
1

Millsap’s Grand Unified
Theory of “Tuning”

Cary Millsap
cary.millsap@method-r.com

Northern California Oracle Users Group
San Ramon, California
9:30a–10:30a Thursday 21 August 2008

Copyright © 2008 by Method R Corporation

Cary Millsap

2

3

http://method-r.com

http://carymillsap.blogspot.com

cary.millsap@method-r.com

19861986

19891989

19991999

20082008

SoftwareSoftware
DeveloperDeveloper

andand

PerformancePerformance
AnalystAnalyst

4

5

Millsap’s Grand Unified
Theory of “Tuning”

Cary Millsap
cary.millsap@method-r.com

Northern California Oracle Users Group
San Ramon, California
9:30a–10:30a Thursday 21 August 2008

Copyright © 2008 by Method R Corporation

So what's with the
quotes?

6

Millsap’s Grand Unified
Theory of “Tuning”

Cary Millsap
cary.millsap@method-r.com

Northern California Oracle Users Group
San Ramon, California
9:30a–10:30a Thursday 21 August 2008

Copyright © 2008 by Method R Corporation

We'll get to that
shortly

7

Part 1: G.U.T.

There are two types of
performance problems

in this world...

8

1
Response time
problems.

2
Inefficiencies that aren’t
response time problems.

Yet.

9

Therefore...

G.U.T. proposition l

You must be able to attack
response time problems for

specific tasks that the
business cares about.

10

Example...

Posting hurts.

Fix it.

11

Why should you care?

12

G.U.T. proposition 2

You need to be able to attack
inefficiencies that aren’t yet
noticeable as user response

time problems.

Example...

13

Posting takes 3 hours.

It should take 2,
but no user really cares.

Why should you care?

14

Because *waste*
costs you money

TCO $$

Waste

Labor $$

Hardware $$

Software $$

15

And waste...

...Makes
other work
go slower

16

...Even your
fast stuff

recap...

17

G.U.T. propositions

You must be able to attack
1. Response time problems
2. Efficiency problems

Part 2: Historical perspective

18

In the beginning...

1989

6.0.26

19

“Tuning” was...

bstat + estat

=

report.txt

20

VDB_OBJECT_CACHEVDB_OBJECT_CACHE

V$FILESTATV$FILESTAT

V$LATCHV$LATCH

V$LIBRARYCACHEV$LIBRARYCACHE

V$LOCKV$LOCK

V$OPEN_CURSORV$OPEN_CURSOR

V$PARAMETERV$PARAMETER

V$PROCESSV$PROCESS

V$ROLLSTATV$ROLLSTAT
V$ROWCACHEV$ROWCACHE

V$SESSIONV$SESSION

V$SESSTATV$SESSTAT

V$SQLV$SQL
V$SQLTEXTV$SQLTEXT

V$TIMERV$TIMER

V$TRANSACTIONV$TRANSACTION

V$WAITSTATV$WAITSTAT

V$SESS_IOV$SESS_IO
V$SYSSTATV$SYSSTAT

V$FIXED_VIEW_DEFINITIONV$FIXED_VIEW_DEFINITION

psps

sarsar

vmstatvmstat

iostatiostat

netstatnetstat

pstatpstat

nfsstatnfsstat

People looked for
“bad numbers”

21

Inefficiencies

But how can you know
what causes a specific

task to be slow?

22

It's It's
hard hard

parsingparsing

It'sIt's
II//OO

It's It's
always always

II//OO

It'sIt's
bad SQLbad SQL

It's It's
always always
bad SQLbad SQL

There's There's
not not

enough enough
memorymemory

There's There's
never never
enough enough
memorymemory

23

My problem...

How can you possibly

KNOW
that?

24

Reminded me of...

vailroger.googlepages.com/orionconstellation

25

You (do(see it...

Right?

vailroger.googlepages.com/orionconstellation

26

But who says

that
is what you

have to see?

27

Why not?

The problem with
bstat/estat, ...

28

and
utlbstat/utlestat, ...

and statspack, ...

29

And Even AWR, ...

30

It's It's
hard hard

parsingparsing

It'sIt's
II//OO

It's It's
always always

II//OO

It'sIt's
bad SQLbad SQL

It's It's
always always
bad SQLbad SQL

There's There's
not not

enough enough
memorymemory

There's There's
never never
enough enough
memorymemory

vailroger.googlepages.com/orionconstellation

31

Sometimes You
(can't(know

32

example...

What is your task's
problem?

33

Resource consumption (seconds) by task

100%10,100Total

23%2,323Other

3%275I/O

74%7,502Latches

Total system

Actually not

34

Resource consumption (seconds) by task

100%100100%10,100Total

23%2323%2,323Other

75%753%275I/O

2%274%7,502Latches

Your taskTotal system

Here's how it happens

35

Resource consumption (seconds) by task

100%10,000100%100100%10,100Total

23%2,30023%2323%2,323Other

2%20075%753%275I/O

75%7,5002%274%7,502Latches

Other tasksYour taskTotal system

Sometimes You
(can't(know

36

...Until you
look at the right

it

Resource consumption (seconds) by task

100%10,000100%100100%10,100Total

23%2,30023%2323%2,323Other

2%20075%753%275I/O

75%7,5002%274%7,502Latches

Other tasksYour taskTotal system

37

When you don't...

38

An epiphany...

1991

(Oracle release doesn’t matter)

39

“A higher database buffer cache
hit ratio is a bad thing”

―Willis Ranney

Huh?

40

Imagine...
Q1 and Q2 return
identical results

Which is better?

41

90%Q2

99%Q1

BCHRQuery

1

1

Disk
accesses

1090%Q2

10099%Q1

Memory
accessesBCHRQuery

42

You can't count
on the ratios!

43

It's It's
hard hard

parsingparsing

It'sIt's
II//OO

It's It's
always always

II//OO

It'sIt's
bad SQLbad SQL

It's It's
always always
bad SQLbad SQL

There's There's
not not

enough enough
memorymemory

There's There's
never never
enough enough
memorymemory

The rules in a lot of
people's heads...

44

Were wrong.

45

Another man who
knew this...

46

“To ‘tune,’ watch the user.
Not the DBA.”

―Dave Ensor

47

But how?

tkprof

48

An Oracle
developer tool

since v6

select count(*) select count(*)
fromfrom
dba_objectsdba_objects

call count call count cpucpu elapsed disk query current rowselapsed disk query current rows
-------------- ------------ ---------------- -------------------- -------------------- -------------------- -------------------- --------------------
Parse 1 0.07 0.15 0 0 Parse 1 0.07 0.15 0 0 0 00 0
Execute 1 0.00 Execute 1 0.00 0.000.00 0 0 0 00 0 0 0
Fetch 2 0.21 0.26 4 6695 Fetch 2 0.21 0.26 4 6695 0 10 1
-------------- ------------ ---------------- -------------------- -------------------- -------------------- -------------------- --------------------
total 4 0.29 0.41 4 6695 total 4 0.29 0.41 4 6695 0 10 1

Misses in library cache during parse: 1Misses in library cache during parse: 1
Optimizer mode: ALL_ROWSOptimizer mode: ALL_ROWS
Parsing user id: 5 Parsing user id: 5

Rows Row Source OperationRows Row Source Operation
-------------- --

1 SORT AGGREGATE (1 SORT AGGREGATE (crcr=6695 pr=4 pw=0 time=264659 us)=6695 pr=4 pw=0 time=264659 us)
52319 VIEW DBA_OBJECTS (52319 VIEW DBA_OBJECTS (crcr=6695 pr=4 pw=0 time=1256721 us)=6695 pr=4 pw=0 time=1256721 us)
52319 UNION52319 UNION--ALL (ALL (crcr=6695 pr=4 pw=0 time=942801 us)=6695 pr=4 pw=0 time=942801 us)
52319 FILTER (52319 FILTER (crcr=6694 pr=3 pw=0 time=367280 us)=6694 pr=3 pw=0 time=367280 us)
53574 HASH JOIN (53574 HASH JOIN (crcr=655 pr=0 pw=0 time=804635 us)=655 pr=0 pw=0 time=804635 us)

67 TABLE ACCESS FULL USER$ (67 TABLE ACCESS FULL USER$ (crcr=6 pr=0 pw=0 time=242 us)=6 pr=0 pw=0 time=242 us)
53574 TABLE ACCESS FULL OBJ$ (53574 TABLE ACCESS FULL OBJ$ (crcr=649 pr=0 pw=0 time=216062 us)=649 pr=0 pw=0 time=216062 us)
2379 TABLE ACCESS BY INDEX ROWID IND$ (2379 TABLE ACCESS BY INDEX ROWID IND$ (crcr=6039 pr=3 pw=0 time=145102 us)=6039 pr=3 pw=0 time=145102 us)
3013 INDEX UNIQUE SCAN I_IND1 (3013 INDEX UNIQUE SCAN I_IND1 (crcr=3015 pr=3 pw=0 time=88196 =3015 pr=3 pw=0 time=88196 us)(objectus)(object id 39)id 39)

0 NESTED LOOPS (0 NESTED LOOPS (crcr=1 pr=1 pw=0 time=2590 us)=1 pr=1 pw=0 time=2590 us)
0 INDEX FULL SCAN I_LINK1 (0 INDEX FULL SCAN I_LINK1 (crcr=1 pr=1 pw=0 time=2578 =1 pr=1 pw=0 time=2578 us)(objectus)(object id 107)id 107)
0 TABLE ACCESS CLUSTER USER$ (0 TABLE ACCESS CLUSTER USER$ (crcr=0 pr=0 pw=0 time=0 us)=0 pr=0 pw=0 time=0 us)
0 INDEX UNIQUE SCAN I_USER# (0 INDEX UNIQUE SCAN I_USER# (crcr=0 pr=0 pw=0 time=0 =0 pr=0 pw=0 time=0 us)(objectus)(object id 11)id 11)

49

It's what you need...

(if(
your problem

is sql

50

And of course,
“the problem is

always SQL”

51

Next...

Inspiration

1995

Oracle7

52

“I can reduce response time by X

if you let me do Y”

―Virag Saksena

53

My goal...

Put this in a bottle.

54

Which brings me back
to those “quotes”

Millsap’s Grand Unified
Theory of “Tuning”

Cary Millsap
cary.millsap@method-r.com

Northern California Oracle Users Group
San Ramon, California
9:30a–10:30a Thursday 21 August 2008

Copyright © 2008 by Method R Corporation

55

The problem...

“Tuning” isn't good
enough

56

Maximize economic
value

Make some
component faster

What we wantTuning

Informed actionTrial and error

Maximize economic
value

Make some
component faster

What we wantTuning

57

Accountability to
forecast

Weak accountability

Informed actionTrial and error

Maximize economic
value

Make some
component faster

What we wantTuning

Success measured by
results

Success measured by
effort

Accountability to
forecast

Weak accountability

Informed actionTrial and error

Maximize economic
value

Make some
component faster

What we wantTuning

58

Success measured by
results

Success measured by
effort

Accountability to
forecast

Weak accountability

Informed actionTrial and error

Maximize economic
value

Make some
component faster

?Tuning

Success measured by
results

Success measured by
effort

Accountability to
forecast

Weak accountability

Informed actionTrial and error

Maximize economic
value

Make some
component faster

*** Optimization ***Tuning

59

Success measured by
results

Success measured by
effort

Accountability to
forecast

Weak accountability

Informed actionTrial and error

Maximize economic
value

Make some
component faster

OptimizationTuning

Part 3: How

60

The goal...

Optimization! ...in a bottle

2000

8i, 9i

61

Wanted...

Repeatable

Teachable

62

method
=

deterministic
sequence of steps

There (were(
methods...

63

Oracle Performance Improvement Method

1. Get candid feedback from users
2. Get full set of OS, db, app statistics—good and bad
3. Sanity check the OS
4. Review Top Ten list*
5. Build conceptual model
6. Propose remedies
7. Validate changes
8. Repeat until goals are met or become impossible

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

Oracle Performance Improvement Method

1. Get candid feedback from users
2. Get full set of OS, db, app statistics—good and bad
3. Sanity check the OS
4. Review Top Ten list*
5. Build conceptual model
6. Propose remedies
7. Validate changes
8. Repeat until goals are met or become impossible

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

64

*The OPIM Top Ten list

1. Bad connection management
2. Bad use of cursors and the shared pool
3. Bad SQL
4. Use of nonstandard initialization parameters
5. Getting database I/O wrong
6. Redo log setup problems
7. Serialization of data blocks
8. Long full table scans
9. High amounts of recursive SQL
10. Deployment and migration errors

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

But there were Two
big problems...

65

*The OPIM Top Ten list

1. Bad connection management
2. Bad use of cursors and the shared pool
3. Bad SQL
4. Use of nonstandard initialization parameters
5. Getting database I/O wrong
6. Redo log setup problems
7. Serialization of data blocks
8. Long full table scans
9. High amounts of recursive SQL
10. Deployment and migration errors

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

What if your problem is
number nine?

*The OPIM Top Ten list

1. Bad connection management
2. Bad use of cursors and the shared pool
3. Bad SQL
4. Use of nonstandard initialization parameters
5. Getting database I/O wrong
6. Redo log setup problems
7. Serialization of data blocks
8. Long full table scans
9. High amounts of recursive SQL
10. Deployment and migration errors

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

do you really want to
spend time checking the

first eight?

66

*The OPIM Top Ten list

1. Bad connection management
2. Bad use of cursors and the shared pool
3. Bad SQL
4. Use of nonstandard initialization parameters
5. Getting database I/O wrong
6. Redo log setup problems
7. Serialization of data blocks
8. Long full table scans
9. High amounts of recursive SQL
10. Deployment and migration errors

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

...And What if your
problem is

number eleven?

*The OPIM Top Ten list

1. Bad connection management
2. Bad use of cursors and the shared pool
3. Bad SQL
4. Use of nonstandard initialization parameters
5. Getting database I/O wrong
6. Redo log setup problems
7. Serialization of data blocks
8. Long full table scans
9. High amounts of recursive SQL
10. Deployment and migration errors

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/technique.htm

67

It's like a
full table scan

...of a table that's
missing some rows

68

What we need...

An (index(into the
problem you're having

right now...

69

...Whose (key(is the
name of your
business task

+ =

YAPPYAPP

Kolk &Kolk &
YamaguchiYamaguchi

70

Method R
1. Target the right task
2. Collect its R details
3. Forecast, act
4. Repeat until optimized

Resource consumption (seconds) by task

100%10,000100%100100%10,100Total

23%2,30023%2323%2,323Other

2%20075%753%275I/O

75%7,5002%274%7,502Latches

Other tasksYour taskTotal system

71

Oracle extended SQL
trace data

“Case studies” session
for more info

72

“By the way... The problem is not
always your SQL.”

―Cary Millsap

73

Meanwhile, back at
Oracle Corporation...

bst
at/

est
at

utlb
sta

t/utle
sta

t

Stat
spa

ck

ASH/
AWR

74

Easier, better access
to system workload

statistics

Active session history ...ASH

75

The task perspective...

Resource consumption (seconds) by task

100%10,000100%100100%10,100Total

23%2,30023%2323%2,323Other

2%20075%753%275I/O

75%7,5002%274%7,502Latches

Other tasksYour taskTotal system

76

Resource consumption (seconds) by task

100%10,000100%100100%10,100Total

23%2,30023%2323%2,323Other

2%20075%753%275I/O

75%7,5002%274%7,502Latches

Other tasksYour taskTotal system

How it all fits...

77

The grand

unified
theory

G.U.T. proposition l

You must be able to attack
response time problems for

specific tasks that the
business cares about.

78

trace data

Where does this task’s
time go?

79

ASH answers questions
about workload

context

Who had my lock?

Who had my latch?

Who was eating my CPU?

Who was fighting me for disk?

80

G.U.T. proposition 2

You need to be able to attack
inefficiencies that aren’t yet
noticeable as user response

time problems.

ASH

81

Who’s using the most stuff?

trace data answers
questions about task

efficiency

82

Can this task be performed
more efficiently?

Almost impossible to
prove this without

task data

83

You don't
have to trace

everything

...You can *sample*
with traces, too

84

Trace *some* tasks

How the tools fit
together...

85

ASH

TraceASH

TraceResponse
time

Efficiency

Enough?

86

Thank you

http://wordle.net

87

http://method-r.com

http://carymillsap.blogspot.com

cary.millsap@method-r.com

