Things you always wanted to know about Oracle Partitioning

Hermann Baer
Director Product Management, Data Warehousing
Agenda

• Partitioning in a nutshell
 • “Basics in 5 minutes”

• Partitioning benefits
 • Faster - cheaper

• Partitioning for your business needs
 • Better - new functionality of Oracle Database 11g

• Things you might not know ..
 • Focus on Interval Partitioning versus Range Partitioning

• Q&A
The Concept of Partitioning
Simple Yet Powerful

Large Table
Difficult to Manage

Partition
Divide and Conquer
Easier to Manage
Improve Performance

Composite Partition
Better Performance
More flexibility to match business needs

Transparent to applications
What is Oracle Partitioning?

It is

- Powerful functionality to logically partition objects into smaller pieces
- Only driven by business requirements
- Partitioning for Performance, Manageability, and Availability

It is not

- Just a way to physically divide – or clump - any large data set into smaller buckets
- Enabling pre-requirement to support a specific hardware/software design
 - Hash mandatory for shared nothing systems
Physical versus Logical Partitioning
Shared Everything Architecture - Oracle

- Logical Partitioning
- Does not underlie any constraints
 - SMP, MPP, Cluster, Grid does not matter
- Purely based on the business requirement
 - Availability, Manageability, Performance
- Beneficial for every environment
 - Provides the most comprehensive functionality
Physical versus Logical Partitioning

Shared Nothing Architecture

- **Physical Partitioning**
 - Fundamental system setup requirement
 - Node owns piece of DB
 - Enables parallelism
 - Number of partitions is equivalent to min. parallelism
 - Always needs HASH distribution
 - Equally sized partitions per node required for proper load balancing
Agenda

- Partitioning in a nutshell
 - “Basics in 5 minutes”
- Partitioning benefits
 - Faster - cheaper
- Partitioning for your business needs
 - Better - new functionality of Oracle Database 11g
- Things you might not know ..
 - Focus on Interval Partitioning versus Range Partitioning
- Q&A
Faster

“Only work on the data that is relevant”

- Data Access
- Data Load
- Data Maintenance

- Faster response times
- Less system resources required
- Support for more users and/or a higher workload
Partition for Performance

- Only relevant partitions will be accessed
 - Static pruning with known values in advance
 - Dynamic pruning uses internal recursive SQL to find the relevant partitions
- Minimizes I/O operations
 - Provides massive performance gains

```
SELECT sum(sales_amount)
FROM sales
WHERE sales_date
BETWEEN '01-MAR-2006' AND '31-MAY-2006';
```
Partition for Manageability/Availability

Order Table
(partitioned by quarter)

<table>
<thead>
<tr>
<th>Q4’05</th>
<th>Q1’06</th>
<th>Q2’06</th>
<th>Q3’06</th>
</tr>
</thead>
</table>

Other data & queries not affected
Cheaper

“Store data in the most appropriate manner”

• Find the balance between data importance, storage performance, storage reliability, and storage form
Partition for Tiered Storage

ORDERS TABLE (7 years)

2003

2008

2009

95% Less Active

5% Active

Low End Storage Tier
2-3x less per terabyte

High End Storage Tier

© 2009 Oracle Corporation
Agenda

• Partitioning in a nutshell
 • “Basics in 5 minutes”

• Partitioning benefits
 • Faster - cheaper

• Partitioning for your business needs
 • Better - new functionality of Oracle Database 11g

• Things you might not know ..
 • Focus on Interval Partitioning versus Range Partitioning

• Q&A
Model for your Business Needs

Power and flexibility comes with choices

• Partitioning method
 • Range – List – Hash
 • Single level and composite level Partitioning

• Partitioning key
 • Real, virtual, or even referenced column(s),

• Partition granularity
 • Year – month – day – hour - minute

Transparency is equally important

• Concurrent and automatic partition maintenance operations
 • Partition creation on demand
Oracle Partitioning: Over Ten Years of Development

<table>
<thead>
<tr>
<th></th>
<th>Core functionality</th>
<th>Performance</th>
<th>Manageability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle8</td>
<td>Range partitioning</td>
<td>“Static” partition pruning</td>
<td>Basic maintenance operations: add, drop, exchange</td>
</tr>
<tr>
<td></td>
<td>Global range indexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle8i</td>
<td>Hash and composite range-hash partitioning</td>
<td>Partition-wise joins “Dynamic” pruning</td>
<td>Merge operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle9i</td>
<td>List partitioning</td>
<td></td>
<td>Global index maintenance</td>
</tr>
<tr>
<td>Oracle9i R2</td>
<td>Composite range-list partitioning</td>
<td>Fast partition split</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle10g</td>
<td>Global hash indexes</td>
<td></td>
<td>Local Index maintenance</td>
</tr>
<tr>
<td>Oracle10g R2</td>
<td>1M partitions per table</td>
<td>“Multi-dimensional” pruning</td>
<td>Fast drop table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Database 11g</td>
<td>More composite choices REF Partitioning Virtual Column</td>
<td></td>
<td>Interval Partitioning Partition Advisor</td>
</tr>
</tbody>
</table>
Agenda

• Partitioning in a nutshell
 • “Basics in 5 minutes”
• Partitioning benefits
 • Faster - cheaper
• Partitioning for your business needs
 • Better - new functionality of Oracle Database 11g
• Things you might not know ..
 • Focus on Interval Partitioning versus Range Partitioning
• Q&A
Partitioning in Oracle Database 11g
Interval Partitioning

- Partitions are created automatically as data arrives
Interval Partitioning

- Interval Partitioning
 - Full automation for equi-sized range partitions
- Partitions are created as metadata information only
 - Start Partition is made persistent
- Segments are allocated as soon as new data arrives
 - No need to create new partitions
 - Local indexes are created and maintained as well
- Interval Partitioning is *almost* a transparent extension to range partitioning
 - .. But interval implementation introduces some subtle differences
Interval Partitioning

• As easy as One, Two, Three ..

```
CREATE TABLE sales (order_date DATE, ...)
PARTITION BY RANGE (order_date)
INTERVAL(NUMTOYMINTERVAL(1,'month'))
(PARTITION p_first VALUES LESS THAN ('01-JAN-2006'));
```

Table SALES

Jan 2006	Feb 2006	Mar 2006	...	Jan 2007	Oct 2009	Nov 2009	...

First segment is created
Interval Partitioning

- As easy as One, Two, Three ..

```sql
CREATE TABLE sales (order_date DATE, ...)
PARTITION BY RANGE (order_date)
INTERVAL (NUMTOYMINTERVAL(1, 'month'))
(PARTITION p_first VALUES LESS THAN ('01-JAN-2006'));
```

Table SALES

|---------|---------|---------|---------|---------|---------|

New segment is automatically allocated

```sql
INSERT INTO sales (order_date DATE, ...) VALUES ('04-MAR-2006',....);
```
Interval Partitioning

- As easy as One, Two, Three..

CREATE TABLE sales (order_date DATE, ...)
PARTITON BY RANGE (order_date)
INTERVAL (NUMTOYMINTERVAL(1, 'month'))
(PARTITION p_first VALUES LESS THAN ('01-JAN-2006');

Table SALES

|----------|----------|----------|-----|----------|----------|----------|

... whenever data for a new partition arrives

INSERT INTO sales (order_date DATE, ...) VALUES ('17-OCT-2009', ...);
Interval Partitioning

• Interval partitioned table can have classical range and automated interval section
 • Automated new partition management plus full partition maintenance capabilities: “Best of both worlds”

Table SALES

Range partition section

1. MERGE and move old partitions for ILM
Interval Partitioning

- Interval partitioned table can have classical range and automated interval section
 - Automated new partition management plus full partition maintenance capabilities: "Best of both worlds"

Table SALES

1. MERGE and move old partitions for ILM

1. Insert new data
 - Automatic segment creation

VALUES ('13-NOV-2009')
Interval Partitioning

- Range partitioned tables can be extended into interval partitioned tables
 - Simple metadata command
 - Investment protection

Table SALES

|------|---------|---------|----------|

...
Interval Partitioning

- Range partitioned tables can be extended into interval partitioned tables
 - Simple metadata command
 - Investment protection

```
ALTER TABLE sales (order_date DATE, ...)
SET INTERVAL(NUMTOYMINTERVAL(1,'month'));
```
Interval Partitioning

Transition Point

How to identify range and interval partitions?

- Internal concept of a ‘transition point’
 - Separates range from the interval partitions
 - Starting point of equi-sized partitions
 - Starting point for data placement calculation
- Exposed in data dictionary views, e.g. *_TAB_PARTITIONS
- New column INTERVAL = [YES|NO] (11.2)
- Extract from the dictionary prior to 11.2

```
SELECT subname,
   decode(bitand(tp.flags, 32768), 32768, 'YES', 'NO')
FROM tabpart$ tp, obj$ o
WHERE tp.obj#=o.obj# and o.name='TOTO123';
```

<table>
<thead>
<tr>
<th>SUBNAME</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>NO</td>
</tr>
<tr>
<td>SYS_P81</td>
<td>YES</td>
</tr>
</tbody>
</table>
Interval versus Range Partitioning

- Partition bounds
 - Interval partitions have lower and upper bound
 - Range partitions only have upper bounds
 - Lower bound derived by previous partition

- Partition naming
 - Interval partitions cannot be named in advance
 - Use the PARTITION FOR (<value>) clause
 - Range partitions must be named
Interval versus Range Partitioning, cont.

- **Partition merge**
 - Multiple non-existent interval partitions are silently merged
 - Only two adjacent range partitions can be merged at any point in time

- **Number of partitions**
 - Interval partitioned tables have always one million partitions
 - Non-existent partitions “exist” through INTERVAL clause
 - No MAXVALUES clause for interval partitioning
 - Maximum value defined through number of partitions and INTERVAL clause
 - Range partitioning can have up to one million partitions
 - MAXVALUES clause defines most upper partition
Interval versus Range Partitioning
Partition Bounds

- Partition bounds for range partitioning
 - Partitions only have upper bounds
 - Lower bound derived through upper bound of previous partition

VALUES LESS THAN (‘01-JUN-2009’)
VALUES LESS THAN (‘01-JUL-2009’)
Interval versus Range Partitioning
Partition Bounds

- Partition bounds for range partitioning
 - Partitions only have upper bounds
 - Lower bound derived through upper bound of previous partition

VALUES LESS THAN (‘01-MAY-2008’)
VALUES LESS THAN (‘01-JUL-2008’)

- Drop of previous partition moves lower boundary
 - “June 2008” now spawns 01-MAY-2008 to 30-JUN-2008
Partition bounds for interval partitioning
 - Partitions have upper and lower bounds
 - Derived by INTERVAL function and last range partition

VALUES LESS THAN ('01-APR-2008')
LESS THAN ('01-APR-2008' + 2 x INTERVAL (1 MONTH))
LESS THAN ('01-APR-2008' + 3 x INTERVAL (1 MONTH))
Interval versus Range Partitioning
Partition Bounds

- Partition bounds for interval partitioning
 - Partitions have upper and lower bounds
 - Derived by INTERVAL function and last range partition

VALUES LESS THAN ('01-APR-2008')
LESS THAN ('01-APR-2008' + 2 x INTERVAL (1 MONTH))
LESS THAN ('01-APR-2008' + 3 x INTERVAL (1 MONTH))

- Drop does not impact partition boundaries
 - “June 2008” still spawns 01-JUN-2008 to 30-JUN-2008
Interval versus Range Partitioning
Partition Bounds

- Partition bounds for interval partitioning
 - Partitions have upper and lower bounds
 - Derived by INTERVAL function and last range partition

VALUES LESS THAN ('01-APR-2008')
LESS THAN ('01-APR-2008' + 2 x INTERVAL (1 MONTH))
LESS THAN ('01-APR-2008' + 3 x INTERVAL (1 MONTH))

- There is one untouchable partitions
 - You cannot remove the highest range partition because it is needed for the interval calculation
Interval versus Range Partitioning
Partition Naming

• Range partitions can be named
 • System generated name if not specified

 SQL> alter table t add partition values less than(20);
 Table altered.
 SQL> alter table t add partition P30 values less than(30);
 Table altered.

• Interval partitions cannot be named
 • Always system generated name

 SQL> alter table t add partition values less than(20);
 *
 ERROR at line 1: ORA-14760: ADD PARTITION is not permitted on Interval partitioned objects

• Use new deterministic partition extension
 ‘PARTITION FOR (<value>)’ clause

 SQL> alter table t1 rename partition for (9) to p_10;
 Table altered.
Interval versus Range Partitioning
Partition Merge

- Merge two adjacent partitions for range partitioning
 - Upper bound of higher partition is new upper bound
 - Lower bound derived through upper bound of previous partition

MERGE PARTITIONS MAY_2008, JUN_2008 INTO PARTITION MAY_JUNE_2008
Interval versus Range Partitioning
Partition Merge

• Merge two adjacent partitions for range partitioning
 • Upper bound of higher partition is new upper bound
 • Lower bound derived through upper bound of previous partition

MERGE PARTITIONS MAY_2008, JUN_2008 INTO PARTITION MAY_JUNE_2008

• New segment for merged partition is created
 • Rest of the table is unaffected
Interval versus Range Partitioning
Partition Merge

• Merge two adjacent partitions for interval partitioning
 • Upper bound of higher partition is new upper bound
 • Lower bound derived through lower bound of first partition

MERGE PARTITIONS MAY_2008, JUN_2008 INTO PARTITION MAY_JUNE_2008
Interval versus Range Partitioning
Partition Merge

- Merge two adjacent partitions for interval partitioning
 - Upper bound of higher partition is new upper bound
 - Lower bound derived through lower bound of first partition

MERGE PARTITIONS MAY_2008, JUN_2008 INTO PARTITION MAY_JUNE_2008

- New segment for merged partition is created
- Holes before the highest non-interval partition will be silently “merged” as well
 - Interval only valid beyond the highest non-interval partition
Interval Partitioning

- Benefit of full automation
- Should be considered for every range partitioned table
- Segments are allocated as soon as new data arrives
 - No need to create new partitions
 - Local indexes are created and maintained as well
- Interval Partitioning can be considered a natural extension of range partitioning
 - Most people will not experience any difference
 - ... but be aware of the subtle differences
Summary

• Partitioning in a nutshell
 • Partitioning is simple yet very powerful

• Partitioning benefits
 • Everybody will benefit

• Partitioning for your business needs
 • Model for your needs

• Things you might not know ..
 • Interval Partitioning versus Range Partitioning

• There is always room for improvements
 • Any ideas?? Email hermann.baer@oracle.com

• Q&A
Q & A
For More Information

search.oracle.com

Oracle Partitioning

or

oracle.com