
Web Application Security
Implementing the Superstition

in JDeveloper

Peter Koletzke
Technical Director &
Principal Instructor

Duncan Mills
Java Evangelist &
Consulting Product

Manager

2

Believe It or Not

Security is mostly a superstition.
It does not exist in nature,
nor do the children of men
as a whole experience it.

Avoiding danger is no safer
in the long run than outright exposure.

Life is either a daring adventure
or nothing.

—Helen Keller (1880–1968)

3

Survey
• Jobs

– Developer?
– DBA?
– Sys admin, others?

• Web Application Work
– J2EE?
– .NET?
– PHP, ColdFusion, others?

• Tools
– JDeveloper
– Eclipse
– Others

4

Agenda

• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Set up View layer security
Slides and white paper with sample

code will be available on the
Quovera and NoCOUG websites

5

Application Areas of Exposure
• Unapproved users can run the application
• Approved users can access data they

should not access
– Access through View or Model code

• You cannot track who accesses the data
– Approved or not

• Users bend normal query functions to
gain unauthorized access
– SQL injection

6

Security Objectives
• Ultimate security may just be superstition,

however, data must be protected
• Why is exposure greater in web apps?

– More accessible to any WWW hacker than an
internal app

– Given time and CPU power, a motivated hacker
can break any security scheme

• Main objective with any security system:
– Make breaking in as difficult as possible

• Assume file system of app server is secure
– Reading configuration files with user identity and

application security should be really difficult
– Operating system and network has other

security needs and features

7

Two Primary Operations
• Authentication

– Validate that the user is who she/he claims to be
• Normally done with passwords
• With extra equipment, could be something else

– Retinal scan, thumbprint, DNA (?)

• Authorization
– Allow authenticated user access to specific

resources
– Usually done with security roles

• Like database roles
• Application components (pages, functions) and

data are made available to named roles
• Users are enrolled in roles

– User has access to whatever the role is granted

8

Agenda
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Set up View layer security

9

How to Implement the Superstition
• Use recognized, prebuilt, proven, supported

security technologies
• Java Authentication and Authorization

Services (JAAS)
– Java API library in the J2SE Development Kit

(JDK or J2SDK))
• One solution: JAZN

– Available in Oracle App Server Containers for
J2EE (OC4J)
• Oracle Application Server’s J2EE runtime

– Java authorization and authentication
– An API to JAAS

• Meta-API?
– You configure your application to use JAZN

10

Summarizing That
• OC4J in Oracle App Server contains

JAZN that calls JAAS in the JDK

Oracle App ServerOracle App Server

OC4J

Notes
• This is only one method for security.
• This is not to scale.

JDKJDK

JMS
JAAS

JDBC
Java
Core

JSP
Runtime

JAZN
EJB

Runtime

11

The User Repository
• The storehouse of user and role information

– A.k.a., credentials store or identity store
• JAZN can tap two types of user repositories

– XML
• Extensible Markup Language
• Properties file containing user and role definitions
• With 10.1.3 OC4J, can set up lightweight SSO

– LDAP
• Lightweight Directory Access Protocol
• A communications protocol
• Oracle Internet Directory (OID)

– Used for Single Sign-On (SSO)
• OID can read other LDAP providers

– E.g., Microsoft Active Directory

12

Application Security Flow

Oracle Application Server

OID directory services

Database

APPUSER
Database Session

1

JOE

ID
Password

LoginLogin

Login

LDAP User Repository

user
FRANK/****

MARY/****

SCOTT/****

manager
AMY/****

JOE/****

admin

SUE/****

HARRY/****

JOE
** authenticated **

Sales
Application

http://webapps.co.com/tuhra

2

3

5

6
Authentication

service GL
Application

TUHRA
Application

8

APPUSER/****

JOE/**** JOE/****

4

JOE (manager)7

5

13

Application Security Flow
1. User sends HTTP request including a context root indicating a

particular application.
2. The authentication service determines the method (XML or

LDAP) and presents a login page.
3. The user enters an ID and password and submits the login

page.
4. The authentication service requests OID to verify the user and

password.
5. OID verifies the password in from the LDAP source and

indicates pass or fail to the authentication service.
6. The authentication service accesses the application and

places the user name into the HTTP session state.
7. The application can request the username or group (role, in

this example, “manager”) to which the user belongs
8. The application connects to the database using the

application database user account (APPUSER)
written into a configuration file.

14

Agenda
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Set up View layer security

15

Application Security Tasks

• Select a security
system
– JAZN here

• Set up user repository
roles and users

• Enroll users in roles in
the user repository

• Switch user
repositories
– Before production

• Set up logical application
roles (used in application)

• Configure login method for
the application

• Protect pages based on
roles

• Protect items based on
roles

• Display the logged-in user
• Secure Model

attributes

Administrator Developer

16

JDeveloper Support
• Define these files using JDeveloper’s XML

property editors
– <appname>-jazn-data.xml
– <appname>-oc4j-app-data.xml
– web.xml
– These files configure the Embedded OC4J Server

in JDeveloper
• “<appname>” is the application workspace

name in JDeveloper
– Transfer these settings to the “system”

level files in the 10.1.3 server
• system-jazn-data.xml
• system-oc4j-app-data.xml

17

Set Up Roles and User Accounts
• For XML provider in <appname>-jazn-data.xml
• Define within a realm (namespace within the XML file)

– By default jazn.com
<role>
<name>admin</name>
<members>
<member>
<type>user</type>
<name>SKING</name>

</member>
<member>
<type>user</type>
<name>AHUNOLD</name>

</member>
</members>

</role>

<role>
<name>admin</name>

</role>
User

Role

Users in Role

<users>
<user>
<name>SKING</name>
<credentials>{903}1JHgZuUDp..
</credentials>

</user>
</users> password

obfuscation

18

Users and Roles in JDeveloper
• Tools | Embedded OC4J Preferences after

selecting the application
– Current Workspace\Authentication\ realms\jazn.com

• Users node
– Click Add
– Define

name and
password

– Password
is obfuscated

• Roles
– Click Add
– Enter name,

description

19

Enroll Users in Roles
• Members Users tab on Roles page

– Shuttle users to Selected area.

Demo

20

Agenda
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Set up View layer security

21

Set Up Logical Application Roles
• In web.xml (web application deployment

descriptor)
• Standard J2EE XML file – standard contents
• Abstracts the roles required by the application

from the user repository roles
<security-role>
<description>Administrative users</description>
<role-name>admin</role-name>

</security-role>
<security-role>
<description>Management users</description>
<role-name>manager</role-name>

</security-role>

22

Logical Application Roles
• On web.xml node in ViewController\Web

Content\WEB-INF, select Properties
– Web Application Deployment Descriptor dialog
– On Security Roles page, click Add

Demo

23

Define Security Constraints
• Used to map logical roles to URL patterns
• Restricts access to a set of files based on role
• URL pattern represents a directory and file

names
<security-constraint>
<web-resource-collection>
<web-resource-name>UserZone</web-resource-name>
<url-pattern>faces/pages/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
<role-name>admin</role-name>
<role-name>manager</role-name>

</auth-constraint>
</security-constraint>

24

Security Constraints
• On Security Constraints node (web.xml), click New

– A Constraint child node will appear
• Click Add and name the constraint

– Order matters - start with most restrictive

25

Define the Constraint
• Select Web Resource Collection (AdminZone)

– On Authorization tab, select the roles
– These roles will be constrained to the URL patterns

you define next
• On Web Resources tab, select collection

– Click Add and Enter
path and file
names (or “*” for all)

• Repeat creation of constraint
for all other URL patterns needed
– E.g., UserZone constraint

for “faces/pages/*” URL pattern
• Set Redirect on nav. case to “true”

– That way, the browser will request
the page using the URL pattern

26

Constraint Gotcha
• Top level directories defined as URL patterns

may override lower level directories
– E.g., URL patterns for “/faces/*” and

“/faces/admin/*”
• User role assigned “/faces/*”
• Admin role assigned “/faces/admin/*”

– Admin pattern is more restrictive and defined first
in constraints

– “/faces/*” pattern may allow users to access admin
pages

• Solution: define a public directory so
pattern for user role is “/faces/public/*”

27

Define Application Login
• Set login method

– Basic or form-based authentication
– Set in web.xml

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>security/login.jsp</form-login-page>
<form-error-page>security/login.jsp</form-error-page>

</form-login-config>
</login-config>

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

Basic

Form-based
Specify a login
and error page.

Demo

28

Define Login Method
• Login Configuration page (web.xml)

– Select HTTP Basic Authentication

Hands-on practice accompanying the
white paper shows how to create a
custom login page for the “Form-
Based Authentication” option

29

Testing Basic Authentication
• Reminder:

– admin can access faces/pages/admin/*
– user and admin can access faces/pages/*

• Define pages for admin and user
– One page in each directory

• Test each page
• Basic authentication

dialog will appear when
you run the page

• Test password protection

Demo

30

Switching User Repositories
• XML user repository is handy for development

– Stored in <appname>-jazn-data.xml in the
application root directory – edit it manually

– Can manage this locally for application development
• LDAP is used for enterprise production systems
• Switch it in <appname>-oc4j-app-data.xml

<jazn provider="XML" location="jazn-data.xml" default-realm="jazn.com"/>
<jazn provider="LDAP" location="ldap://ldap.tuhra.com:389"/>

To:

From:

31

Agenda
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Set up View layer security

32

Who is Running the App?
• Get user role from FacesContext

• This requires writing code in some utility
class

• Alternative: use JSF-Security
– Adds an EL scope: securityScope

public boolean isAdmin() {
FacesContext ctx =

FacesContext.getCurrentInstance();
ExternalContext ectx = ctx.getExternalContext();
return (ectx.isUserInRole("admin"));

}

33

JSF-Security
• Open source framework for exposing security

settings to application
– jsf-security.sourceforge.net

• Download library file and add it to the project
– WEB-INF\lib

• Then role can be queried for value of
properties on components
– Disabled
– Rendered
– Read-only

34

Examples
• Hide container (af:tableSelectOne) for all

but admin and manager roles

• Disable Salary item for all but admin roles

<af:tableSelectOne text="Select and"
rendered=

"#{securityScope.userInRole['admin,manager']}">

<af:inputText value="#{bindings.Salary.inputValue}"
label="#{bindings.Salary.label}"
required="#{bindings.Salary.mandatory}"
columns="#{bindings.Salary.displayWidth}"
disabled="#{ !securityScope.userInRole['admin']}"

/>
Demo

35

Securing ADF BC Attributes
• ADF BC can take the role of an

authenticated user into account
• Used to secure entity attributes

– Mark them as
• Read-only
• Updateable while new
• Always Updatable

• Automatically reflected by the UI

36

Steps to Secure Attributes
1. Tell ADF BC to worry about security

– Set the configuration param
jbo.security.enforce=Auth

37

Steps to Secure Attributes
1. Tell ADF BC to worry about security
2. Propagate the JAZN-DATA.XML

• Make sure that the following files contain
the same users and roles:

• %JDEV%/j2ee/home/config/system-jazn-data.xml
• %JDEV%/jdev/system/oracle.j2ee.10.1.3.n.n/

embedded-oc4j/config/system-jazn-data.xml
• %workspace%/workspace-jazn-data.xml

• This is just for design time

38

Steps to Secure Attributes
1. Tell ADF BC to worry about security
2. Propagate the JAZN-DATA.XML
3. Edit the Entity Object

• Select the
Authorization
node

Demo

39

Other Techniques
• Audit columns

– Read user from app server session
– Write to application context
– Read the context in table DML triggers to

assign CREATED_BY and MODIFIED_BY
columns

• Method to preprocess query parameters
– Use it to defeat SQL injection attempts
– Process query criteria and strip

out suspect characters

40

Other Resources
• Declarative J2EE authentication and authorization

with JAAS
– Frank Nimphius and Duncan Mills
– www.oracle.com/technology/products/jdev/howtos/10g/

jaassec/index.htm
• Oracle Application Server Containers for J2EE

Security Guide 10g Release 3 (10.1.3)
– download-east.oracle.com/docs/cd

/B25221_04/web.1013/b14429/toc.htm
• Conquering the Fear Factor: Developing Secure

J2EE Web Applications with Oracle ADF and
JavaServer Faces, Frank Nimphius
– Slides on the OOW website

• White paper for this talk
– Hands-on practice
– On the NoCOUG, OOW, and Quovera websites

41

Summary
• You need to design application security
• OC4J offers easy access to standard

JAAS security features (JAZN)
• JAZN supports user repositories in XML

and LDAP
• JDeveloper can help you define XML

user repositories and hooks into the app
• Design and test for all security

breach scenarios

42

Out of Business

We will bankrupt ourselves
in the vain search

for absolute security.

—Dwight David Eisenhower, (1890–1969)

43

The Book The Authors
• Peter Koletzke

– Six other Oracle
Press books about
Oracle tools

– www.quovera.com
• Duncan Mills

– Widely published on
OTN, ODTUG, etc.

– groundside.com/blog/
DuncanMills.php

– www.oracle.com
• Book examples

– www.tuhra.com

