Capacity Management for Oracle Database Machine Exadata v2

Dr. Boris Zibitsker, BEZ Systems

NOCOUG 2010
About Author

Dr. Boris Zibitsker, Chairman, CTO, *BEZ Systems.*

- Boris and his colleagues developed modeling technology supporting multi-tier distributed systems based on Oracle RAC, Teradata, DB2, and SQL Server. Boris consults, and speaks frequently on this topic at many conferences across the globe.
Outline

• Overview of Oracle Database Machine V2 architecture
• Capacity management challenges for DB Machine
• Role of predictive analytics
• How to justify strategic capacity planning decisions
• How to justify tactical performance management actions
• How to justify operational workload management actions
• Summary
Oracle DB Machine Exadata v2 Architecture
Massively Parallel Grid

RAC DB Server Grid

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8

InfiniBand Switch/Network 40 Gb/sec

Exadata Cell 1
Flash Cache

Exadata Cell 2
Flash Cache

Exadata Cell 3
Flash Cache

Exadata Cell 14
Flash Cache

Exadata Storage Server Grid

Smart Scans
Hybrid Columnar Compression
Storage Indexes
Flash Cache

Exadata Cell Disk Storage Capacity:
- 12 x 600 GB SAS disks (7.2 TB/cell @ 100 TB total)
- 12 x 2TB SATA disks (24 TB/cell @ 336 TB total)
- 4 x 96 GB Sun Flash Cards (384GB/cell @ total 5TB)
Capacity Management Challenges for DB Machine

- Data collection
- Workload characterization
- How to set realistic SLO
- Performance prediction
- How to justify DB Machine
- How to justify server consolidation
- What will be the impact of new application implementation
- How to justify
 - strategic capacity planning decisions
 - tactical performance management actions
 - operational workload management actions

OLTP, DW, ETL, Arch, New Appl.
Response Time, Throughput and Cost Affect Capacity Management Decisions

- RAC CPU Wait
- RAC CPU Service
- RAC Delay
- InfiniBand CPU Service
- Exadata CPU Wait
- Exadata CPU Service
- Exadata Flash Cash RT
- Exadata Disk Wait
- Exadata Disk Service

How do Smart Scan, Columnar Compression, Flash Cache affect the response time of each workload?

What should be done proactively to support acceptable response time and throughput for each workload?
Response Time Depends on Many Factors, including Arrival Rate of Requests and Server Utilization

- Utilization of the server depends on arrival rate of requests and time required to serve an average request
- Response time of the average request depends on the service time and server utilization
- When arrival rate and server utilization are low then time waiting for service is low and the response time is equal to service time
- When workload activity is growing it increases contention for the server and significantly increases the response time
- How can you manage if you do not know what will be an impact of expected growth?

![Graph showing the relationship between arrival rate, response time, constant service time, and variable queueing time.](image-url)
How to Decide When and What Should be changed to Support SLO for each Workload?

- Gut feelings
- Rules of thumb
- Benchmarks
- Regression analysis
- Analytical models

![Graph showing Arrival rate vs. Response Time with SLO as a benchmark]
Simplified Analytical Model of the Database Machine

Multiple Workloads With Different Profiles & SLOs

Client

Arriving Requests

Users

75

Max?

15

60

n

Active Sessions

RAC DB Server Grid

Rejected Requests

CPU

Memory

Infiniband Switch Network

Exadata Storage Server Grid

50

Max?

25

1

2

n

Active Sessions

Rejected Requests

CPU

Flash

Disk

- Up to 8 servers
- 2 Intel quad-core Xeons each
- 14 storage servers
- 100 TB raw SAS or 336 TB raw SATA disk
- 4 x 96GB PCI Express Flash Cards per Exadata Server
- 5TB+ flash storage

© Boris Zibitsker
Predictive Analytics for IT
Input and Output of Modeling and Optimization

- Workloads
- Hardware
- Software
- SLAs

Optimization

Modeling

Plan

Options

What if?

What is the best decision?
Case Study

How to justify capacity planning, performance management and workload management decisions to support workloads’ SLOs effectively?

1. What will be the impact of workload growth, and when will the current system be out of capacity?
2. What will be the impact of implementing Oracle DB Machine v2?
3. What will be the impact of hardware upgrade?
4. What will be the impact of performance tuning?
5. What will be the impact of changing workload concurrency?
6. What will be the impact of changing workload priority?
7. What will be the impact of new application?
8. What will be the impact of limiting CPU utilization?
How Will Workload and Database Size Growth Affect Performance of Each Workload in Current Multi-tier Distributed Environment

Predicted Relative Response Time

Predicted Relative Throughput
How Will Server Consolidation on Oracle DB Machine Affect Each Workload’s Performance?

Current Multi-tier Distributed System with OLTP & DataWarehouse workloads

© Boris Zibitsker
Exadata Smart Scan Reduces Volume of Data Returned to Server

Traditional Scan Processing

1. SELECT customer_name
 FROM calls
 WHERE amount > 200;

2. Table Extents Identified

3. I/Os Issued

4. DB Host reduces terabyte of data to 1000 customer names that are returned to client

5. Rows Returned

Exadata Smart Scan Processing

1. SELECT
 customer_name
 FROM calls
 WHERE amount > 200;

2. Smart Scan Constructed And Sent To Cells

3. Smart Scan identifies rows and columns within terabyte table that match request

4. Consolidated Result Set Built From All Cells

5. 2MB of data returned to server

6. Rows Returned
How will Smart Scan Reduce Volume of Data Returned to Each Server by each Workload?

- Smart scan will have different impact on volume of data send to RAC server
- We will use models to predict how smart scan will affect the response time and throughput for each workload

<table>
<thead>
<tr>
<th>Mb/SQL Request</th>
<th>Database size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Scan Processing</td>
<td>OLTP (1 – 1.5)</td>
</tr>
<tr>
<td>Exadata Smart Scan Processing</td>
<td>DW (2 – 10)</td>
</tr>
<tr>
<td></td>
<td>Archiving (50 – 500)</td>
</tr>
</tbody>
</table>
How will Exadata Hybrid Columnar Compression Affect Performance of Each Workload?

• Data is stored by column and then compressed
• Factors affecting a compression ratio:
 – Table size
 – Data cardinality
 – Read/write ratio
How Exadata Hybrid Columnar Compression Affects the # of I/Os, and CPU Utilization for Each Workload

- Compression ratios depend on workload's profile:
 - OLTP (1 - 6)
 - DSS (5 -- 30)
 - Archive (10 -- 50)
- Regression analysis shows the impact of Compression on #IO/SQL Request and CPU utilization
- We will use models to predict how compression will affect the response time and throughput of each workload

<table>
<thead>
<tr>
<th>Database size</th>
<th>Before Compression</th>
<th>After Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>#IOs/SQL Request</td>
<td>Before Compression</td>
<td>After Compression</td>
</tr>
<tr>
<td>CPU Utilization by Request</td>
<td>Before Compression</td>
<td>After Compression</td>
</tr>
</tbody>
</table>
How Will Smart Flash Cache Size Will Affect Performance of Each Workload?

Disk IO Service Time is about 3 ms and it can handle up to 300 IOPS

Flash Cache Service Time is small allowing 1mln iops and scan 50gb/sec

• Disk utilization as well as Flash Cache utilization depends on IO Rate and I/O Service time:

 \[
 \text{Udisk} = \text{IO Rate} \times \text{I/O Service Time}
 \]

• I/O Response time depends on I/O Service Time and Disk or Flash Cache Utilization:

 \[
 \text{I/O Response Time} = \frac{\text{I/O Service Time}}{1 - \text{Udisk}}
 \]

DBA control:
Alter Table Customer Storage
(cell_flash_cache_keep/default/none)

• A lot of value for OLTP workloads
• Cost is a limitation
Exadata I/O Resource Management in Multi-Database Environment

How to optimize allocation of I/O resources / bandwidth to different Databases and Workloads

- Database Sales 40% I/O resources
 - OLTP 70% of I/O resources
 - ETL: 30% of I/O resources
- Database Marketing: 35% of I/O resources
 - Interactive: 45% of I/O resources
 - Batch: 55% of I/O resources
- Database HR: 25% of I/O resources
What will be an Impact on Cost/Performance as a Result of Moving Data between ASM Disk Groups: Super Hot, Hot and Cold
Predicted Server Consolidation Impact on DB Machine

Sales Response Time Components

Marketing Response Time Components

HR Response Time Components
What Will be the Impact of Increasing Number of Exadata Cells?

Relative Response Time

- Sales
- Marketing
- HR
- Archive_2
- Archive_1
- ETL

Relative Throughput

- Sales
- Marketing
- HR
- Archive_2
- Archive_1
- ETL
Predicted Impact of Adding Exadata Cells on Sales Response Time

Sales DB Machine Response Time

- RAC Node
- Exadata Cell
How to Predict New Application Implementation Impact

Stress Testing

1. Build Model of the Test System
2. Copy New Workload
3. Predict how new application will affect performance of existing applications

Production DB Machine

1. Build Model of the Production System
2. Predict how new application will perform in production environment

New Application

Workloads Relative Response Time
Predicted Impact of Database Tuning

Relative Response Time

- New Index?
- Materialized view?
- Data Compression?
Predicted Impact of Reducing ETL Concurrency From 110 to 10 Starting P3

Relative Response Time

Oracle RAC CPU Utilization%

Relative Throughput

Disk Utilization %
Limit Concurrency Reduces Contention but Increase # of Requests Waiting for the Thread

Limiting Concurrency Reduces Contention but Increases the Number of Requests Waiting for the Thread

Approximation of the Multiprogramming (MPL) Distribution

\[\int_0^\infty f(x)dx = 1 \]

Limit

\[\int_0^\infty f(x)dx = \text{AvgMPLInternal} \]

\[\int_{\text{Limit}}^\infty f(x)dx = \text{AverageWaitingQueue} \]
Predicted Impact of Changing Workloads’ Priority

Reducing ETL Priority from 0.9 to 0.1 Starting P3

Increasing Marketing and Sales Priority from 2 to 11 Starting P3
Predicted Impact of Limiting CPU Consumption by ETL Workload to 50%?

Relative Response Time

![Graph showing relative response time for different departments and workloads with a significant drop in response time for ETL.]

Relative Throughput

![Graph showing relative throughput for different departments and workloads with an indication of question marks for ETL.]

© Boris Zibitsker
Role of Modeling and Optimization

- Justify Capacity Planning, Performance Management and Operational Workload Management Actions
Organizing Continuous Proactive Performance Management Process

![Graph showing Actual vs. Expected Timeline]

- **Actual**
- **Expected**
- **A2E?**

© Boris Zibitsker

Predictive Analytics for IT
Conclusion

1. Oracle Database Machine smart scan, columnar data compression and flash memory affect scalability of OLTP and DW workloads differently
2. Capacity management decisions based on gut feelings can be misleading
3. Rules of thumb do not take into consideration specifics of your environment
4. Benchmarks produce the most accurate results, but benchmarks are expensive, time consuming and not flexible
5. We demonstrated a value of predictive analytics in evaluating options and justification of capacity planning, performance management and workload management decisions
6. Collaborative efforts between business people and IT in workload forecasting and evaluation of results helps to understand how complex system works
7. Prediction results set realistic expectations and enable comparison of the actual results with expected
8. It reduces an uncertainty and minimizes risk of surprises
Thank you!

Contact Information

boris@bez.com
www.bez.com
bezsystsys.blogspot.com
References

- B. Zibitsker, C. Garry, CMG 2009, ”Capacity Management Challenges for the Oracle Database Machine: Exadata v2“
- Oracle Enterprise Manager Grid Control documentation library at: http://www.oracle.com/technology/documentation/oem.html