ORACLE

Oracle Database 10g and 11qg:
What to Expect From the Optimizer

Maria Colgan Principal Product Manager

. Agenda

« Changes in behaviour

* |nit.ora Parameters
- DBMS_STATS subprograms
« New auto stats job

 New features

« Adaptive Cursor Sharing
« Optimizer statistics enhancements
- SQL Plan Management

* Pre-upgrade checklist
» Post-upgrade checklist

 Correcting regressed SQL Statements

« SQL Testcase Builder
« SQL Repair Advisor

ORACLE

Change in Behavior

ORACLE

. Init.ora Parameters

Optimizer_mode Choose All_ rows All rows
Dynamic_Sampling 1 2 2

Secure_view_merging N/A True True
Optimizer_use _invisible indexes N/A N/A False
Optimizer_use_ pending_statistics N/A N/A False
Optimizer_capture_ SQL _plan_baselines N/A N/A False
Optimizer _use_ SQL plan_baselines N/A N/A True

ORACLE

. New DBMS STATS Subprograms

19

Gather_System_Stats Gathers stats on CPU and IO
speed of H/W
Gather_Dictionary_ Stats Gathers stats on dictionary objects Yes Yes
Gather_Fixed Object_Stats Gather stats on V$views Yes Yes
Publish_Pending_stats Pending stats allows stats to be N/A Yes
gather but not published immediate
Restore Table Stats Revert stats back to what they 10.2.04 Yes

were before most recent gather

Compare_Table Stats Compare stats for a table from two 10.2.0.4 Yes
different sources

Create_Extended_stats Gathers stats for a user specified N/A Yes
column group or an expression

Set_* Prefs Sets stats preferences at a table, N/A Yes
schema, database or global level

ORACLE

. DBMS_STAT. SET_* PREFS

Offers a finer granularity of control with 4 procedures

- DBMS STAT.SET _TABLE PREFS
« Changes parameter value for the specified table

- DBMS STAT.SET_SCHEMA_PREFS
« Changes parameter value for all tables in the specified schema
« Calls DBMS_STAT.SET_TABLE_PREFS for each table

- DBMS STAT.SET_DATABASE_PREFS
* Changes parameter value for all tables in user-defined schemas
« Calls DBMS_STAT.SET_TABLE_PREFS for each table

- DBMS_STAT.SET_GLOBAL_PREFS

« Changes parameter value for all tables without a table preference and all future
tables

Hierarchy: Parameter value in gather stats stmt if specified
Ttable preference if specified
1 global preference

ORACLE

. Automatic statistics gathering job

* Introduced in 10g

« Gathers statistics on objects where
« Statistics are missing
« Statistics are Stale (10% of rows have changed user Tas moprFICaTIONS)

* In 10g its an Oracle Scheduler job
* Runs during maintenance window (default 10pm — 6 am)

* In 119 its an Autotask

* Runs during maintenance window (default 10pm — 6 am)

- DBMS_STATS.GATHER DATABASE STATS JOB PROC
« Parameter values can be change using SET_GLOBAL PERFS

ORACLE

New Features in 11g

ORACLE

. New 11g Optimizer features

 Bind peeking doesn’t work when there is a data skew

» Gathering Optimizer Statistics takes too long
 Cardinality estimate is wrong so plan goes wrong

* Plans change unexpectedly especially during upgrades

ORACLE

. New 11g Optimizer features

 Bind peeking doesn’t work when there is a data skew
» Enhanced plan sharing with binds

» Gathering Optimizer Statistics takes too long
 Faster statistics gathering
* Improved statistics quality

 Cardinality estimate is wrong so plan goes wrong
 Collect appropriate statistics
 Eliminate wrong cardinality estimates

* Plans change unexpectedly especially during upgrades
« Guaranteed plan stability and controlled plan evolution
« Controlled statistics publication

ORACLE

Adaptive Cursor Sharing _4

Enhanced Bind Peeking

ORACLE

. Adaptive Cursor Sharing

Business Requirement
* The optimizer peeks bind values during plan selection
* |nitial value of the binds determines the plan

« Same execution plan shared regardless of future bind
values

 During the business day a cursor gets aged out at the
next hard parse a different bind value is used and a
different plan gets generated

One plan not always appropriate for all bind values

ORACLE

. Example with 10g

SELECT ... FROM. .WHERE Job = :Bl
Value of Bl = CLERK

name num 0
SMITH |6973 |CLERK

ALLEN | 7449 CLERK
WARD |7521 |CLERK ‘ ST
SCOTT | 7788 CLERK Ename Enum | Job
SMITH 6973 CLERK
CLARK | 7782 CLERK ALLEN 7499 CLERK
WARD 7521 CLERK
KING 8739 VP
 If clerk is the bind value at hard parse SCOTT 7788 | CLERK
. . . CLARK 7782 CLERK
five out six records will be selected
| Id | Operation | Name | Starts | E-Rows | A-Rows |

ORACLE

Note Plan Output from dbms_xplan.display_cursor

.Example with 10g cont.

SELECT ... FROM. .WHERE Job =
Value of Bl = VP

name num o)

KING 8739 VP

Yy

« If VP is the bind value at hard parse
one out six records will be selected

:B1l

ana table
Ename Enum | Job
SMITH 6973 CLERK
ALLEN 7499 CLERK
WARD 7521 CLERK
KING 8739 | VP
SCOTT 7788 CLERK
CLARK 7782 CLERK

ORACLE

. Solutions for bind peeking and
histograms in 10g

Drop histogram using DBMS STATS.DELETE COL_STATS for just the
effected table

Regather statistics on this table without histogram

Use DBMS STATS.SET PARM to change default setting for method_opt
parameter

* New defaultin 10g FOR ALL ROWS SIZE AUTO
 Oracle automatically gathers histograms based on column usage
Switch off bind peeking set optim peek user binds = false

ORACLE

ORACLE g
. With 119 11

SELECT ... FROM. .WHERE Job = :Bl

YOU CAN HAVE BOTH PLANS

Bl = CLERK Bl = VP
Ename |Enum |Job Ename |Enum |Job
SMITH |6973 |CLERK KING 6973 | VP

ALLEN |7449 |CLERK
WARD | 7521 |CLERK
SCOTT | 7788 | CLERK
CLARK | 7782 | CLERK

Index Access is optimal

Full Table Scan 1s optimal

Peek all binds & take the plan that 1s optimal for each bind set

ORACLE

. Adaptive Cursor Sharing

Solution

« Share the plan when binds values are “equivalent”
» Plans are marked with selectivity range
« If current bind values fall within range they use the same plan

« Create a new plan if binds are not equivalent
« Generating a new plan with a different selectivity range

ORACLE

. Adaptive Cursor Sharing — in detail

« Controlled by init.ora parameter
 _optim_peek user_binds
« Determines if the optimizer will peek at bind values
« Set to TRUE by default in 11gR1

* Monitor

« V$SQL has 2 new columns
* |IS_BIND SENSITIVE — A histogram is present on column used with Bind
* IS _BIND AWARE - An alternative plan has been found for SQL STMT

ORACLE

Q

Optimizer Statistics

Improved Efficiency and
Quality

ORACLE

. Improved Efficiency and Quality -

New statistics gathering algorithm

Business problem

- “.. Compute statistics gives accurate results but takes too long ..”

- “.. Sampling is fast but not always accurate ..”

- “.. AUTO SAMPLE SIZE does not always work with data skew ..”

Solution
* New groundbreaking implementation
» Faster than sampling
« Accuracy comparable to compute statistics
« Used by default with AUTO_SAMPLE_SIZE value
* No need to use manual sampling anymore

FASTER AND BETTER

Speed of sampling with the accuracy of compute

ORACLE 11 g

DATABASE

. Improved Efficiency and Quality

Incremental Statistics Maintenance

Business Requirement

« Gathering statistics on one partition (e.g. after a bulk
load) causes a full scan of all partitions to gather
global table statistics

» Extremely time consuming

Solution
 Gather statistics for touched partition(s) ONLY
« Table (global) statistics are built from partition statistics

Refreshed WITHOUT scanning the NON touched partitions

. Incremental Global Statistics

1. Partition level stats are

gathered & synopsis
‘Sales Table created

May 18t 2008 ——| S1
- > 2. Global stats generated by
e —1°2) aggregating partition level

—— statistics and synopsis

May 20th 2008 — S3
- = Global

= 2008 ﬁ: sS4 Statistic

May 227 2008 — | 85

zli)léy'zsrd,zqos ——| S6

YRR 'P{ Sysaux Tablespace ’

ORACLE

. Incremental Global Statistics Cont’d

3. A new partition
is added to the
Sales 1 ‘Mtable & Data is

- Loaded

May 18t 2008 S1

= 6. Global stats generated by
May 19th 2008 S2 . . =

i , aggregating the original
~— partition synopsis with the
May 20t 2008 S3 new one
= | Global
st S4 T

May 212008 ,,] StatIStICJ

May 227 2008 S5

May 23+ 2008 S6

A
$7 5. Retrieve synopsis for
T each of the other

partitions from Sysaux

Teessmmsmnnnn ‘ Sysaux Tablespace ’

ORACLE

. Copy Statistics

Business Requirement

* New partition is added to a table and data is loaded into it - Statistics
for this partition do not reflect actual data volume or values

« Optimizer prorates cardinality based on distance between predicate
value and current max value for column RESULT very low cardinality

Solution
* Use dbms_stats.copy_table stats|()

 Derives statistics for new partition:
« Column statistics (min,max, NDV, histogram, etc)
* |t adjusts min/max for partitioning column but not histogram
 Partition statistics (number of rows, blocks, etc)
» Local index statistics (NOT global)
* Requires patch on top of 10.2.0.4 - bug 7687788

. Setting Optimizer Statistics

Business Requirement

« Temporary table used in transaction logic — Original empty but
gets a lot of data added during the course of the transaction

Solution

« Gather statistics when table is full (before end of trans) & lock them
OR
+ Use dbms_stats.set table stats

* Requires you to know what best possible stats are

ORACLE

Extended Optimizer
Statistics

Eliminate wrong cardinality
estimates

ORACLE

. Extended Optimizer Statistics

Business problem - Correlated Columns

- Real data often shows correlations between various attributes

*e.g. job title influences salary, car model influences make, seasons affect the
amount of sold goods (e.g. snow shoes in winter)

- Optimizer has to estimate the correct cardinality

*“Does an additional filter reduce the result set or not?”

Solution

« Extended Optimizer Statistics provides a mechanism to collect statistics
on a group of columns
 Full integration into existing statistics framework
« Automatically maintained with column statistics
 |Instantaneous and transparent benefit for any migrated application

Improved Cardinality leads to Improved Plans

ORACLE

. Extended Statistic Example

single column

SELECT ... FROM. .
WHERE model = ‘530xi’

Make Model | Color
BMW | 530xi | RED ‘

BMW 530xi | BLACK

: Make Color
BMW 530xi SILVER YT v e
BMW 530xi BLACK
 Three records selected BMW 530xi | SILVER
. . . PORSCHE 911 RED
« Single column statistics are Voo SIR =T
accurate MERC SLIVER
| Id | Operation | Name | Starts | E-Rows | A-Rows

ORACLE

. Example

non-correlated columns
SELECT ... FROM. .
WHERE model = ‘530xi’
AND color = 'RED'

ake ode olor
BMW | 530xi |RED

Yy

Make Model | Color

« One record selected \ v Saoa T IeeE
« No correlated columns EMVY S30XIEEEER
- _ BMW 530xi__ | SILVER

« Additional predicate reduces result set \ PORSCHE 911 RED
- Single column statistics are sufficient MERC SLK___| BLACK
MERC C320 SLIVER

| Id | Operation | Name | Starts | E-Rows | A-Rows

ORACLE

Example

correlated columns, no extended statistics

SELECT ... FROM. .
WHERE model = ‘530xi’
AND make = ‘BMW’ ;

dKe ode olor

BMW | 530xi RED

BMW | 530xi BLACK

BMW | 530xi SILVER

 Three records selected
e Correlated columns

A,

« Additional predicate has no effect

« Single column statistics are NOT sufficient

Make Model | Color
BMW 530xi RED
BMW 530xi BLACK
BMW 530xi SILVER
PORSCHE 911 RED
MERC SLK BLACK
MERC C320 SLIVER

Example

correlated columns, extended statistics
SELECT ... FROM. . -

WHERE model = ‘530xi’
AND make = ‘BMW’ ;

Make Model | Color
BMW 530xi RED

BMW | 530xi | BLACK ‘
BMW 530xi | SILVER

Make Model | Color

\BMW 530xi___ | RED

BMW 530xi BLACK

 Three records selected. BMW 530xi | SILVER
PORSCHE 911 RED

* Multi-column statistics solve the proble MERC SLK | BLACK

MERC C320 SLIVER

. Extended Statistics — in detail

» Use dbms_ stats package
* Create_extended_stats
« Manually specify the group of columns
 Show_extended_ stats name
 Displays the system generated name for the column group
* Drop_extended_stats
» Drop a column group and all the statistics associated with it
* Monitor
* New dictionary table user_stat extensions
- Shows sys generated name & actual column group desc

* Look at dictionary table user_tab col_statistics
* New row with sys generated name will be add for each column group

ORACLE

\Z

Pending Statistics

Controlled statistics
publication

ORACLE

. Pending Statistics

Business Requirement

- Statistics are published as soon as we complete gathering
=> Possibly unpredictable changes of execution plans

- Today you have ‘freeze’ critical plans or statistics

Solution

« Gather statistics and save as pending

 Verify the new statistics don’t change plans adversely
« Either on the same or a different system

 Publish verified statistics

Controlled and DBA-verified statistics management

ORACLE

. Pending Statistics — in detail

« Controlled by init.ora parameter
- optimizer_use_pending_statistics
« Determines if the optimizer will use pending statistics
+ Set to false by default in 11gR1

* Use dbms_ stats package
» set table prefs
* All tables preferences have “publish” set to true by default
* publish_private stats
* Once stats have been tested publish them for general use
* Monitor
« Look at dictionary table user_* pending_stats (* = tab, col, ind)

ORACLE

\“'ﬁ‘ds{f‘.
- PR [

GUARANTEE
U Lf R -
-)
":fs FA (;1.\

SQL Plan Management

Guaranteed plan stability and
controlled plan evolution

ORACLE

. SQL Plan Management

Business Requirement

« Unpredictable changes in execution plans can happen
* New Statistics
» Changes in the Environment
» Software upgrades

- Today you have to ‘freeze’ critical plans or statistics

Solution
« Optimizer automatically manages ‘execution plans’
* Only known and verified plans are used
* Plan changes are automatically verified
* Only comparable or better plans are used going forward

SQL Plan Management is controlled plan evolution

ORACLE

. With SQL Plan Management

SQL statement is parsed for the first time and a plan is generated
Check the log to see if this is a repeatable SQL statement
Add SQL statement signature to the log and execute it

Plan performance is still “ve*rified by execution”

sa-
§I Parse > EXxecute »J J Plan Acceptable
o

|

|

ORACLE

. With SQL Plan Management

SQL statement is parsed again and a plan is generated
Check log to see if this is a repeatable SQL statement
Create a Plan history and use current plan as SQL plan baseline
Plan performance is “verified by execution”
*

it
.?' Parse > Execute ’; J Plan ACCeptable
a I

l

1

Plan histo

Plan Raseline

ORACLE

. With SQL Plan Management

« Something changes in the environment
« SQL statement is parsed again and a new plan is generated

 New plan is not the same as the baseline — new plan is not executed

but marked for verification
*

sa-
- ﬁ ' Parse >
g
| D
|
|

Plan histo

Plan Raseline

. With SQL Plan Management

Something changes in the environment
SQL statement is parsed again and a new plan is generated

New plan is not the same as the baseline — new plan is not executed
but marked for verification

Execute known plan baseline¥ plan performance is “verify by history”

sa-
. - > >
§ Parse Execute i J Plan ACCeptab|e
|
|
|

Plan histo

ORACLE

. Verifying the new plan

* Non-baseline plans will not be used until verified
* DBA can verify plan at any time

Statement log

Optimizer
= checks if new
Invoke or schedule > N plan is as good
verification l.:“ﬁ as or better

than old plan

Statement log

Plan

Plans which don’t history

perform as good as
the original plan

stay in the plan T O OO IR TR IR) -------------------------:
history and are Plans which perform as good as or

marked better than original plan_are added to
unaccepted the plan baseline

PIanAbaseﬁne

ORACLE

. SQL Plan Management — the details

« Controlled by two init.ora parameter
« optimizer_capture_sql plan_baselines
« Controls auto-capture of SQL plan baselines for repeatable stmts
+ Set to false by default in 11gR1
- optimizer_use_sql _plan_baselines
+ Controls the use of existing SQL plan baselines by the optimizer
« Set to true by default in 11gR1
* Monitoring SPM
 Dictionary view DBA_SQL PLAN BASELINE
* Via the SQL Plan Control in EM DBControl
« Managing SPM
« PL/SQL package DBMS_SPM or via SQL Plan Control in EM DBControl
* Requires the administer sql management object privilege

ORACLE

. SPM Plan Capture — Bulk

* From SQL Tuning Set (STS)
« Captures plan details for a (critical) set of SQL Statement
* Load these plans into SPM as baseline plans
* Next time statements are executed baseline plans will be used

* From Cursor Cache
 Load plans from the cursor cache into SPM as baseline plans
* Filters can be specified (SQL_ID, Module name, schema)
* Next time statements are executed baseline plans will be used

* From staging table
« SQL plan baselines can be captured on another system
» Exported via a table (similar to statistics) and imported locally
* Plan are “unpacked” from the table and loaded into SPM

ORACLE

Pre-Upgrade Checklist

What to do before the upgrade

ORACLE

. Testing on the new database release

Conduct tests on hardware identical to product
« Same CPU brand and speed
« Same Memory size and architecture
« Same OS release
« Same disk array & # of physical disk

Use a copy of the ‘live’ data from product
* ‘Hand-crafted’ data sets lead to unrealistic test results
Ensure all important queries and reports are tested

« Current high-load SQL
* End of month / year batch jobs
Capture all necessary performance information during tests
» Elapse times
* Execution plans

« Statspack reports
« System statistics / characteristics (IOSTAT, VMSTAT etc)

Ensure comparable test results are available for your current Oracle
release

ORACLE

. Removing old Optimizer hints

* |f there are hints for every aspect of the execution plan
the plan won’t change between releases (Stored Outline)

- Partial hints that worked in one release may not work in
another

 Test all SQL stmts with hints on the new release using
the parameter optimizer_ignore_hints=TRUE
« Chance are the SQL stmts will perform better without any hints

ORACLE

SQL Plan Management - general
upgrade strategy

Oracle Database 11g
V" R)
s’ ,f'\l.
Run all SQL in the Application Z f(.s(-' \1»:
and auto load SQL Plan EP sr'"ag-i
Baselines with 10g plan Z| 2| o s¢
sl = %
\ = j 11g plan queue
After plans I for verification
are loaded O F E=11
change —¢
optimizer features_enable

regressions

* Seeding the SQL Plan Baselines with 10g plans No plan change on upgrade

- After all SQL Plan Baselines are populated switch Optimizer_Features_Enable to 11g

* new 11g plans will only be used after they have been verified

ORACLE

Upgrade Strategy from 9i or 10g using
Stored Outlines

Oracle Database 9i

Oracle Database 11g

) PR
sC K2
Run all SQL in the 2 8 o
Application and z Z f s R
auto create a EEP ﬁ
Stored Outline for 2=
each one \ z ‘f/j
A
CREATE_STORED_OUTLINES=false
After Store
Outlines
are
captured

*Auto capture Stored Outlines for top SQL Statement
- Stored Outlines will provide a safety net should any SQL regress after the upgrade

-After upgrade activate Stored Outline for an regressed SQL stmts and capture the plan

ORACLE

Database Upgrade
using SQL Tuning Sets

Oracle Database 11g

A i
GB /"
A ¥
HJ
4>
HJ :
-~
No pl}an \.ﬁ‘\

regressions

ther Upgrade SQL Plan Management Scenarios

Database Upgrade after 11g testing
on another environment

Production Database

No plan
regressions

DBA
: P
Well GB,Y "..\";\'

Oracle Database 10g

Weﬁt&ed
plan

plans
staging table

Development Database 11g

. Pre-Upgrade Checklist

» Gather Instance-wide performance statistics from the
Production database (during peak load times) as a
baseline

* Hourly level 7 Statspack reports or AWR reports

« OS stats including CPU, memory and 1O (such as sar, vmstat,
jostat)

« Export the Statspack or AWR schema owner

* Export Optimizer statistics into a stats table & export the
table

» Make a backup of your init.ora file
» Create a SQL Tuning Set including plans for critical SQL

 Or create Stored Outlines for all key SQL statements as
a backup mechanism to ensure you have a way to revert
back to the 10g

ORACLE

Post-Upgrade Checklist

What to monitor after the upgrade

ORACLE

. What to do with statistics after upgrade

« Use last known good set of 10g stats until system is stable

« Switch on incremental statistics for partitioned tables
¢ DBMS STATS.SET GLOBAL PREFS('INCREMENTAL', 'TRUE') ;

» Temporarily switch on pending statistics
* DBMS STATS.SET GLOBAL PREFS (‘PENDING’,’"TRUE") ;

» Gather 11g statistics

e DBMS STATS.GATHER TABLE STATS (‘'sh’,’SALES’);

 Test your critical SQL statement with the pending stats

e Alter session set optimizer use pending statistics=TRUE;

* When proven publish the 11g statistics

* DBMS STATS.PUBLISH PENDING STATS() ;

ORACLE

. Post-Upgrade Checklist

* |nstall or upgrade Statspack & set the level to 7
« Schedule Statspack snapshots every hour
* If licensed for Diagnostic Pack use AWR

« Capture OS statistics, which coincide with your
statspack or AWR reports

» ldentify the expensive SQL (top SQL by time, buffer gets)

« Compare these SQL statements to the top SQL
statements you had prior to the upgrade

* |f they are not the same, you will need to investigate
why

ORACLE

SQL Test Case Builder

ORACLE

. SQL Test Case Builder

Business Requirement

* Bug resolution
» Test case required for fast bug resolution

* Not always easy to provide a test case
* What information should be provided?
« How much data is need?

+ Getting the test case to Oracle can be tricky
Solution
* Oracle automatically creates a test case
 Collects necessary information relating to a SQL incident
« Collected data is packaged to be sent to Oracle
* Collected data allows a developer to reproduce the problem

ORACLE

. SQL Testcase Builder

ORACLE

