. The old hangovers of unreliable NFS have now been eliminated by decent NFS
client software including Direct NFS, and through the deployment of multipath I/O for IP networks.
The biggest advantage of all with NFS deployments is the simplicity. Although an Ethernet-based storage
network needs to be thought out just as much as a Fibre Channel SAN, once it is in place it is much less
interdependent on other components in the stack to work properly. Anybody that has tried to keep Operating
System, HBA drivers, multipath drivers, switch firmware and storage array firmware at compatible levels
through an upgrade will understand this complexity very well.

“Fast Enough” Arrays
The incremental improvement in storage arrays hasnʼt been entirely useless. The capability of even a mid-
range storage array is now more than adequate for a great many database requirements, particularly when
deployed in conjunction with a generous amount of host memory for caching at the server level. Combined
with the simplicity of an NFS-based deployment, these kind of arrays really make sense for a lot of
architectural requirements. In the same way that you donʼt use finest Sherry for cooking, it doesnʼt make
sense to implement a massively complex storage array if your needs can be serviced using a non-complex
NFS-based mid-range storage array. Like object-oriented programmers rely upon faster and faster CPUs to
counterbalance increasingly abstract code, we can use the improved performance of simple technology to
reduce complexity for our requirements.

Speed of Disk Calculations 2010
Over the years I occasionally recalculate an important number for determining the relative performance of
hard drives. The number that I calculate is the number of IOPs per 100GB, as this shows the performance
improvement over time relative to the capacity increase. This is an important number because relative
performance is the single most difficult concept to explain to the people that control the budget. They can

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 6

understand capacity, but they canʼt really get a firm grasp on the performance metrics. IOPs per 100GB give
that performance metric an index number.
For this paper I have taken my previous results and combined them with that of the STEC ZeusIOPS SSD
drive, which is the drive type used in the EMC DMX4 range. This is not the lowest cost semiconductor-based
storage out there, and is a fusion of DRAM and flash-based storage, but the 3.5” hard disk-like packaging
makes it easy to compare against the magnetic disk drives.

Seagate
Barracuda 4LP

(1994)

Seagate
Cheetah 73LP

(2001)

Seagate Cheetah
15K.4 73GB

(2005)

STEC ZeusIOPS
Enterprise SSD

(2010)

Capacity

Rotation Speed

Rotational Delay (avg,
½ rotation)

Time to read 32KB
(avg, based upon avg

bytes/track)

Seek Time (avg)

Total time for single
32KB I/O

I/Os per second
(conservative)

2.16GB 73.4GB 73.4 GB 800GB

7200rpm 10000rpm 15000rpm N/A

4ms 3ms 2ms N/A

3ms 1ms 0ms N/A

9ms 5ms 4ms N/A

16ms 8ms 6ms 0.025ms

62 119 172 40,000

I/Os per 100GB 2,870 162 234 5,000

There are a couple of things to note in this chart. First, the relative performance of drives has decreased
between 1994 and 2001 by a factor of 17.7. This fact nicely summarises the battles that many DBAs have
had with their management during that period. Second, the 73GB drive from 2005 was chosen deliberately to
be the same size as the 73GB drive from 2001 so that it is possible to see that there has indeed been a
performance improvement over that period — approximately 40%. This is a decent enough change in itself,
but itʼs still very much within the realms of evolutionary improvement rather than the revolution required to
significantly close the ʻaccess time gapʼ.
When we introduce the STEC drive, the situation changes considerably. I have conservatively used the write
IOPs number for for this comparison, and I have ignored the fact that, even with the large DRAM buffer, this
drive will probably suffer to some degree from the infamous spikes in write latency associated with flash
memory devices (known as the “write cliff”). I have also taken the largest capacity drive available from STEC,
which somewhat reduces the number of IOPs per 100GB just because it is 10x larger than the largest hard
drive in the comparison. Despite all this conservatism, the STEC still delivers 5,000 IOPs per 100GB, which
is twice as good as the scenario modelled on the old 1994 Barracuda drive, and with significantly lower
latency per I/O.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 7

Letʼs plot the performance of the STEC on the chart from earlier:

The star representing the STEC SSD is placed on the chart by hand, approximately in the correct location in
terms of access time. I have not paid much attention to the cost axis, but it is very roughly correct as far as I
can determine. This shows that the current generation of SSD devices have very successfully closed the
access time gap. As the pricing drops further, the cost/GB will eventually become lower than even magnetic
media — this is a very significant event in database processing.
And finally: There is one attribute that I did not include in the IOPs calculation, mostly because it was
insignificant until now. That attribute is the latency of the interface between drive and host — all figures are
based purely upon the performance of the physical drive. This is now a significant factor, as we shall see
later in this paper, and so future charts will have this aspect included!

Infiniband Suddenly Makes Sense
Inifiniband (IB) has been around for quite a while now. It was always positioned primarily as a way of
interconnecting cluster nodes, and has gained a large degree of acceptance in the High Performance
Computing (HPC) cluster2 market. It also makes a decent Oracle RAC interconnect, but most RAC users
donʼt really need the latency uplift on the interconnect or the bandwidth offered by IB. So the uptake in
database computing has not been huge, but now it is about to become mainstream.
This doesnʼt quite qualify as mainstream yet, but to my knowledge the adoption of IB in the Exadata platform
is the first major use of the technology in an easily available commercial database platform. Notably, the IB
deployment in Exadata is for both the RAC interconnect and the storage network, and as this is a storage
paper thatʼs the part we are interested in.
Why is IB so important now, considering that I suggested earlier that Ethernet is a great solution for storage
networking? The answer all lies in latency, specifically now that we are on the verge of a “latency revolution”
as SSD becomes mainstream. Consider the following latency numbers:

• Disk Read Latency: 6ms (6000μs)

• SSD Read Latency: 25μs

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 8

2 HPC clusters are the very large compute-only clusters used for primarily for scientific research

• Fibre Channel Round-trip Latency: 10-20μs

• Infiniband Round-trip Latency: 1μs

If we plot those numbers onto a few pie charts, it becomes clear what the problem is. First of all, letʼs look at
the latencies for a typical present-day storage array:

There is no problem evident when using Fibre Channel in this configuration; the disk latencies are so high
that the Fibre Channel latency is minimal. There would be no benefit at all seen from using IB in this
configuration from a latency standpoint, though there could still be one for reasons of bandwidth.

Now letʼs look at some I/O to an SSD drive over Fibre Channel, and see what happens to the relative
proportions of latencies:

Disk Read
99.7%

Fibre Channel RTT
0.3%

Disk Read Latencies Over Fibre Channel

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 9

As you can clearly see, the overhead of the Fibre Channel latency is now a significant factor in the total
latency of the read operation. Please note that the Fibre Channel time has not increased, but rather the
proportion of total I/O time has increased because the I/O time has reduced so much.
That overhead is probably not acceptable, so letʼs look at I/O to the SSDs via IB:

The application of Infiniband makes sense for this reason: It returns the overhead of the interconnect back to
the relative levels we are used to with Fibre Channel and magnetic disk.

SSD Read
55.6%

Fibre Channel RTT
44.4%

SSD Read Latencies Over Fibre Channel

SSD Read
96.2%

Infiniband
3.8%

SSD Read Latencies Over Infiniband

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 10

Host-based Mirroring is Back
Host-based mirroring has made a re-appearance in the form of Oracleʼs Automatic Storage Management
(ASM). Host-based mirroring very much went out of fashion in the late 1990s with the availability of hardware
mirroring inside the storage array, but now needs re-evaluating. It became unfashionable largely because of
a perceived overhead of host-based mirroring and because of some poor implementations of mirroring
software leaving a sour taste in the mouth.
The complex support matrix also caused some headaches and, all-in-all, I guess people just felt it was easier
to do it inside the shiny new storage array. I believe all of this has changed with ASM, and there are quite a
few reasons to reconsider host-based mirroring in the form of ASM:

• It removes layers in the software stack, reducing complexity and improving reliability and diagnostics

• It gives the DBA direct visibility of the storage and its protection

• There is no performance penalty (writes are performed asynchronously in parallel)

• It enables the use of heterogenous storage on either side of the mirror

• Itʼs free

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 11

5. Right Practice: Evaluate Your Storage Needs

In this part of the paper I will discuss various topics to help you evaluate the profile of your workload in a bid
for you to understand which aspects of storage are important for your system.

Am I Latency Sensitive or Bandwidth Sensitive? (or both?)
Database applications have varying levels of sensitivity to both latency and bandwidth. Itʼs important to
understand where your system sits in this respect, because without this understanding it is impossible to
implement the right storage platform for your needs. Data warehouse workloads tend to be bandwidth-
sensitive, in that the query response times are adversely affected by a drop in bandwidth. Transactional
workloads tend to be latency-sensitive, in that user response times are adversely affected by increased
latency. Why does this matter? Letʼs see.
For a bandwidth-sensitive application, I/O requests are made in big chunks of, say, 1MB in size or greater.
The amount of time it takes that data to be returned to the database is largely a function of the bandwidth of
the array and the storage network. The actual service time might be relatively low for the request but, if there
is insufficient bandwidth available, the request may queue. For example, letʼs imagine 100 concurrent
requests for 1MB: If each request takes 100ms to service by the array, and the array can service 100
requests concurrently, we can perform 100 x 1MB=100MB every 100ms, or 1000MB per second. However, if
there is only a single 2Gbps pipe between the server and the storage we can only physically transport
approximately 200MB/s down the cable. This restriction in bandwidth means that the requests are effectively
taking 500ms each and the query will take longer to complete 3. If we add further 2Gbps adapters to this
system we will see a continual improvement in query response time until there are a total of five adapters, at
which point the system can deliver the full 1000MB/s. Conversely, if we improve the I/O response time to
50ms per I/O while still running off one 2Gbps adapter we will see nil effect on performance because we
remain bottlenecked on bandwidth.
For a latency-sensitive application I/O requests tend to be small. For example, a request for a single leaf
block of an index that was not found in the cache. This request might be only 4KB in size, but we might need
a couple of hundred of these serviced sequentially during the query execution in order to return the response
to the user. If these 200 sequential I/O requests take an average of 4ms each we will complete the query in
4ms x 200=800ms. If the requests take take longer, say 10ms, we are no longer providing sub-second
response times to the user (10ms x 200=2000ms). This is a latency-sensitive application, it is all about how
quickly small requests can be serviced. Letʼs calculate the bandwidth of this application to make the
distinction clear: If we were to execute 4KB reads sequentially in a tight loop, each returning in 5ms, we
could perform 200 reads per second. 200 reads per second is only 800KB/s bandwidth, very different to the
previous example. If we add further HBAs to this system there will be nil effect on performance, because we
are only using a fraction of the current bandwidth provision. However, if we reduce the latency of our reads to
2ms we will see an increase in IOPs to 500 reads per second.
Of course, many systems are a composite of both types of workload, but it is important to know how each
type of request is affected by the latency and the bandwidth of the system.

What is Busy?
With reference back to “Fast Enough” Arrays, itʼs worth having a reality check on what actually constitutes a
ʻbusyʼ storage system these days. Many users are convinced that they have a busy I/O system when the
reality is that they have quite a modest I/O requirement that does not require all the esoteric complexity of a
high-end storage solution. Letʼs lay out some ballpark numbers:

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 12

3 I have ignored the effects of queuing to keep this example simplistic.

• Busy in IOPs terms: over 10,000 I/Os per second

• Busy in bandwidth terms: over 500MB/s
If your I/O requirement is less than both of these numbers, you probably need to have a careful think about
the storage architecture that best fits your purpose. Why not make it simpler, and lower cost?

How Fast is ʻFastʼ?
It is useful to have a bunch of ʻmust haveʼ numbers in the back of your mind when talking about storage
performance. Weʼve all been told by storage administrators that “15ms is an acceptable average read time”,
have we not? Well it isnʼt, not by anyoneʼs imagination, and running a database on storage that poor will
present all sorts of challenges.
OK, so what are acceptable latency numbers for todayʼs hardware? I like to use the following:

• Latency Numbers

• 6-8ms or less single block random reads

• 1-2ms or less small writes, such as log writes

• Bandwidth Numbers

• 40MB/s or greater full table scan (serial, 1MB reads)

• 40MB/s or greater redo log write bandwidth

If I encounter an unfamiliar storage implementation, and the basic statistics are very far off these, then there
is probably something that needs looking into. Itʼs possible, of course, that the bandwidth numbers are not
being met because the workload is not requesting that much throughput, so itʼs important to be context
sensitive when reviewing the bandwidth numbers.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 13

6. The Software/Hardware Interface

With the ʻlatency revolutionʼ upon us, it is time to re-evaluate how we store and access data. Software is
primarily written with a specific hardware configuration in mind. If this hardware evolves over time, the
software can normally be tweaked to work well with this new evolution. When revolutionary changes take
place, however, it normally implies some kind of fundamental alteration to the software to optimally take
advantage of the hardware change. For example, moving from a uniprocessor to a multiprocessor
architecture implies significant change to an operating system kernel because data can be modified by more
than one engine at a time. The assumptions about locking made for the uniprocessor simply donʼt work any
more. The same is true when the ratios between key layers of the memory hierarchy takes place— Non-
Uniform Memory Access (NUMA) was the last time that happened, where different portions of system
memory have different access latencies dependent upon physical location in the system. Operating System
and database software are still being modified to make the best of this new architecture which is the default
for practically all servers these days. Now the latency ratios have changed again with the adoption of SSD.

Reviewing the Memory Hierarchy
Memory hierarchy is the name given to the relationships in latency between different layers of the server
memory architecture, including ʻpersistent memory,ʼ also know as storage. The relative ratios in the following
table are calculated for a recent Intel Nehalem processor, as follows:

Component Latency (ns)
Registers
Internal Caches
Local Memory
Remote Memory
IB RDMA
Fibre Channel
SSD Read
Disk Read

0.30
5.00

33.00
50.00

1,000.00
20,000.00
25,000.00

6,000,000.00

When plotting these on a logarithmic chart, a very clear jump in latency is evident at the storage tier, which is
defined as the sum of storage network latency and disk read latency:

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 14

Conversely, when plotting the SSD storage (using IB as the interconnect), the trend is almost linear (albeit on
a logarithmic chart), with no sharp rise for the storage latency:

This is really just another way at looking at the ʻaccess time gapʼ defined in [HENN 2007], but applied to the
whole memory hierarchy. It shows that the memory hierarchy has moved from a span of eight orders of
magnitude to only five, even when looking all the way back to the registers.

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

Registers Internal Caches Local Memory Remote Memory Storage

Traditional Storage Array

La
te

nc
y

in
 N

an
os

ec
on

d
s

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

Registers Internal Caches Local Memory Remote Memory Storage

SSD Storage Over Infiniband

La
te

nc
y

in
 N

an
os

ec
on

d
s

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 15

Effects On Software Architecture
This three orders of magnitude reduction in latency has an implication on the software architecture,
specifically in terms of when it is algorithmically optimal to move data between memory and storage. Letʼs
consider caching, for example. In current disk caching algorithms, the break point is simple: Going to disk
should be avoided at all costs. The latency to go to disk is so incredibly high (a factor of 160,000 compared
to even remote memory access) that it makes sense to keep as much in memory as possible. Moving to
SSD brings this cost down to a relatively tiny 500x. Though it is still clearly an advantage to get a memory-
based cache hit, the advantage is substantially reduced compared to magnetic storage. It is reduced
sufficiently that it might make more sense to have, for example, a proportion of free buffers reserved in the
cache at any one time, to save the cost of creating space for urgently required buffers. Or to speculatively fill
more of the cache with buffer that might be needed, with the knowledge that the cache management cost of
ʻgetting it wrongʼ is not terribly high. Or, to really push it out there, what if it now makes sense to only cache
index blocks and always go to SSD for the data blocks?

The ability to maximise the gain of low-latency storage can only be maximised through a hardware and
software solution. The winners in the near future will be those that successfully integrate the two and
implement algorithms that consider the reduced latency.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 16

7. Things To Think About

Fibre Channel is History
As shown in the section on Infiniband, Fibre Channel imposes an unacceptable overhead on low-latency
storage, and also implies significant complexity. Granted, there is a great deal of Fibre Channel out there,
and it forms the backbone of most datacentres, but that does not mean that it is still a current product. At one
stage datacentres used to be full of serial TTY lines and 10base-5 Ethernet, but they are not anymore. The
same is true of Fibre Channel. I advocate a two tier storage network for the future: Infiniband for latency-
sensitive applications, and 10Gbps Ethernet for other requirements, including the general inter-host fabric.
This pattern also trickles down into my thoughts on Storage Arrays...

“Storage Arrays” Are History
Recent developments make me believe that the conventional storage array will soon be a thing of the past.
Storage arrays are essentially expensive high-latency devices that are made unmanageably complex
through aggressive asset sweating and extreme cohabitation by too many applications.
The cohabitation problem is a strange one: Why do we put so many systemsʼ storage onto a single storage
array? Whatʼs the benefit here? The storage vendors will explain it thus:
1. All applications can access the aggregate bandwidth of all other applications
2. More efficient use of storage and other resources

3. Simple management because itʼs one box
4. Enhanced sharing of information
Letʼs start at the bottom: Sharing of information requires hosts, potentially even multiple tiers of hosts. If
hosts are required, there is no advantage having the information on the same storage array. Next: Simple
management is not the domain of a single array, it is a software problem. There is no reason that multiple
arrays should be more difficult to manage than a single device with thousands of attached drives. Items (1)
and (2) are interesting. On the one hand I can see that advantage, but on the other hand I have also seen
the myriad problems associated with doing exactly that. If all applications have access to all the resources of
the other applications, isnʼt that an unmanageable, anarchic mess? When an advantage becomes a
disadvantage, is it really worth having?

The “asset sweating” issue needs to be taken in hand with the “expensive” attribute. The only reason that
storage arrays are so aggressively filled to the brim is that they are so expensive in the first place. Would we
really do that if the array were cheap?
The latency issue is a big one. Storage arrays are built from the ground up to allow access to slow magnetic
disk. Now that we have low latency storage devices, the current crop of storage arrays just serve as another
bottleneck between the host and the storage (in addition to their Fibre Channel interfaces). In the same way
that software needs to be redesigned to work with SSDs, storage arrays need to be redesigned from scratch
if they are to work optimally with these devices. Not only that, but the development cycles of the storage
vendors will now have to run at the rate determined by Mooreʼs Law instead of the more sedate pace they
are used to with magnetic storage.

Even if the array were redesigned, it may not be enough. General-purpose storage arrays will still be trying
to be all things to all men. That philosophy may not work too well in the light of specialist products such as
Exadata which are successfully able to combine low-latency storage devices and high bandwidth data
scanning directly into the appropriate tier of the database kernel.
Did I mention that storage arrays are expensive? This means they are also not the right solution for ʻweb
scaleʼ architectures, which are designed for failure from the outset and use cheap, commodity parts.

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 17

At least they are reliable though, right? Not really — storage arrays are still a single-box solution and they do
fail. The impact of these failures, particularly if there is wide-scale data loss, is just very large.
Another way to look at those last two points (expensive and unreliable) is to address the underlying
requirement a different way. Instead of one very expensive, fully-redundant storage array that still fails, why
not replace it with two or more cheaper storage platforms in conjunction with host-based mirroring via ASM?
Admittedly ASM only reads from the ʻpreferredʼ side of the mirror, but how about making that primary side an
SSD (for performance) and the other side traditional disk (for redundancy)? More redundancy and more
performance for less money than a current storage array.
I think that the storage array will always be with us in some form — we must have external storage to protect
against host failure — but I think the ground has moved and the array must move with it.

The Return of the MicroSAN
In [SANE 2000] I advocated the use of a MicroSAN, a private area within the SAN, to ensure performance
and reliability for each application/database. I still think thatʼs a good idea, but now I am retreating from the
recommendation to have it residing inside a big storage array — I just donʼt see the advantage of having the
big storage array in the first place. If you donʼt gain advantage of having all the data in one array, you should
not subject yourself to the associated challenges. Why not evaluate each of the requirements and decide
where they should reside?
A large number of database requirements could just be easily fulfilled using NAS devices, using NFS, over
10Gbps Ethernet (or even 1Gbps Ethernet for small requirements). I think that NAS makes a great deal more
sense than a Fibre Channel storage array, because the administration is so much easier and the
performance is more than adequate for a large percentage of database needs. NAS devices can be easily
deployed and scaled by having a number of smaller units rather than a very large single device.
If you have a workload that is either high-bandwidth or requires low latency, then the argument for a
MicroSAN becomes even stronger. It makes no sense to share resources when the criticality of the system is
so high. In the past you may have dedicated a whole storage array for such a purpose, but itʼs not the right
way to do it anymore, for the many reasons mentioned in this paper. Perhaps Exadata is the right MicroSAN
for your requirement — it is even straightforward to implement multiple MicroSANs in one Database Machine
system after all. Or perhaps the most appropriate solution is to build something with Infiniband-attached
SSDs, even if it is only as one side of an ASM mirror as mentioned earlier?

Conclusion
Hopefully this paper has highlighted some of the more interesting topics in the world of database storage.
Storage has been too complex for quite a while now, but now we have a chance to strip back some of that
complexity and to build much higher performance storage solutions than we are used to. There is certain to
be an amazing amount of change in this area of the market over the next few years, particularly when SSD
technology approaches comparable costs to magnetic storage. Now is the time to start thinking about
strategies for how future databases should be deployed.

About The Author
James Morle is the founder of Scale Abilities Ltd, a full-stack Oracle consulting company based in the UK.
He has over 20 years experience working on some of the worldʼs largest and most complex Oracle-based
systems. He is the author of Scaling Oracle8i, co-author of Oracle Insights, co-founder of the OakTable
Network and an Oracle ACE Director. He can be reached by email on James.Morle@scaleabilities.co.uk

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 18

8. Bibliography

[SAME 2000] - http://www.oracle.com/technology/deploy/availability/pdf/oow2000_same.pdf
[SANE 2000] - http://www.scaleabilities.co.uk/whitepapers/Sane_SAN_WP_Morle.pdf

[BLOG 0001] - http://jamesmorle.wordpress.com/2010/05/29/flash-storage-will-be-cheap-the-end-of-the-
world-is-nigh/
[HENN 2007] - Page 359, Computer Architecture: A Quantitive Approach, 4th Edition, John L Hennessy and
David A Patterson. First published 1990. Copyright Elsevier Press 2007 ISBN-13 978-0-12-370490-0

Sane Sane 2010 - © Scale Abilities Ltd 2010

! !
Page 19

http://www.oracle.com/technology/deploy/availability/pdf/oow2000_same.pdf
http://www.oracle.com/technology/deploy/availability/pdf/oow2000_same.pdf
http://www.scaleabilities.co.uk/whitepapers/Sane_SAN_WP_Morle.pdf
http://www.scaleabilities.co.uk/whitepapers/Sane_SAN_WP_Morle.pdf
http://jamesmorle.wordpress.com/2010/05/29/flash-storage-will-be-cheap-the-end-of-the-world-is-nigh/
http://jamesmorle.wordpress.com/2010/05/29/flash-storage-will-be-cheap-the-end-of-the-world-is-nigh/
http://jamesmorle.wordpress.com/2010/05/29/flash-storage-will-be-cheap-the-end-of-the-world-is-nigh/
http://jamesmorle.wordpress.com/2010/05/29/flash-storage-will-be-cheap-the-end-of-the-world-is-nigh/

