
SQL Performance Hero and OMG Method Play
the Anti-patterns Greatest Hits

Jeff Jacobs
Jeffrey Jacobs & Associates
jmjacobs@jeffreyjacobs.com

Survey Says

• DBAs
• Developers
• Architects
• Heavily non-Oracle development shop
• Concerned with performance
• Access to production size database
• Easy access to running traces, Enterprise Manager

Introduction to OMG Method

• OMG Method focuses on
– Refactoring SQL
– Indexing
– Refactoring application side code

• OMG Method targets performance problems created by
Developers Inexperienced in Oracle technologies (DIO)

• OMG Method requires (almost) no DBA privileges other
than indexing
– No tracing, (almost) no init.ora parameter changes

Fair Warning

• No demos
• No “proofs”
• Quick fixes

Requirements for SQL Performance Heroes

• Good SQL fundamentals
• Able to read basic explain plans
• Understand basic performance statistics from autotrace
• Courage to make and test changes

– Don’t take my word for it!
• Willingness to work with and educate DIOs

Why OMG Method

• Vast majority of performance problems are result of
DIOs’
– Lack of training in SQL and Oracle
– Lack of interest in SQL and Oracle
– Misinformation about SQL and Oracle performance
– Resistance to PL/SQL
– Focus on OO, procedural and functional programming

techniques
• Iterative thinking vs set thinking

Anti-Patterns

• Definition
– Common SQL or design practice that results in poor

performance
• OMG Method identifies common anti-patterns and

techniques to fix them
– Always verify that OMG fixes actually improve

performance
• OMG Method does not address schema design

problems
– No changes to tables or columns

Understanding Common Design and DIOs
Anti-patterns
• Overly Generic Data Models

– OBJECT, INSTANCE, ATTRIBUTE,
ATTRIBUTE_VALUE structures

• Fat, Unnormalized Tables
– Often with in-line CLOBs

• Fear of Joins
– “Joins are to be avoided a all costs” mentality

• Failure to Understand SQL query cost in application
code

• Iterative vs Set World View

Understanding Common Design and DIOs
Anti-patterns
• Unmanaged Surrogate Primary Keys

– (Nearly) all tables have surrogate primary keys
– Values for same row is not consistent across

enviroments, e.g., COMPANY_ID value for same
company differs across production, development, test
environments

– Typically use additional lookup columns
• Widespread use of Dummy values instead of NULL

– DIOs uncomfortable using NULL
– Misunderstanding of performance issues with NULL

Understanding Common Design and DIOs
Anti-patterns
• “Indexed searches are always better”
• Lack of documentation

Avoid Dynamic SQL

• Avoid/eliminate dynamic SQL, e.g. creation and
execution of SQL queries created by concatenating
strings
– Particularly problematic when using literals for

constants
• Use prepared statements with bind variable
• Dynamic SQL results in heavy parsing overhead and

SGA memory usage
– Child cursors may be created even if the only

differences between SQL queries is literal values
– Potential for SQL Injection

Inline Views

• In SQL code, an inline view is a subquery used in place
of a table, e.g.,
SELECT …

FROM
(SELECT …)

…

Avoid/Replace Materialized Inline Views

• Inline views typically results in an “inline view” being
created in the execution plan
– Referred to as materialized inline view (MIV)

• Oracle may also merge the SQL inline view with the
outer query

• MIVs produce a result set, e.g., a temporary table (not to
be confused with Global Temporary Table)
– MIVs are never indexed
– Joins with a MIV effectively perform a Full Table Scan

(FTS) against the MIV, e.g. multiple FTS!
• Poor performance if result set is large

Avoid/Replace Materialized Inline Views

• DIOs frequently write inline views which can and should
be replaced by joins
– Generally can be done with little or no understanding

of underlying schema semantics
– Try /*+ MERGE */ hint first; generally doesn’t improve

performance, but worth trying
• May also help in rewrite

Merged Inline Views

• As the Cost Based Optimizer has evolved, it frequently
merges SQL inline views with the outer query

• Frequently not a performance improvement!
– Particularly with poorly written SQL inline views
– 10G’s merging is much better than 9i’s

• Try /*+ NO_MERGE */ hint

Never Update Primary Key Columns

• Primary key (PK) columns should never be updated, even to current
value

• Common DIO approach is to update all columns in a row
• Updating PK columns forces examination of referencing foreign key

(FK) constraints on child tables
– General performance issue, even if FK columns indexed
– Results in FTS if FK columns not indexed

Avoid/Remove Unnecessary Outer Joins

• DIOs frequently add outer joins “just to be safe”
• Outer joins may be expensive, limiting CBO choices

– Be sure join columns are indexed
• Work with developer or end user to determine if outer

join is needed

EXISTS vs IN

• Replacing IN with EXISTS often produces dramatic
performance improvement

• IN uses uncorrelated subquery
• SELECT …

FROM table_1 outer
WHERE
outer.col_1 IN

(SELECT inner.col_1
FROM table_2 inner
[WHERE …])

IN Performance Issues

• IN may perform poorly
– Produces result set, effectively a materialized inline view
– Result set is unindexed
– Result set is scanned for every row in outer query
– Large result set is well known performance killer

• IN should only be used when the result set is small
• Note that if the value of outer.col_1 is NULL, it will never match the

result of the IN
– Use NVL on both the inner and outer columns if NULL must be

matched

EXISTS vs IN

• DIOs seldom know how to use EXISTS as it involves a
correlated subquery, e.g., a join between column(s) in
the outer and column(s) in the inner query

• Replace the uncorrelated subquery with a subquery by
joining the outer column from the IN clause with an
appropriate column in the subquery

EXISTS Correlated Subquery
• SELECT …

FROM table_1 outer
WHERE
EXISTS
(SELECT 'T' –- use a simple constant here

FROM table_2 inner
WHERE

outer.col_1 = inner.col_1
[AND …]) – WHERE predicates from original
query

EXISTS Correlated Subquery

• The join columns (inner.col_1 in example) from the
table in the correlated subquery should be indexed
– Check to see if appropriate indexes exist; add them if

needed
• Use a constant in the SELECT of the correlated

subquery; do not select the value of an actual column
• Note that SELECT DISTINCT is unnecessary for both IN

and EXISTS

Subquery Factoring using WITH

• Very powerful (and virtually unknown)
• Many DIO written queries use identical subqueries/inline

views repeatedly
• Often lengthy UNIONs

Often lengthy UNIONs
SELECT …
FROM

table_1,
(SELECT … FROM table_2, table_3, … WHERE
table_2.id = table_3.id) IV

WHERE …
UNION

SELECT …
FROM
Table_4,
(SELECT … FROM table_2, table_3, … WHERE
table_2.id = table_3.id) IV

WHERE …
UNION …

Performance Issue

• Oracle’s CBO is not aware of identical nature of
subqueries (unlike programming language optimizers)
– Executes each subquery
– Returns distinct result set for each subquery
– Redundant, unnecessary work

Subquery Factoring

• Subquery factoring has two wonderful features
– Generally results in improved performance
– Always simplifies code

• Factored subquery only appears once in the code as a
preamble

– Referenced by name in main query body
• More readable, easier to maintain and modify

Syntax
/* Preamble, multiple subqueries may be defined */
WITH

(SELECT …)
AS pseudo_table_name_1
[, (SELECT …) AS pseudo_table_name_2 …]

/* Main query body */
SELECT …

FROM pseudo_table_name_1 …
… -- typically UNIONs

Example

• Applying this to the example
/* Preamble */
WITH

(SELECT … FROM table_2, table_3, … WHERE table_2.id
= table_3.id

AS IV
/* Main query body */
SELECT …

FROM
table_1, IV – IV is pseudo table name
WHERE …

UNION
SELECT …
FROM
Table_4, IV
WHERE …

UNION …

Factoring Options

• Oracle may perform one of two operation on factored
subqueries
– Inline – performs textual substitution into main query

body
• Effectively same query as pre-factoring
• No performance improvement due to factoring
• Still more readable

– Materializing factored subquery
• Executes the factored subquery only once
• Creates true temporary table (not Global Temporary Table)
• Populates temporary table with direct load INSERT from

factored subquery

Materialized Factored Subquery Issues

• Materialized Factored Subqueries (MFS) issues
CREATE TABLE for temp table at least once (on 1st

execution)
• Multiple tables may be created if query executions

overlap
• Tables are reused if possible
• Recursive SQL performs INSERT
• Data is written to disk
• Doesn’t always result in performance improvement

Hints for Subquery Factoring

• /*+ Materialize */ will force materializing
– Seldom, if ever, needed
– Oracle only materializes when subquery used more than once

(but verify)
• /*+ Inline */ will force textual substitution

– Use when materializing does not improve performance
• Other hints may be used in factored subquery, e.g. INDEX, etc.

– Note that MERGE and NO_MERGE may be combined with
INLINE

• Hint follows SELECT in factored subquery
– WITH (SELECT /*+ hint */ ..) AS …

INDEX Hints
• DIO often believe everything should use indexes
• Frequent use of unqualified INDEX hint, e.g., only table name

specified, but no index
– SELECT /*+ INDEX (table_name) */
– Yes, this does work!

• Oracle will always use an index, no matter how bad
– Unclear which index will be used; documentation says “best

cost”, but unclear if true; experience suggests 1st in alphabetical
order

– Further complicated by poor indexing
• Fix by either

– Qualifying hint by specifying index name(s)
– Removing hint entirely

• Removing the hint often improves performance

Constant Data Conversion Issues
• When comparing a VARCHAR2 (or CHAR) column to a constant or

bind variable, be sure to use string data type or conversion function
• Oracle does not always do what you would expect

– WHERE my_varchar2_col = 2
does not convert 2 to a string!!!

– Converts every rows’s my_varchar2_col to a number for the
comparison

• Generally results in FTS
• Common cause of “I just can’t get rid of this FTS”

• Common problem with overloaded generic and OO models
• Even SQL Performance Heroes get bit!!!

Eliminate Unnecessary Lookup Joins
• Tables with unmanaged surrogate keys typically have

lookup/alternate key column(s) with consistent data across
environments
– Very common with generic and OO models

• Typical code is:
• SELECT

FROM child_table, reference_table
WHERE

child_table.reference_table_id =
reference_table.reference_table_id

and reference_table.lookup_column =
‘constant’

…
• Results in access to reference_table for every applicable row in

child_table

Eliminate Unnecessary Lookup Joins
• Even worse when UPPER/LOWER function applied to

lookup_column (unless appropriate functional index
exists)

• Replace with scalar subquery
SELECT

FROM child_table
WHERE

child_table.reference_table_id =
(SELECT reference_table_id
FROM reference_table
WHERE
reference_table.lookup_column = ‘constant’)

– Only performs scalar subquery once

Improving Pagination

• Pagination refers to returning row n through m from an
ordered result set using ROWNUM
– Typically for data on a web page or screen

• Common, worst case code:
SELECT t1.col_1,…

FROM
(SELECT *
FROM table_1
WHERE …
ORDER BY …) t1

WHERE
ROWNUM between n and m

Improvement Steps

1. Replace literals with bind variables
2. Replace “*” in innermost inline view with desired

columns
• Potentially reduces unnecessary I/O and sort

processing
3. Refactor the query so that inline view only returns 1st m

rows and use /*+ FIRST_ROWS */ hint (per Tom
Kyte’s Effective Oracle by Design on Pagination with
ROWNUM)

Improvement Step #3
SELECT *

FROM
(SELECT /*+ FIRST_ROWS */

ROWNUM AS rnum, a.*,
FROM
(SELECT t1.col_1,…
FROM table_1

WHERE …
ORDER BY …) a

WHERE
ROWNUM <= :m)

WHERE rnum > = :n

Improvement Step #4

• Replace the columns in innermost inline view with
ROWID and join to table in outermost query
– May provide substantial I/O performance

improvements on fat tables, particularly those with
inline CLOBs

Improvement Step #4
SELECT t1.col_1,…

FROM
table_1,
(SELECT /*+ FIRST_ROWS */

ROWNUM AS rnum, inner_row_id
FROM

(SELECT ROWID inner_row_id -– innermost query
FROM table_1

WHERE …
ORDER BY …)

WHERE
ROWNUM <= :m)

WHERE rnum > = :n
AND table_1.ROWID = inner_row_id

UPDATE and DELETE Performance

• “I’m DELETEing/UPDATEing a few rows. It’s virtually
instantaneous when I test it in my development
environment, but takes a very long time in production!” –
Joe the DIO

• Check for indexes on FK constraint columns of child
tables.
– Lack of indexes on FK constraints requires an FTS of

each child table for each row to be
DELETEd/UPDATEd in parent table

– Common problem with history tables
• Add appropriate indexes

Copyright © Jeffrey M. Jacobs, 2009 42

UPDATE and DELETE Performance

• Look for foreign key constraints using Cascade Delete
– Hierarchy of cascade deletes can result in very poor

performance
– Unclear if circular references ever complete

• Beyond scope of OMG
– Application code may depend on existence of

Cascade Delete
– Quick fix may be temporarily altering constraints

Eliminate Bitmap Conversion to/from ROWIDs
Execution Plan Step
• Known performance problem unrelated to existence/use

of bitmap indexes
• May be huge CPU hog
• alter session set "_b_tree_bitmap_plans“ = false

• Default in 9i and 10G is true
• Real fix requires setting init.ora parameter
• _b_tree_bitmap_plans = false

– Requires database restart; can’t be set dynamically

Copyright © Jeffrey M. Jacobs, 2009 44

Add Indexes on Foreign Key Constraints

• FK constraints should always be indexed
– Have not yet seen exception to this rule (but always

interested)
• Primary performance gains

– Improved join performance – fundamental feature of
CBO

– UPDATE and DELETE performance
– Oracle apparently still performs table level locks,

despite statements to contrary

Add Foreign Key Constraints
• “FK constraints hurt performance. We’ll enforce referential integrity

(RI) in the application” – Flo the DIO
– Translation: “We won’t make any mistakes in the application

code”
– Won’t really verify RI in the application

• True verification would result in worse performance
• It doesn’t matter how well the system performs if the data is corrupt!

– Earned big $ as expert witness demonstrating issues with lack of
FK constraints

• CBO uses existence of FK constraints
• Adds to effective documentation of system

Eliminate Redundant Indexes

• Redundant indexes, e.g., indexes with identical leading columns
– Common DIO anti-pattern

• Impacts INSERT/UPDATE/DELETE performance
• Confuses CBO

– Unclear how CBO selects index when two (or more) have
needed leading columns, but different trailing columns

• Rules of thumb
– Eliminate index with most trailing columns
– Indexes with more than 3 columns are suspect
– PK indexes with trailing columns should be reduced to PK only

Reduce Unnecessary and Redundant Queries
• Worst real world case

– 80,000 individual queries from application takes 3+ hours
– Single query took under 30 seconds

• Individual query is not performance problem
– Total number of queries is problem

• Two general cases
1. Iteration

• DIO issues large number of SELECTs, typically performing join,
calculations or sorts in application

• Generally easy to replace with single query
2. Redundant Queries

• DIO issues same query repeatedly for unchanging data, typically
refreshing page/screen, i.e., field label

• Requires changes to application code structure
– Not usually Hero’s domain

Add Appropriate Functional Indexes

• Functional indexes (FI) are great quick fixes for many
anti-patterns

• Two most common anti-patterns

Mixed case string columns

• Column contains mixed case data used for both
lookup/filtering and display
– Good design would be two columns, one for lookup

and one for display
• (Somewhat) knowledgeable DIO uses

UPPER(column_name)
– Less knowledgeable use LOWER(column_name)

• Add appropriate index(es)
– If possible, standardize queries to use one function
– May need to add both indexes :-{

Eliminating Dummy Values
• DIOs typically use dummy values in place of NULL, e.g., -99
• Queries use:

WHERE column_name <> -99
instead of
WHERE column_name IS NOT NULL

• <> kills use of index on column_name
• If significant percentage of rows contain dummy value, add functional index

to improve performance
– NULLIF(column_name,-99)

• Queries need to be modified to use function
• WHERE NULLIF(column_name,-99) IS NOT NULL

• Real world cases may involve multiple dummy values, e.g. -9, -99 and -999
(really!)
– Use DECODE, CASE or other function

Use PL/SQL for Bulk Operations

• Use of BULK COLLECT and FORALL provides huge
performance improvements over application side
operations

Summary

• Many anti-patterns easily identifiable
• Many anti-patterns subject to easy, quick and safe fixes

– OMG Tips won’t work for every query
• SQL Hero needs to be willing to modify queries and test

results
• SQL Hero needs to understand why DIOs use anti-

patterns and educate them

Q&A

