
Made from the Same Mold: 
Templating Approaches for 

ADF Faces Applications

Peter Koletzke
Technical Director & 
Principal Instructor

2

Survey
• Java development

– 1-2 years?
– 3-12 years?
– More than 12 years?

• JDeveloper
– 1-3 years?
– More than 3 years?
– 10.1.3.x?
– 11g preview?

• Template work
– Which technologies?

3

Nature made him, 
and then broke the mould.

Natura il fece, 
e poi ruppe la stampa.

—Ludovico Ariosto (1474–1533), 
Orlando Furioso, canto x. stanza 84

The Original Template

4

Long shall we seek his likeness, long in vain,
And turn to all of him which may remain,

Sighing that Nature formed but one such man,
And broke the die—in moulding Sheridan!

—George Gordon Noel Byron (1788–1824), 
Monody on the Death of Sheridan 

We need role models 
who are going to break the mold. 

— Carly Simon (1945-)

Uses of The Template



5

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

Slides and white paper will be 
on the NoCOUG website.

6

Why Templates?
1. Enhance user productivity

– Consistent look and feel means users can 
quickly grasp how an application works 

– No need to relearn a technique for each 
page

2. Improved maintainability
– Common elements are in only one place
– Changes to these elements require 

minimal coding
– Reuse is a GRBP

7

The Process in JDeveloper
1. Select the template file in the 

navigator
2. Select File | Save As and locate the 

new directory
3. Name the file and click Save
• This creates a copy of whatever was 

in the template
• Objective: reference as much

as possible in the template

Example: NoCOUG Home Page
Header

Footer

Nav Bar

Content



9

Approaches
• Applies to Java EE code

– JavaServer Pages (JSP), for 
example

– Can also be applied to other types of 
code: standard HTML, Oracle 
Forms?

• Different levels of file use
1. Single common elements file
2. Multiple common elements files

10

Single Common Elements File
• Template is a single JSP file

– Includes header, footer, and nav bar
– Includes area for contents to be included

• Controller determines which page to 
include

– jsp:include
• All pages show a single template 

file with contents specific to 
the function

11

Single Common Elements File

Content 1

Content 2

Content 3

Content 4Template Page

Content Pages

<include content>

12

Single Common Elements File
• Benefits

– Four-cell layout does not need to be 
repeated on each page

• Easier to change look and feel (LAF)
• New pages are less work to create

– Only one file to change if design 
changes, no change to contents pages

• Drawback
– Non-standard use of Controller

• Requires routing code for page flow



13

Multiple Common Elements Files

• One JSP file for each common area
– header.jsp
– navbar.jsp
– footer.jsp

• Four-cell arrangement is coded into 
each content page
– Cells use jsp:include to display the 

common element files
• Template files have no cell layout

14

Multiple Common 
Elements Files

Template Pages
Content Pages

<include header>

<include footer>

<incl
nav
bar>

Content 1

<include header>

<include footer>

<incl 
nav
bar>

Content 2

<include header>

<include footer>

<incl 
nav
bar>

Content 3

<include header>

<include footer>

<incl 
nav
bar>

Content 4

15

Multiple Common Elements Files
• Benefits

– Common template areas used by all pages (same 
as Include Content)
• Content pages in this case hold includes for common 

elements

– No special Controller code is required
• Can use more declarative code

• Drawback
– Layout cells repeat on each page

• If this design changes, all pages need 
to be changed

• Can do a lot with copy and paste in the 
Structure window

16

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future



17

Review: ADF Faces
• Oracle-invented, open source, JavaServer 

Faces (JSF) tag library
– F.k.a., ADF UIX
– Rich UI components: tables, trees, shuttles, 

date and color pickers
– AJAX-like operations using JavaScript & XML

• Supports multiple display formats
– Web browser, wireless, telnet
– Being used to develop Fusion

Applications
• Well-supported in JDeveloper

18

Skins in ADF Faces
• May be needed in conjunction with 

templates to supply common LAF
• Skins are style sheets and a resource 

files for text in the component
• Use them to highly customize the 

appearance
• Default skin for ADF Faces is 

BLAF (a.k.a.,”oracle”)

19

Oracle Browser Look And Feel
• BLAF: a highly evolved UI standard 

– 300+ pages of documentation
– Includes page flow standards
– www.oracle.com/technology/tech/blaf

• Used in Oracle E-Business Suite
– EBS is coded in UIX but the same design 

applies to ADF Faces
• If you have EBS applications, this 

might be a logical choice
• The skin assignment is easy to 

change
20

Changing Skins
• Single property for all pages in application

– adf-faces-config.xml - in WEB-INF directory
– Change the property skin-family
– Three default skins – oracle (BLAF), minimal, 

simple



21

Oracle Skin

22

Minimal Skin

23

Simple Skin

24

“I Don’t Like Those Skins”
• Fine. Then roll your own.

– Be sure to dedicate enough time to this task
– Read up before beginning (references coming up)

• Skins use style sheets and a resource bundle 
(for text inside the components)
– Your work is mostly in the style sheets

• Start by extending the simple skin
• Declare CSS selectors to override the 

simple skin defaults
• Register the skin in adf-faces-skins.xml



25

Use These Resources
• JDeveloper help system

– Selectors for Skinning ADF Faces Components
• Chapter 22 - ADF Developer's Guide

– 22.3 Using Skins to Change the Look and Feel
• Sample skin with OTN LAF:

– blogs.oracle.com/jheadstart/2006/12/22#a122
• ADF Faces skin selectors

– Docs on the styles used for skins
– www.oracle.com/technology/products/ 

jdev/htdocs/partners/addins/exchange/
jsf/doc/skin-selectors.html

26

More Resources
• Olaf Heimburger - ADF Faces 10.1.3: 

Setting skins per user role
– blogs.oracle.com/olaf/2007/04/23

• Developing and Using ADF Faces Skins
– Jonas Jacobi
– www.oracle.com/technology/products/jdev/

101/howtos/adfskins/ index.html
• Oracle WebCenter Framework 

Developer's Guide
– Defining and Applying Styles to Core 

Customizable Components

27

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

28

First: What Does the Java 
Community Offer?

• Nothing in the Java EE standards yet
• Lots of frameworks

– None natively supported in JDeveloper
– They are all supported as is any Java 

framework
• Some popular frameworks

– Tiles
– Facelets
– Velocity



29

Tiles
• Struts heritage

– Still part of Struts
– Use with the Struts controller framework
– Standalone version on the horizon

• “Standalone Tile” or “Tiles2”

• Good for applications that use Struts
– If you’re doing JSF, you may 

not be doing Struts
• JSF has a native Controller

• struts.apache.org/struts-tiles

30

Facelets
• Destined to be a standard for Java EE 

apps
• More than templates, but good support 

of all template concepts
• Facelets home page discusses 

integration with JDeveloper
• A strong contender for new JSF 

apps that need Java EE support
• facelets.dev.java.net

31

Velocity
• Apache Velocity Engine

– Open source
– Used for web pages and more

• Includes a scripting language
– Conditional and iteration statements

• Enforces MVC design
– Different programmers can work on 

different parts
• velocity.apache.org

32

Native JSP Tag
• jsp:include
• Standard JSP tag for embedding pages 

inside other pages
• Example, in template.jsp

– <jsp:include 
page="/regions/leftNavBar.jsp"/>

• Tags from the leftNavBar.jsp
page are rendered when 
this tag is reached 
in template.jsp

If you use 

JSTL, consider 

c:import 

instead



33

Now What About ADF Faces?
• af:region

– An ADF Faces component
• Advantages over jsp:include

– It’s a JSF component
• JSF backing bean support – programmatic 

control
– It’s an ADF Faces component

• More properties: binding, rendered, 
attributeChangeListener

• More likely to have enhancements

34

Using af:region
• Scenario: You want to include 

header.jspx inside template.jspx
1. Create header.jspx with its contents 

inside af:regionDef tags
2. Register header.jspx as a region 

component in region-metadata.xml
3. Use af:region in template.jsp to 

reference the component
• Code samples later

35

Sidebar: ADF Faces Container 
Components

• ADF Faces supplies a number of container 
components
– Components into which you put other components
– Each one has a specific behavior and facets 

(prebuilt locations for components)
– Usually, af:panel<something>

• The following example uses af:panelBorder
– This provides facets for top, bottom, left, right, 

start, end (and “inner” versions of all those)
We’ll use top, 

left, and 
bottom.

36

1. header.jspx

<!-- boilerplate tags created by New Gallery JSF JSP Wizard 
here -->

<af:regionDef var="attrs">
<af:objectImage source="/images/nocougtop.jpg"/>

</af:regionDef>

<!-- boilerplate JSP tags created by New Gallery -->

• Used for the header part of the template
• Create a JSF JSP in a regions directory
• Remove the af:view tag and its children
• Repeat for navbar.jspx and footer.jspx



37

2. region-metadata.xml

<!-- boilerplate tags created by JDeveloper here -->
<component>
<component-type>

hrapp.view.region.Header
</component-type>
<component-class>

oracle.adf.view.faces.component.UIXRegion
</component-class>
<component-extension>
<region-jsp-ui-def>

/regions/header.jspx
</region-jsp-ui-def>

</component-extension>
</component>

• This file is created when you add the first af:regionDef tag to any 
JSP

• Add sections for navbar and footer

38

3. template.jspx

<!– boilerplate intro tags from JSF JSP Wizard here -->
<h:form>
<af:panelBorder>
<f:facet name="top">
<f:subview id="topMargin">
<af:region id="topMargin" 

regionType= "hrapp.view.region.Header"/>
</f:subview>

</f:facet>
<f:facet name="bottom"/>
<f:facet name="left"/>

</af:panelBorder>
</h:form>
<!-- more boilerplate tags -->

Reference the region 
component using the 

“component type” name.

• Add af:panelBorder
• Embed af:region inside f:subview in the facet

39

Finishing Off the Template
• Add another region for the Footer region
• Add another region for the NavBar region
• The visual editor will show template.jspx

with the includes taking effect
• At runtime, the regions will be 

included just as in the visual editor

40

Eureka!

• Copy template.jsp each time 
you want to create a JSF JSP

• Place content inside the 
container (outside facets) 
– It will show up here



41

Templates in JHeadstart
• The JHeadstart plug in (extra cost item) 

creates code with templates at its core
– Velocity to generate JSF View and 

Controller code 
– Everything is based on a template
– af:region to provide template reuse

• Learning the Velocity template language 
is helpful
– You can get close to (even attain?) 

100% generation if you do

42

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

43

What to Do?
• Non-ADF shops using JDeveloper can plug 

Facelets into JDeveloper
• ADF shops use af:region

– JHeadstart can speed up development 
• Automatically use Velocity templates currently

– Seriously consider creating a skin
• Lots of work, though

• For future ADF Faces work:
– Examine JDeveloper 11g

• Strong templating features
• Preview version on OTN

– Any work with templates now will 
help with JDev 11g later

44

JDev 11g Template Enhancements
• Creating a template

– New gallery item for JSF template
– Add container components, define facets, and 

arguments
• Using the template

– Application’s templates appear in the JSF wizard
– The layout elements are referenced from the 

template
– Like af:panelBorder except you define the facets

• Demo here:
– www.oracle.com/technology /products/

jdev/ 11/index.html



45

I break the mold. 
JLo* wouldn't be here today 

if it wasn't for me.

—Janice Dickinson (1955-)

But Janice Used a Template!

* Not to be confused with
“jLo,” the Java logging framework

46

Summary
• Templates help user productivity
• Templates ease maintenance
• Several approaches to template use

– Reference as much as possible
• The Java community has many frameworks

– E.g., Tiles, Facelets, Velocity
• ADF Faces offers af:region
• ADF Faces assists common look-and-feel with 

skins
• JDev 11g will have more template support

– Work with templates now!

47

Designer
Handbook

Developer
Advanced
Forms & Reports

JDeveloper 3
Handbook ORACLE9i

JDeveloper
Handbook

• Founded in 1995 as Millennia Vision 
Corp.

• Profitable for 7+ years without outside 
funding

• Consultants each have 10+ years 
industry experience

• Strong High-Tech industry background
• 200+ clients/300+ projects
• JDeveloper Partner
• More technical white papers and 

presentations on the web site

http://www.quovera.com

Books co-authored with Dr. Paul Dorsey, 
Avrom Roy-Faderman, & Duncan Mills
Personal web site:
http://ourworld.compuserve.com/homepages/Peter_Koletzke

ORACLE
JDeveloper 10g
Handbook

Please fill out the evals


