
Xtreme

SQL Tuning: The
Tuning Limbo

Iggy Fernandez
Database Specialists, Inc.
www.dbspecialists.com

NoCOUG

Fall Meeting 2008

2

Speaker Qualifications

Oracle DBA at Database Specialists
Editor of the Journal of the Northern California Oracle
Users Group
Author of Beginning Oracle Database 11g
Administration

3

Definition of SQL Efficiency

Amount of computing resources used in
producing the output
Elapsed time is not a good proxy
Logical reads is a good proxy

4

Identifying Inefficient SQL Statements

Enterprise Manager, SQL Developer, Toad
Tracing sessions
– dbms_monitor.session_trace_enable
– dbms_monitor.session_trace_disable

Statspack reports
Diagnostic Pack
– AWR
– ADDM

5

Causes of Inefficient SQL

Optimizer limitations
Many ways to write a query
Failure to use advanced features
– Analytic Functions

Ad-hoc queries
Poor logical and physical database design
Inadequate database maintenance

6

Other Performance Inhibitors

Hardware limitations
Mixed workloads
Contention

7

Ways to Improve SQL—
 Physical Database Design

Indexes
– B-tree indexes
– Reverse key indexes
– Function-based indexes
– Indexes on virtual columns
– Bitmap indexes

Clusters
IOTs
Partitioning

8

Ways To Improve SQL—
 Hints

LEADING
ORDERED
INDEX
FULL
NO_MERGE
USE_NL, USE_HASH, USE_MERGE

9

Ways To Improve SQL—
 Statistics

ENABLE_JOB, DISABLE_JOB, START_JOB
GATHER_*_STATS
DELETE_*_STATS
EXPORT_*_STATS
IMPORT_*_STATS
RESTORE_*_STATS
LOCK_*_STATS
SET_*_PREFS

10

Statistics—
 Quotable Quotes

“It astonishes me how many shops prohibit any
unapproved production changes and yet re-
analyze schema stats weekly. Evidently, they do
not understand that the purpose of schema re-
analysis is to change their production SQL
execution plans, and they act surprised when
performance changes!”
—Don Burleson

11

Statistics—
 Quotable Quotes

“I have advised many customers to stop
analyzing, thereby creating a more stable
environment overnight.”
—Mogens Norgaard in the NoCOUG Journal

12

Statistics
 —Quotable Quotes

“Oh, and by the way, could you please stop
gathering statistics constantly? I don’t know much
about databases, but I do think I know the
following: small tables tend to stay small, large
tables tend to stay large, unique indexes have a
tendency to stay unique, and non-unique indexes
often stay non-unique.”
—Dave Ensor as remembered by Mogens
Norgaard and quoted in the NoCOUG Journal

13

Statistics—Quotable Quotes

“Monitor the changes in execution plans and/or
performance for the individual SQL statements …
and perhaps as a consequence re-gather stats.
That way, you’d leave stuff alone that works very
well, thank you, and you’d put your efforts into
exactly the things that have become worse.”
—Mogens Norgaard, in the NoCOUG Journal

14

Statistics
 —Quotable Quotes

“It is my firm belief that most scheduled statistics-
gathering jobs do not cause much harm only
because (most) changes in the statistics were
insignificant as far as the optimizer is
concerned—meaning that it was an exercise in
futility.”
—Wolfgang Breitling in the NoCOUG Journal

15

Statistics
 —Quotable Quotes

“There are some statistics about your data that
can be left unchanged for a long time, possibly
forever; there are some statistics that need to be
changed periodically; and there are some
statistics that need to be changed constantly. …
The biggest problem is that you need to
understand the data.”
—Jonathan Lewis in the NoCOUG Journal

16

Tuning By Example

CREATE TABLE my_tables AS
SELECT dba_tables.*
FROM dba_tables;

CREATE TABLE my_indexes AS
SELECT dba_indexes.*
FROM dba_tables, dba_indexes

WHERE dba_tables.owner = dba_indexes.table_owner
AND dba_tables.table_name = dba_indexes.table_name;

17

Tables Which Have a Bitmap Index

EXEC :index_type := 'BITMAP';

SELECT DISTINCT my_tables.owner,
my_tables.table_name,
my_tables.tablespace_name

FROM my_tables, my_indexes
WHERE my_tables.owner = my_indexes.table_owner
AND my_tables.table_name = my_indexes.table_name
AND my_indexes.index_type = :index_type;

18

Autotrace

ALTER SYSTEM FLUSH SHARED_POOL;
ALTER SYSTEM FLUSH BUFFER_CACHE;

Statistics

1653 recursive calls
0 db block gets

498 consistent gets
137 physical reads

0 redo size
645 bytes sent via SQL*Net to client
381 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
37 sorts (memory)
0 sorts (disk)
5 rows processed

19

Autotrace

ALTER SYSTEM FLUSH BUFFER_CACHE;

Statistics

0 recursive calls
0 db block gets

108 consistent gets
104 physical reads

0 redo size
645 bytes sent via SQL*Net to client
381 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
5 rows processed

20

Baseline

Statistics

0 recursive calls
0 db block gets

108 consistent gets
0 physical reads
0 redo size

645 bytes sent via SQL*Net to client
381 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
5 rows processed

21

Execution Plan I

--
| Operation | Name | Buffers |
--
HASH UNIQUE		108
HASH JOIN		108
TABLE ACCESS FULL	MY_INDEXES	58
TABLE ACCESS FULL	MY_TABLES	50
--

22

Constraints

ALTER TABLE my_tables
ADD (CONSTRAINT my_tables_pk PRIMARY KEY (owner,
table_name));

ALTER TABLE my_indexes
ADD (CONSTRAINT my_indexes_pk PRIMARY KEY (owner,
index_name));

ALTER TABLE my_indexes
ADD (CONSTRAINT my_indexes_fk1 FOREIGN KEY
(table_owner, table_name) REFERENCES my_tables);

23

Indexes

CREATE INDEX my_indexes_i1 ON my_indexes
(index_type);

CREATE INDEX my_indexes_fk1 ON my_indexes
(table_owner, table_name);

24

Statistics

EXEC
DBMS_STATS.gather_table_stats(ownname=>'IFERNANDEZ'
,tabname=>'MY_TABLES');
EXEC
DBMS_STATS.gather_table_stats(ownname=>'IFERNANDEZ'
,tabname=>'MY_INDEXES');
EXEC
DBMS_STATS.gather_index_stats(ownname=>'IFERNANDEZ'
,indname=>'MY_TABLES_PK');
EXEC
DBMS_STATS.gather_index_stats(ownname=>'IFERNANDEZ'
,indname=>'MY_INDEXES_I1');
EXEC
DBMS_STATS.gather_index_stats(ownname=>'IFERNANDEZ'
,indname=>'MY_INDEXES_FK1');

25

Execution Plan II

| Operation | Name | Buffers |

HASH UNIQUE		55
HASH JOIN		55
TABLE ACCESS BY INDEX ROWID	MY_INDEXES	5
INDEX RANGE SCAN	MY_INDEXES_I1	2
TABLE ACCESS FULL	MY_TABLES	50

26

SQL Access Advisor

VARIABLE tuning_task VARCHAR2(32);
EXEC :tuning_task :=
dbms_sqltune.create_tuning_task (sql_id =>
'&sqlID');

EXEC dbms_sqltune.execute_tuning_task(task_name =>
:tuning_task);

SELECT DBMS_SQLTUNE.report_tuning_task
(:tuning_task) AS recommendations

FROM DUAL;

27

Recommendations

The execution plan of this statement can be
improved by creating one or more indices.

Recommendation (estimated benefit: 100%)
--
- Consider running the Access Advisor to improve

the physical schema design or creating the
recommended index.
create index IFERNANDEZ.IDX$$_00470001 on
IFERNANDEZ.MY_TABLES('OWNER',
'TABLE_NAME','TABLESPACE_NAME');

28

Hints

EXEC :index_type := 'BITMAP';

SELECT /*+ INDEX(MY_INDEXES (INDEX_TYPE))
INDEX(MY_TABLES (OWNER TABLE_NAME))
LEADING(MY_INDEXES MY_TABLES)
USE_NL(MY_TABLES)

*/
DISTINCT my_tables.owner,

my_tables.table_name,
my_tables.tablespace_name

FROM my_tables, my_indexes
WHERE my_tables.owner = my_indexes.table_owner
AND my_tables.table_name = my_indexes.table_name
AND my_indexes.index_type = :index_type;

29

Execution Plan III

| Operation | Name | Buffers |

HASH UNIQUE		37
NESTED LOOPS		37
TABLE ACCESS BY INDEX ROWID	MY_INDEXES	5
INDEX RANGE SCAN	MY_INDEXES_I1	2
TABLE ACCESS BY INDEX ROWID	MY_TABLES	32
INDEX UNIQUE SCAN	MY_TABLES_PK	17

30

Cluster

CREATE CLUSTER my_cluster (index_type VARCHAR2(27))
SIZE 8192 HASHKEYS 5;

31

Materialized View

CREATE MATERIALIZED VIEW LOG ON my_tables WITH
ROWID;
CREATE MATERIALIZED VIEW LOG ON my_indexes WITH
ROWID;

CREATE MATERIALIZED VIEW my_mv
CLUSTER my_cluster (index_type)
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT t.ROWID AS table_rowid,

t.owner AS table_owner,
t.table_name,
t.tablespace_name,
i.ROWID AS index_rowid,
i.index_type

FROM my_tables t,
my_indexes i

WHERE t.owner = i.table_owner
AND t.table_name = i.table_name;

32

Execution Plan IV

--
| Operation | Name | Buffers |
--
| HASH UNIQUE | | 1 |
| TABLE ACCESS HASH| MY_MV | 1 |
--

33

Result Cache

SELECT /*+ RESULT_CACHE */
DISTINCT my_tables.owner,

my_tables.table_name,
my_tables.tablespace_name

FROM my_tables, my_indexes
WHERE my_tables.owner = my_indexes.table_owner
AND my_tables.table_name = my_indexes.table_name
AND my_indexes.index_type = :index_type;

34

Execution Plan V

--
| Operation | Name |
--
SELECT STATEMENT	
RESULT CACHE	afscr8p240b168b5az0dkd4k65
HASH UNIQUE	
TABLE ACCESS HASH	MY_MV
--

35

White Paper

Contains all of the material we discussed today
and more
Code samples are easier to read
Easier to cut and paste the code for testing on your
system
Download:
www.dbspecialists.com/presentations

36

Contact Information

Iggy Fernandez
Database Specialists, Inc.
388 Market Street, Suite 400
San Francisco, CA 94111

Tel: 415-344-0500 Ext. 43
Email: ifernandez@dbspecialists.com
Web: www.dbspecialists.com

37

There’s No Substitute For Experience

Proven track record with emerging to Fortune
500 clients since 1995.
Services and support plans tailored to your
business needs and budget.
Team of recognized industry experts and
thought leaders.

Database Specialists helps you
increase uptime, improve performance,

minimize risk, and reduce costs

Database Specialists helps you
increase uptime, improve performance,

minimize risk, and reduce costs

38

About Database Specialists

Database Specialists, Inc. provides Oracle database
consulting in Solaris, Linux, HP-UX, AIX, and Windows
environments.
Our DBA Pro offering and Database Rx™ tools provide remote
database support and 24/7 coverage at an attractive price
point.
We specialize in short term projects including upgrades,
performance tuning and health checks.
Our Oracle DBAs each have a minimum of 10 years of Oracle
experience with a focus on Oracle technology, mission-critical
production support and RAC environments.
Database Specialists is US-based.

Database Specialists helps you
increase uptime, improve performance,

minimize risk, and reduce costs

Database Specialists helps you
increase uptime, improve performance,

minimize risk, and reduce costs

Xtreme

SQL Tuning: The
Tuning Limbo

Iggy Fernandez
Database Specialists, Inc.
www.dbspecialists.com

NoCOUG

Fall Meeting 2008

	Xtreme SQL Tuning: The Tuning Limbo
	Speaker Qualifications
	Definition of SQL Efficiency
	Identifying Inefficient SQL Statements	
	Causes of Inefficient SQL
	Other Performance Inhibitors
	Ways to Improve SQL—�Physical Database Design
	Ways To Improve SQL—�Hints
	Ways To Improve SQL—�Statistics
	Statistics—�Quotable Quotes
	Statistics—�Quotable Quotes
	Statistics�—Quotable Quotes
	Statistics—Quotable Quotes
	Statistics�—Quotable Quotes
	Statistics�—Quotable Quotes
	Tuning By Example
	Tables Which Have a Bitmap Index
	Autotrace
	Autotrace
	Baseline
	Execution Plan I
	Constraints
	Indexes
	Statistics
	Execution Plan II
	SQL Access Advisor
	Recommendations
	Hints
	Execution Plan III
	Cluster
	Materialized View
	Execution Plan IV
	Result Cache
	Execution Plan V
	White Paper
	Contact Information
	There’s No Substitute For Experience
	Slide Number 38
	Xtreme SQL Tuning: The Tuning Limbo

