
Scalable, fault-tolerant NAS for
Oracle—the next generation
Introducing the HP Enterprise File Services Cluster
Gateway for Oracle database deployments

Table of contents
Introduction . 2

HP Enterprise File Services Clustered Gateway . 6

Proof of concept . 9

Summary .19

Appendix .20

Introduction
For several years Network Attached Storage (NAS) has
been rapidly evolving into an acceptable storage option
for Oracle® databases. With the advent of Gigabit Ethernet
and software advancements in the NFS client space,
reasonable performance and solid data integrity are
realities on NAS. This is particularly the case when the
NFS client is a Linux® system1.

Oracle Corporation has been vocal about its adoption
of NAS for the Oracle on Demand outsourcing business.
Oracle also has established the Oracle Storage
Certification Program (OSCP); whereby vendors can
participate to prove that their NAS solutions are
acceptable for Oracle databases. NAS is quite often
the simplest, most cost-effective storage approach for
Oracle databases.

The emerging storage demand of Grid Computing makes
NAS essential. The fruition of Grid Computing will result in
connectivity needs for clusters of servers numbering in
hundreds of nodes. Building such a large cluster with a
Fibre Channel Storage Area Network (SAN) would
be a difficult task.

All technology has strengths and weaknesses. With NAS
filers, the strong points for Oracle databases are ease of
use and often cost. Architecturally speaking, however, NAS
filers show weaknesses in the areas of availability and
scalability. This is a bold statement given the wide
acceptance of NAS for Oracle databases. The goal of this
paper is to discuss these characteristics of the NAS filer
model and the emerging technology that addresses the issues.

Without a doubt, the majority of Oracle databases
deployed on NAS are in the same datacenters with
formidable SAN configurations. Supporting two different
storage architectures can be a cumbersome task for IT

shops. This fact has ushered in the new wave of NAS
gateway technology—another focus area of this paper.

Finally, choosing SAN, NAS, or both generally is heavily
weighted on performance. To that end, this paper includes
an analysis of a proof of concept in which both the
availability and performance characteristics of Oracle
10gR2 RAC are tested in a new NAS gateway product
from Hewlett-Packard called the HP Enterprise File
Services Clustered Gateway (EFS-CG).

Goals for the reader
After reading this paper, the reader should have a deeper
understanding of many aspects of deploying Oracle on NAS.
Additionally, the reader will understand the differences
between two traditional NAS architectural approaches:

• Single-headed NAS filers

• Asymmetrical multi-headed NAS gateways

Finally, through a description and analysis of a Proof of
Concept test, the reader will learn about the EFS-CG,
which provides:

• Multi-headed (scalable) architecture

• Fully symmetrical operations (all NAS heads can
present all filesystems)

• Transparent NFS Client failover (highly available)

The primary goal for the reader is an architectural
understanding of the technologies being discussed. This
paper does not have direct marketing objectives and the
only specific NAS technology discussed by name is the
new technology that serves as the catalyst for the
proof-of-concept testing—the HP EFS-CG.

2

Abstract: Now there is scalable, modular, high
performance NAS for Oracle®10g RAC and non-RAC
with no single point of failure. This proof of concept
shows that the new HP Enterprise File Server Clustered
Gateway (EFS-CG) is currently the only scalable, highly
available option when NAS is used as the storage
architecture for Oracle. In fact, the Clustered Gateway
allows customers to leverage existing SAN infrastructure
such as HP, EMC, and Hitachi Data Systems.

This paper focuses on a proof of concept of Oracle10g
R2 Real Application Clusters with the EFS-CG as storage
for all database files, Oracle Clusterware files, Oracle
Home, and External Tables. It also includes Oracle10g
R2 performance results with I/O-intensive Oracle
workloads. With the HP Enterprise File Server Clustered
Gateway, the question is no longer SAN or NAS.
Depending on application needs, the customer’s choice is
always the right choice.

1Network Appliance and Charles Lever in particular were instrumental in
making modern NFS client software suitable for Oracle over NFS.

NAS value proposition for Oracle
database deployment
Simplicity
Industry-leading NAS providers have invested significantly
in educating the industry on the value of deploying Oracle
databases on NAS.

Perhaps the most attractive aspect of deploying Oracle
databases on NAS is simplicity. This is especially the case
when Real Application Clusters (RAC) are being deployed.
System administrators of any Oracle database on NAS
find it quite simple to request storage from the storage
administration group and mount the filesystem on the
database server. Once the NFS filesystem is mounted, the
server administrator is completely out of the loop for
storage issues. The space is given to the Oracle DBA
team, and they use it as per the requirements of the
database—no more interaction with the system or storage
administration groups. Contrast this to the amount of
system administrative overhead when deploying Oracle
databases on raw partitions in a SAN.

Whether simple raw datafiles or ASM, administrative
overhead is required. First, the database administrator
has to determine the list of singleton LUNs needed, such
as the Oracle clusterware files, raw datafiles, or ASM disk
group partitions. The system administrator then requests
these LUNs from the storage group and proceeds to work
out connectivity, dealing with such issues as loading host
bus adaptors, getting the LUNs presented as character
special raw devices, permissions, and in the case of Linux,
raw(8) binding and ASMLib configuration. This activity is
much more complex than mounting filesystems.

With the NAS model, deploying RAC is much simpler for
the DBA than using the typical SAN deployment model2,
which is a combination of OCFS2 for Oracle Clusterware
and raw partitions for ASM (or simple raw datafiles), and
Ext3 or OCFS2 for Oracle Home. With NAS the DBA is
notified when the filesystem is mounted and work can begin.
Simple files or large files as ASM disks, the choice is up
to the DBA. The DBA can store everything associated with
the Oracle database in the NFS filesystems and all RAC
servers have complete shared read/write access. There,
however, lies the potential performance bottleneck and
availability concerns discussed later in this paper.

Cost reduction
Depending on the type of deployment, the NAS model
can offer significant cost benefit compared to SAN.
Certainly, test and development systems running Linux
are less expensive when their storage connectivity is based
on NFS instead of SAN volumes. No Fibre Channel HBAs
to purchase, no Fibre Channel cabling, and most importantly,
no expensive ports on a high-end Fibre Channel switch.
NAS-based production systems also can be less expensive
if they are RAC clusters with large node counts. A port on
a 64-port Fibre Channel switch is much more expensive
than a port on a small 8-port switch. Accordingly, configuring
a RAC cluster for Grid Computing with large numbers of
servers, each with multiple paths to storage, can be
extremely cost prohibitive.

Some would argue that the NAS model has reduced
administrative overhead. This is questionable, however,

3

2 The scope of this paper is focused only on deployment options that fit under
the Unbreakable Linux support model—a very short list limited to raw disk
(e.g., ASM, raw datafiles) and OCFS. Clearly missing is the comparison
to commercially available SAN-based, third-party Cluster filesystems, which
have their own value propositions but do not fit within the constraints of
Unbreakable Linux. Although third-party CFS are not included in the
Unbreakable support model, they can be listed on Metalink as a “validated
third-party CFS.” None of this concern over Unbreakable Linux amounts to
anything unless you are running Linux.

Perhaps the most attractive aspect of deploying Oracle
databases on NAS is simplicity. This is especially the
case when Real Application Clusters (RAC) are
being deployed. System administrators of any Oracle
database on NAS find it quite simple to request storage
from the storage administration group and simply
mount the filesystem on the database server.

because most NAS-based RAC deployments are in IT
shops that also have significant SAN investment. An
increase in storage administration overhead occurs, as
there are disparate storage systems to maintain. Unless,
of course, the NAS device is a SAN gateway device.
Without a SAN gateway, adding NAS into an environment
with an established SAN creates the “storage sprawl” or
“vendor sprawl” effect.

Traditional NAS
As already covered, NAS is an established, acceptable
storage option for Oracle RAC and non-RAC alike.
Acceptable, however, is the key word. No technology is
perfect and the most popular NAS options being deployed
today have weaknesses that should be of concern to an
Oracle shop. The following sections cover two of the most
common NAS architectures:

• Single-headed filer

• Asymmetrical multi-headed NAS device

Because this paper does not serve a marketing purpose,
vendor names for various architecture types are not used.

Single-headed filers, the traditional
NAS architecture
The most common NAS devices available on the market
today are “single-headed” devices commonly referred to
as filers. The term single-headed means that there is a
single computer with a processor, memory, and I/O
capability handling all accesses to a set of filesystems on
disk. These filers are powerful but because of their
architecture they possess two troubling characteristics:

• Single point of failure

• Performance bottleneck

Single point of failure
Having data that can only be accessed through a single
filer is a single point of failure (SPOF) that cannot be
overlooked. If that data is Oracle Clusterware files (e.g.,
Oracle10g RAC CRS, Oracle9i OCMS) or any Oracle
SYSTEM tablespace, a single failure of the filer head will
cause a total RAC outage. RAC is highly available, but
the storage really is not. Some mitigating solutions for this
single point of failure are presented later in this paper.

Performance bottleneck
Many Oracle databases are deployed today on single-
headed NAS devices. However, if all data must pass
through a single filer for a given set of data, the entire
database performance is limited to the throughput of
that single filer.

In the case of RAC, few nodes are needed to saturate
completely a single-headed filer. The reason is that on the
inside, the leading single-headed filers are based on the
same Intel®-based servers typically used for Linux RAC. If
you peel away the covers on today’s leading NAS filer, you
will see an Intel-based server. If you deploy a four-node
RAC configuration with Xeon™-based servers and place the
database in the filer, you may experience a bottleneck.
The Xeon-based system in the filer cannot move more data
across its system bus than any of the Xeon-based servers
in the RAC configuration. So, given an I/O intensive
operation such as any Parallel Query operation, the RAC
nodes will be I/O constrained.

What if the database servers attached to the filer are
significantly more capable of I/O than the filer? Consider
a four-node RAC configuration of four-socket, dual-core
AMD Opteron™ Servers. How scalable is that going to be?
What about just a single large SMP from any manufacturer?
The simple answer to these rhetorical questions is that the
configuration will not scale.

4

Mitigating solutions for single-headed filer issues
To address the inherent single point of failure issues with
single-headed filers, some vendors offer clustered filers. The
term “clustered filer” conjures up a lot of misconceptions.
Cluster filers are just that, a cluster of single-headed filers.
Neither can provide access to the other’s data.

So, to mitigate the impact of a failure of a NAS filer, the
suggested remedy is to buy another equal filer and
configure a cluster filer. Once the investment has been
made in 100% overhead, the configuration can support
failover in the event of a filer outage.

Failover, in the case of a cluster of single-headed filers, is
a non-surgical procedure known as “sever and reattach”
because the NFS handles are usually invalided on the client
after a filer failure3. The client can, however, remount the
filesystems from the other filer after some failover time—
generally 45 to 180 seconds. Sever and reattach should
immediately raise concern. In the case of RAC, Oracle
treats this as any ordinary loss of storage—akin to a
single array failure in a Storage Area Network (SAN). But
unlike the single array SAN scenario, the clustered filer
configuration should have no single point of failure.
However, if the NAS filer presenting the most important
application table happens to fail, the files will not be
available until cluster failover is complete, and even then the
instances will have to restart. While RAC supports multiple
instances of a database, there is only one database. Loss
of I/O connectivity to any of it is a single point of failure.

Clustered filers can help mitigate the performance
bottleneck inherent in single-headed filers, to a degree.
Clustered filers can be configured such that one filer
serves a set of filesystems and the other a completely

separate set of filesystems—basically, a partitioning effort.
If I/O demand on a single directory is saturating a filer,
no solution is available other than to move data manually
between filers. What if the hot data is not the same hot
data that saturates the filer six months from now?

Asymmetrical multi-headed NAS
Asymmetrical multi-headed NAS (AMHN) devices are not
filers, per se. They are generally SAN-gateway devices.
Because you probably have a SAN already, you simply
request LUNs from the storage group and attach the LUNs
to the gateway device. From there, the SAN gateway
device presents filesystems as would any other NAS device.

Availability
Asymmetrical multi-headed NAS devices are similar to
clustered single-headed filers but differ in one significant
way—they support more than two NAS heads. All NAS
heads in these devices do indeed have connectivity to all
filesystems, but only one NAS head can present a filesystem
at any given time. Therefore, this architecture is deemed
asymmetrical. For instance, in a configuration with eight
NAS heads and eight filesystems, each filesystem can be
presented by only one NAS head at a time. In the event
of a NAS head outage, the filesystem will fail over to one
of the other heads. The similarities, conversely, between
asymmetrical multi-headed NAS and clustered single-
headed filers are easily seen.

Just like their clustered single-headed cousins, these NAS
devices also suffer a sever and reattach impact in the
event of a head failure. Failovers are no more transparent
than they are with clustered single-headed filers.
Failover times on these devices can be quite long. During
failover, database files in the filesystem being failed-over
are inaccessible.

Scalability
Asymmetrical multi-headed NAS devices have the same
scalability characteristics as clustered single-headed filers.
As mentioned above, only a single NAS head can present
any given filesystem. As is the case with clustered single-
headed filers, the game of moving hot data around to
other filesystems to offload over-burdened NAS heads is
very much the case.

From an architecture standpoint, the only difference
between clustered single-headed filers and asymmetrical
multi-headed NAS devices is that the latter supports more
than two heads. They are more modular but still require
physically partitioning data between filesystems to
achieve a crude form of scalability.

5

3 “Often, the transfer of data service is transparent to end users and applications”
http://www.netapp.com/products/software/clustered.html

A word about NVRAM cache:
The most common single-headed filers on the market offer an
NVRAM cache that dramatically lowers the I/O latency for
writes. These NVRAM cache cards are attached to the filer
system bus. While they do allow writes to be serviced quickly,
they do not address the throughput limitation of the filer at all.
Quite the opposite is true. When the NVRAM cache is full,
I/O requests will queue up while the cache is being
checkpointed out to disk. Some productions sites must
dedicate a filer solely for Oracle Redo Logging for this reason.

HP Enterprise File Services
Clustered Gateway
Overview
HP Enterprise File Services Clustered Gateway, or EFS-CG, is
a new and radically different NAS technology from those
already discussed in this paper. The key differences between
the EFS-CG and both clustered single-headed filers and
asymmetrical multi-headed NAS devices are explained in
Table 1 above.

The EFS-CG is a SAN gateway NAS device. Often this is
seen as investment protection. After all, as mentioned
previously in this paper, most sites that deploy Oracle
today on NAS filers do so in the same datacenter where
there is an existing, formidable SAN infrastructure. Such an
environment is the perfect infrastructure for deploying a
SAN gateway product like the EFS-CG. The EFS-CG plugs
into the SAN (e.g., HP, EMC, Hitachi, IBM, etc.) and
presents clustered filesystems via NFS. This is an entirely
different scenario than carting in a pair of clustered NAS
filers with their own internal storage and setting them next
to the existing SAN equipment.

Presenting NAS storage through a gateway device from
an established SAN infrastructure can be significantly less
expensive than the same capacity in a set of NAS filers.
This point deserves more attention.

Choosing a NAS model for RAC over SAN usually yields
cost savings because the RAC nodes themselves do not
require multiple Fibre Channel host bus adaptors with
paths to multiple switches. Fewer servers connected to
SAN switches can potentially alleviate the need to
purchase extremely large switches. However, the net gain
of these savings is canceled out if the storage itself is
more expensive on a per-terabyte basis. With clustered
NAS filers (single-headed), the cost of storage also must
reflect the clustering architecture they support. With clustered

single-headed filers, clustering is limited to “pair-wise”
clusters. If both filers in a clustered filer configuration
become saturated, adding a third filer actually means
adding two more filers—if availability is a concern.
Recent analysis of published list prices for industry-leading
clustered NAS filers revealed customers pay approximately
300% premium as compared to equal capacity via EFS-
CG technology, thus being threefold more costly and not
scalable, nor truly available as explained earlier.

Availability characteristics
The EFS-CG provides a truly revolutionary NFS server
implementation with special support for highly available
NFS. All NFS export groups are presented to NFS clients
via Virtual NFS Service (VNFS). The VNFS technology is
important for two reasons:

• Failover. If a NAS head in the EFS-CG fails, the Virtual
NFS Services running on the failed nodes will be
transparently failed over to a backup NAS head. The
NFS clients and the processes with open file handles on
the filesystems involved will not be affected in any way.

• Re-hosting. Using the EFS-CG Management GUI or CLI,
the administrator can move an active NFS service from
one NAS head to the other for load balancing or
maintenance. This operation also is fully transparent at
the NFS client level and you do not need to stop
applications—just a simple GUI drag and drop.

A VNFS is a combination of Virtual Host IP and a
proprietary enhancement to the NFS server stack to
support completely transparent NFS client failover. The
filesystems remain accessible without re-mounting and,
most importantly, processes with active file handles
accessing files in the NFS filesystems are not impacted.

6

Availability The EFS-CG includes a specialized, proprietary NFS server implementation that combines
with virtual host functionality to support completely transparent NFS client failover if a
NAS head failure occurs or maintenance needs to be performed.

Modularity The EFS-CG supports between two and 16 industry-standard servers for NAS heads.4

Scalability The EFS-CG supports truly scalable NAS. Because of the built-in, fully symmetric, distributed
cluster filesystem, all NAS heads can present any or all filesystems with fully coherent
direct read/write access. Each NAS head can present filesystems over as many as three
network interfaces for a system total of 48 Gigabit Ethernet interfaces for NFS traffic.

Standards The NAS heads that comprise the EFS-CG are Intel-compatible Linux servers without
proprietary hardware. Moreover, the NAS heads run Linux and, although there are
proprietary kernel enhancements, administering the NAS heads is no different than
any other Linux system.

Table 1:
Key differences between
the HP EFS-CG, clustered
single-headed filers,
and asymmetrical
multi-headed NAS
devices include:

4 In their current incarnation, EFS-CG heads are dual-processors AMD servers
(e.g., HP Proliant DL-385).

The benefit of this technology in an Oracle deployment
should be quite clear. As discussed earlier, placing an
Oracle database in a NAS device other than the EFS-CG
leaves a single point of failure. All other NAS technology
completely disconnects all NFS clients in a failover event,
whether on clustered filers or asymmetrical multi-headed
filers. If a NAS head presenting datafiles should fail, these
other NAS technologies will cause a global RAC meltdown.
With RAC there is one copy of the database and suffering
a “sever and reattach” sort of NAS head failure will impact
every instance of the RAC cluster. This fact does not play
well into the grid computing story. Imagine a 48-node
RAC grid with 48 instances crashed because the NAS
head presenting an essential tablespace has crashed.

Figure 1 shows a portion of the EFS-CG management
GUI. On the horizontal plane are a set of Virtual NFS
Services. On the right-hand side along the vertical plane
are the NAS heads by name. In this case there are four
NAS heads (c1n1 – c1n4). This screen capture was taken
from the Proof of Concept system described later in this
paper and shows the status of the Virtual NFS Services.

For instance, the VNFS called vnfs1, and therefore all the
filesystems being presented by vnfs1, are currently hosted
by NAS head number 1 (c1n1). This status is established

by the cell for that row, which shows P for primary, under
the c1n1 column. VNFS1 will fail over to c1n4 because
the numeral 1, short for first backup, appears under the
c1n4 column for that same row. Also, the VNFS called
vnfs3b and vnfs2 concurrently are hosted by NAS head
number 2 (c1n2). Re-hosting a VNFS from one node to
the other is a simple click, drag-and-drop operation.

Figure 2 depicts the transparent nature of the EFS-CG
Virtual NFS Service technology. This Linux session
shows three clear signs of transparent Virtual NFS
failover/re-hosting.

Figure 2 ends by validating that the shell process still has
a PID of 6553 and still is executing in /u03, which is an NFS
mount. The shell process (6553) has at least one active file
descriptor in its current working directory (CWD), which is
how bash(1) works. The shell process was uninterrupted
while the presentation of /u03 was moved from one NAS
head to another. If /u03 were being served up by a cluster
of single-headed filers or an asymmetrical multi-headed
filer, the shell process 6553 would have died. Instead, the
bash process was unaffected during the 37 seconds when
/u03 moved from one NAS head to another.

7

Figure 1:
Enterprise File Services Cluster Gateway graphical user interface

Performance characteristics
Cluster Volume Manager
The EFS-CG includes an integrated Cluster Volume
Manager. LUNs are presented to the EFS-CG by the SAN
administrator and imported into the EFS-CG. Internal to
the EFS-CG, these LUNs are then made into a striped
(RAID 0) volume of user-defined stripe width. The LUNs
are fault tolerant (e.g., RAID 1) at the SAN storage array
level. The EFS-CG can support single Cluster Volumes of
up to 16TB of redundant, high-performance (RAID 1+0)
storage. The size of cluster volumes can be dynamically
increased. Additionally, the EFS-CG supports large
numbers of filesystems—up to a maximum theoretical
limit of 512 16TB filesystems.

Cluster filesystem
All NAS devices available today present an internal
filesystem of some sort via NFS. In the case of the EFS-
CG, the filesystem is the PolyServeTM Matrix Server™
cluster filesystem, which is fully symmetric and distributed.
This means that all NAS heads have equal, direct read/
write access to all filesystems. Combining the cluster
filesystem with the cluster volume manager is the foundation
for the tremendous scalability this architecture offers.

Without the cluster filesystem, the EFS-CG would be no
different than asymmetrical multi-headed NAS devices on
the market today. The net effect would be that only a
single NAS head would be able to present any given
filesystem. The cluster filesystem is the glue that enables
true scalability. Also, the size of EFS-CG cluster filesystems
can be dynamically increased.

NAS head count
As mentioned above, the EFS-CG supports from 2 to16
NAS heads. When the cluster filesystem is combined with
the cluster volume manager, a single filesystem (up to
16TB) can be presented by up to 16 NAS heads, each
with coherent, direct read/write access.

Network interfaces
Each NAS head in the EFS-CG supports several Gigabit
Ethernet network interfaces. Up to three interfaces can be
used for serving NFS traffic. A fully configured EFS-CG
with 16 nodes will support up to 48 GigE data paths to
one or more filesystems.

The EFS-CG technology can be deployed on any industry
standard server. No technical reason prevents the
deployment of extremely powerful servers such as the HP
Proliant DL-585 for use as NAS heads, which would
support as many as 12 NFS I/O paths per NAS head.

8

Figure 2
Determining which EFS-CG NAS head is
presenting a filesystem; re-hosting operations

• First arrow. The session first establishes that:
– The shell Process Id (PID) is 6553

– The shell is executing on the RAC node called rac1 (NFS client)

A df(1) command then shows that /u03 is presented by the
EFS-CG via the Virtual NFS Service called vnfs1b.

• Second arrow. The uname(1) command is executed remotely (via
the ssh(1)5) on the EFS-CG NAS head that is currently hosting the
vnfs1b Virtual NFS Service. The uname(1) command shows that
the /u03 filesystem is being presented from cln4, the fourth NAS
head in the EFS-CG.

• Third arrow. Sometime between 19:56:21 and 19:56:58, the
vnfs1b Virtual NFS service was either failed-over or re-hosted to
cln1, the first NAS head in the EFS-CG.

5 The NAS Heads are Linux servers and all Linux tools are at the administrator’s
disposal. This environment is much more flexible than that available to the
administrator when connected to proprietary Operating Systems running on
traditional NAS filers.

Bringing it all together—in an
Oracle context
Perhaps the best way to elaborate on the potential for the
EFS-CG in an Oracle deployment is to look at the extremes.
Consider that a single Oracle10g BIGFILE tablespace,
based upon a 4KB blocksize, can grow to 16TB. The
caveat is that a BIGFILE tablespace is comprised of a
single datafile. A single file must reside in a single filesystem.
The EFS-CG is capable of supporting the 16TB BIGFILE
tablespace, but it can do so with I/O scalability. Every
single block of data in that one BIGFILE tablespace can
be concurrently accessed through 48 network interfaces
via 16 NAS heads.

Further, the EFS-CG can support a 48-node RAC cluster
where each and every server has a dedicated GigE NFS
data path with full read/write capability on the entire
16TB BIGFILE tablespace. If every instance in the 48-node
RAC cluster were performing a full-table scan of a table in
that BIGFILE tablespace, their I/O would be serviced at
full GigE bandwidth. If all 48 nodes of the RAC cluster
were participating in an index creation using Intra-node
Parallel Query, nothing stands in the way of having the
entire index reside in a single datafile.

This example should make the contrast clear between the
EFS-CG and other NAS technology. Other NAS technology
needs to cluster and split the tablespace across several
filesystems to get multiple NAS heads to partake in the
I/O load—each filesystem served by a single NAS head.
However, a BIGFILE tablespace cannot be split into
multiple datafiles anyway, so the comparison is moot. No
solutions, other than the EFS-CG, can scale to 16 NAS
heads at all, much less in a symmetrical manner.

This example is beyond the “normal” Oracle deployment
and BIGFILE tablespaces are not the norm but sheds light
on how ASM on NAS works.

A word about ASM on NAS
ASM on NAS is implemented by first creating large files
on the NAS filesystem and then adding them to ASM as a
“disk” in a disk group. The preceding BIGFILE example is
the exact I/O profile of ASM on NAS. With other NAS
architectures, any given ASM file can only be presented
by a single NAS head. With the EFS-CG however, ASMcan
be configured as a single file up to 16TB. Subsequently, up
to 16 NAS heads can present full, direct read/write
access to the ASM file.

In the example the BIGFILE tablespace doesn’t necessarily
represent the norm, does that mean the EFS-CG is of no
benefit for usual Oracle deployments?

Consider even a “small” Oracle Linux RAC cluster of four
nodes. As described earlier, the RAC cluster would possess
more I/O bandwidth than the largest single-headed NAS

filer on the market6—about 400% more I/O bandwidth.
You can split the data over multiple filesystems and go with
a clustered NAS filer configuration and have “4 over 2”
arrangement, but what happens when the fifth node is
added? There is a risk of a LGWR and DBWR bottleneck
also because of NVRAM checkpointing in the NAS filers.

With the EFS-CG, should the RAC cluster grow from two
to four and then eight nodes, you have the NAS modularity
to simply add NAS heads and the scalability to actually
benefit from them. No need to move data to different
filesystems, simply add NAS heads—an operation that
can be done without disruption. In the non-RAC case, if
new database deployments are available, you do not
need to buy more filers. Instead, create a new directory,
place the new database in it, and present the filesystem
through any, or all, of the NAS heads.

Proof of concept
The HP StorageWorks team partnered with PolyServe
Matrix Server™ to perform a proof of concept test with
Oracle on the EFS-CG. The goal of the testing was to
answer three very important questions:

1. Scalability — Can the EFS-CG improve Oracle
performance as NAS heads are added?

2. Availability — Can Oracle Real Application Clusters
continue operations with complete transparency in the
event of an EFS-CG NAS head failure?

3. OLTP — Can the EFS-CG perform under stressful
OLTP workloads?

9

ASM on NAS is implemented by first
creating large files on the NAS
filesystem and then adding them to
ASM as a “disk” in a disk group. The
preceding BIGFILE example is the
exact I/O profile of ASM on NAS.
With other NAS architectures, any
given ASM file can only be presented
by a single NAS head. With the
EFS-CG however, ASM can be
configured as a single file up to 16TB.

6 A single-headed filer with Intel Xeon technology serving a four-node
RAC cluster.

10

/u01
/u02

/u03

/u04

/u01

CGW
Node

vnfs1

/u03

/u04

CGW
Node

/u03

/u04

CGW
Node

/u02

CGW
Node

Enterprise File Services Clustered Gateway

 vnfs1b vnfs2b vnfs3b

The Enterprise File Services Cluster Gateway had four NAS heads. The EFS-CG presented four filesystems contained in
cluster volumes that were a collection of LUNs in the SAN.

The four filesystems presented by the EFS-CG were:

• /u01. This filesystem contained all Oracle executables (e.g., $ORACLE_HOME)

• /u02. This filesystem contained the Oracle10gR2 clusterware files (e.g., OCR, CSS), datafiles, and External Tables for
ETL testing

• /u03. This filesystem was lower-performance space used for miscellaneous tests such as backup disk-to-disk

• /u04. This filesystem resided on a high-performance volume spanning two storage arrays containing the main
benchmark database

Both /u01 and /u02 were exported from the EFS-CG by separate NAS heads7 as shown in Figure 3. The following
lines were added to the /etc/fstab file for /u01 and /u02 on each RAC node.

vnfs1: /u01 /u01 nfs rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768,actimeo=0

vnfs3b:/u02 /u02 nfs rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768,actimeo=0

Because /u03 and /u04 contained hot objects such as External tables and databases, they were presented from the
EFS-CG via two different Virtual NFS Services and two different NAS heads as shown in Figure 3. The first two RAC
nodes, rac1 and rac2, used these /etc/fstab entries for mounting /u03 and /u04:

vnfs1b:/u03 /u03 nfs rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768,actimeo=0

vnfs1b:/u04 /u04 nfs rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768,actimeo=0

To route NFS traffic across a different NAS head for rac3 and rac4, those nodes were configured with the following
/etc/fstab entries for mounting /u03 and /u04:

vnfs2b:/u03 /u03 nfs rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768,actimeo=0

vnfs2b:/u04 /u04 nfs rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768,actimeo=0

Configured in this fashion, all database I/O for rac1 and rac2 were serviced by one NAS head and an entirely
different NAS head handled all database I/O requests for rac3 and rac4. All ORACLE_HOME traffic was serviced by
a dedicated NAS head as was all Oracle Clusterware I/O. All of these Virtual NFS Services could have just as easily
run on any, or even a single, NAS head.

In all cases, each VNFS can failover to any of the other NAS heads in the event of a head failure (e.g., hardware)
and, as mentioned above, failover of any VNFS is completely transparent to the NFS client.

Proof of concept test configuration description:
The test configuration used for the proof of concept consisted of six dual-processor AMD-based servers as NFS clients. Four servers were configured with Oracle10g Release 2
Real Application Clusters. The other two NFS client nodes were used for Oracle10g Release 1 and Oracle9i non-RAC databases to show that the EFS-CG is agnostic about
database version. All of the Oracle servers were configured with 64-bit Red Hat Enterprise Linux® AS/ES 4.0. The NFS clients each had two GigE paths for NFS traffic.

Figure 3
Proof of concept
EFS-CG configuration

7Note that it was not necessary to use two NAS heads to serve ORACLE_HOME and the Clusterware files. That choice was made in order to test wide degrees
of functionality.

The screen capture in Figure 4 explores this type of EFS-
CG configuration. It shows the following:

• First arrow. The session starts by showing that it is a
Linux shell on the RAC node called rac1

• Second arrow. A df(1) command on rac1 shows that
/u04 is being presented to this RAC node via the
Virtual NFS Service called vnfs1b

• Third arrow. A df(1) command, executed remotely via
rsh(1), on the RAC node called rac3 shows that the
/u04 filesystem is being presented to rac3 via the
Virtual NFS Service called vnfs2b

• Fourth arrow. The ssh(1) command is used to log into
the EFS-CG node presenting /u03 and /u04 via the
VNFS called vnfs1b. The uname(1) command shows
that the EFS-CG NAS head is a node called c1n3

• Fifth arrow. The ssh(1) command again is used to
determine which EFS-CG NAS head is presenting /u03
and /u04 via the VNFS called vnfs2b. There, the
uname(1) command reports that the node name is
c1n4, which was the fourth NAS head in the EFS-CG

Scalability
The first set of scalability testing focused on multi-headed,
single filesystem throughput. This set of tests included:

• Adding space to the database

• Parallel query scans

Adding space to the database
With the ALTER TABLESPACE ADD DATAFILE command,
space can be added to the database in parallel. This is a
100% write operation that Oracle performs with large
multiblock writes to initialize all blocks in the file.

A test was set up to initialize a 20GB tablespace. To
drive up the parallelism at the Oracle end, the test
consisted of 20 concurrently executed ALTER TABLESPACE
ADD DATAFILE statements, each adding a 1GB datafile to
a newly created tablespace with a small, 8M, primary
datafile. Because timing of the test starts after the
tablespace is created, the only timed portion is the
concurrent ALTER TABLESPACE ADD DATAFILE operations.

The ts.sh script, listed in the appendix, was used for this
test. This script uses promiscuous rsh (1) to execute
SQL*Plus commands on the local node and another node
as per the second argument of the program. Figure 5
shows an example of this testing. The first arrow shows
that the command was executed with the second argument

11

Figure 4
Associating filesystems with NAS heads

Figure 5
RAC tablespace creation throughput with single-headed EFS-CG

set to 2. This means that 10 of the sqlplus execution
streams will execute on rac1 and the other 10 on rac2.
The files were initialized with zeros using the dd (1)
command, and the REUSE verb was used in the ALTER
TABLESPACE command to ensure that the cost for
initialization was the same under both executions of ts.sh.
As seen in the code listing in the appendix, timing of the
ALTER TABLESPACE statements is reported before the
program exits. The first time ts.sh was executed, it took
184 seconds to add 20G of space to the tablespace.

Without interruption, the script was re-run and took 98
seconds, as shown in Figure 6, yet the filesystem was the
same and the files created were the same. This represents
a speedup from 111 to 208MB/s (94% scalability) of
large multiblock writes—a clear example of serving a
single filesystem via multiple NAS heads.

The explanation for the increased performance is
transparent, scalable multi-headed NAS. The first ts.sh
execution used RAC servers rac1 and rac2. The second
used rac1 and rac3. As shown in Figure 3, the /u04
filesystem was presented by two EFS-CG NAS heads.
Because /u04 was served by a single head to nodes
rac1 and rac2, they were limited to the bandwidth of the
network interface associated with the Virtual NFS service
called vnfs1b. Note, the limit of one GigE NFS path to each

EFS-CG head presenting /u04 was an artificial limit imposed
for the purpose of the Proof of Concept. The EFS-CG
heads support three GigE data paths per head by default.

The second time ts.sh was executed (Figure 6), it used
RAC nodes rac1 and rac3. In this case, both vnfs1b and
vnfs2b were involved because rac3 uses vnfs2b as its
VNFS path to /u04. To get this level of throughput with
any other NAS technology, the tablespace would have to
consist of datafiles from multiple directories, each in
filesystems presented by a different NAS heads.

Figure 7 shows the tsinfo.sql script reporting the
tablespace size as 20GB after the ts.sh script was executed.

Write-intensive workload summary
To summarize the scalability and throughput test of
adding space to the database, Figure 8 shows that
adding EFS-CG NAS heads to a write-intensive workload
yielded nearly linear scalability on the Proof of Concept
configuration. The scalability is limited only to the
throughput limit of /u04. With the EFS-CG architecture, it
is simple to make a filesystem perform better. Simply add
another LUN to the cluster volume and grow the
filesystem—an operation that puts more spindles under
the NFS filesystems without disruption to the NFS clients.

12

Figure 6
RAC tablespace creation throughput with multi-headed EFS-CG single filesystem

Figure 7
Tablespace size validation

Parallel query scans
Using Oracle Intra-node Parallel Query with RAC, full-table
scans can utilize all of the available I/O bandwidth that
a system has to offer. After the ts.sh script was executed,
a table was created to hold simulated credit card
transaction records—200,000,000 of them. The table
required 7.49GB space in the CARD_TS tablespace
created with the ts.sh script.

The test setup needs explanation. In this test all RAC
nodes were used. Before the test was executed, the
EFS-CG GUI was used to re-host both vnfs1b and vnfs2b
on the fourth NAS head. Configured as such, the RAC
instances were limited to the throughput of a single NAS
head, but more importantly to a single GigE network
adaptor. Again, the EFS-CG supports three paths per

NAS head, but the test configuration was set up in this
manner to reduce the test hardware requirement and to
make the scalability case clear.

Figure 9 shows the following:
• First arrow: The HOST date command was used to

establish that the test started at 16:05:52hrs.

• Second arrow: The parallel full-table scan completed
in 1m17s.

• Third arrow: The tput.sql script was used to determine
the cumulative global I/O. This output, combined with
the output from the previous tput.sql command, shows
that the full-table scan read in 7,472MB of data.

13

Figure 9
RAC full-table scan throughput,
single-headed EFS-CG

Figure 8
RAC tablespace creation, single
and multi-headed EFS-CG

111

208

0

50

100

150

200

250

M
B/

s

Multi-headed EFS-CG tablespace creation scalability

Single-head, single GigE path Multi-headed, dual GigE paths

Continuing the test, Figure 10 shows the following:

• First arrow: The second time the query was executed, it
completed in only 39.7 seconds.

• Second arrow: The time of day at the end of the second
full-table scan was 16:13:57.

In a period of 8 minutes, the 200,000,000 row table was
scanned once with 98MB/s throughput and then again
at 188MB/s. How did performance increase from 98 to
188/MBs? The answer is VNFS re-hosting. Before the
full-table scan was executed the second time, the EFS-CG
GUI was used to re-host the vnfs1b Virtual NFS Service
from the fourth NAS head to the third. Doing so doubled
the NFS data path bandwidth—without disruption to Oracle.
Because this tablespace resides entirely in a single
filesystem, employing more than one NAS head in this
test is clear validation of multi-headed NAS scalability.

Read-intensive workload summary
Using Parallel Query on four RAC instances, the full-table
scan test established that a linear increase in throughput
can be achieved by adding NAS heads. By re-hosting a
Virtual NFS Service from one EFS-CG NAS head to
another—without disruption to the Oracle database
instances—incremental I/O bandwidth can be added.
NAS scalability was limited only by the bandwidth
capability of the /u04 filesystem. In a production environment,
customers always configure more than one NFS data path
from each RAC node to multiple heads in the EFS-CG,
and the filesystems being presented can be easily
configured or changed to meet Oracle I/O demand.

14

98

188

0

50

100

150

200

250

M
B/

s

Figure 10
Multi-headed EFS-CG RAC
full-table scan throughput

Figure 11
RAC full-table scan
throughput increase by
adding an EFS-CG
NAS head

Multi-headed EFS-CG full table scan scalability

Single-head, single GigE path Multi-headed, dual GigE paths

OLTP testing
For database I/O, the primary concern in Online
Transaction Processing (OLTP) environments is I/O service
times. Many have been concern over the added service
time for Oracle random I/O when accessing datafiles in
NAS. During the proof of concept, OLTP testing was
conducted on the four-node RAC cluster to gauge the
ability of the EFS-CG to handle OLTP-style I/O patterns.
This entire section of the testing was serviced by a single
EFS-CG NAS head. There was no requirement to scale
out the NAS end to satisfy the I/O requirements for this
testing. However, as mentioned in this paper, an OLTP-
only Oracle deployment does not exist. A single-headed
NAS device cannot satisfy the I/O requirements needed
for most parallel query operations (e.g., index creation,
ad hoc query, ETL) performed by a four-node RAC cluster.
Any other NAS offering would require the partitioning of
some data into other filesystems to present the data
through other NAS heads. If intentions were to partition
the data, Real Application Clusters would not have been
chosen. RAC is a scalable database architecture that scales
by adding nodes, not by partitioning data—the same
scaling paradigm as the EFS-CG.

The database in this proof of concept was not partitioned
into several filesystems. This was a single filesystem in a
single EFS-CG volume being presented by a single EFS-
CG NAS head. As described above, a simple EFS-CG
management GUI mouse drag-and-drop operation is all
that is needed to present this database through more, or
all, NAS heads to support high-bandwidth I/O operations.
Any other NAS head in the EFS-CG can transparently
failover VNFSes in the event of a NAS head outage.

OLTP test database description
The OLTP database schema was based on an order entry
system similar to, but not compliant with, that defined in
the TPC-C8 specification. At a high level, the database
schema contained the following application tables:

• Customers. The database contained over 4 million
customer rows in the customer table. This table
contained customer-centric data such as a unique
customer identifier, mailing address, email contact
information, and so on. The customer table was indexed
with a unique index on the custid column and a non-
unique index on the name column.

• Orders. The database contained an orders table with
over five million rows of data at the initial load time.
The orders table grew throughout the workload
execution. The orders table had a unique composite
index on the custid and ordid columns.

• Line items. Simulating a customer base with complex
transactions, the line item table contained as many as
eight line items per order, or an initial level of over 40
million rows. The line item table had a unique three-
way composite index on custid, ordid, and itemid.

• Product. The product table described products available
to order. Along with such attributes as price and
description, up to 140 characters were available for a
detailed product description. Over one million products
were in the product table. The product table was
indexed with a unique index on its prodid column.

• Warehouse. The warehouse table maintained product
levels at the various warehouse locations and had over
10 million rows. This table was crucial in order
fulfillment. The warehouse table was indexed with a
unique composite index of two columns.

15

8The tests conducted for this proof of concept were not compliant with the
TPC-C specification. While similar to TPC-C, the workload did not comply
with the specification as detailed at www.tpc.org

Transaction descriptions
Because the transactions serviced customers at random,
the I/O pattern for this database renders storage-array
cache rather ineffective. The EFS-CG architecture includes
an amount of cache because it is a SAN gateway device.
However, because the test database was significantly
larger than the array cache in the SAN, the random I/O
pattern forced the highest majority of the I/O operations
to access physical disk. The database was spread evenly
across 140 disk drives using S.A.M.E methodology.

The following is a summarization of the transactions:

• New order. This transaction accounted for 18% of the
workload mix. It consists of the traditional elements of
taking a new order—customer validation, credit check,
check stock on hand, etc.

• Orders query. This transaction accounted for 45% of
the activity. This query provides detail on existing
orders for the customer and provides such detail in a
most recent to least-recent order but only top-level detail.

• Customer and product attribute updates. These
transactions accounted for 10% of the workload and
perform updates of such information as phone number,
address, credit card info, price, warranty information,
recall information, product description, etc.

• Orders report. This transaction differs from Orders
Query in that it offers full order detail for a customer to
include shipment status. This transaction is executed
8% of the time.

• New items. This transaction accounts for 11% of the
mix and adds items into stock on hand.

• Miscellaneous transactions. The remaining 8% of the
transactions perform such tasks as deleting items,
adding customers, and product.

The I/O mix for this workload is 60% read and 40%
write. The test harness was written in Proc*C and has
think time built in between transactions. Processor
utilization leveled out at roughly 75% at all node counts.
Figure 12 shows the average Oracle-related cost
associated with each transaction.

Figure 12
OLTP transaction server statistics

Oracle Statistics Average per Transaction

SGA Logical Reads 33

SQL Executions 5

Physical I/O 6.99

Block Changes 8.5

User Calls 6

GCS/GES Messages Sent 12

Performance measurements
The goal of the tests was to establish that the EFS-CG
supports random I/O sufficiently to support the I/O
requirements of Real Application Clusters. The claim is not
that the EFS-CG architecture somehow is capable of
improving RAC scalability, but instead that it will not
hinder scalability as other NAS architectures do. At each
node count, the test workload was executed three times
for 600 seconds and results from the third run were used
for the analysis. Figure 13 shows a graph of the results
collected from the OLTP test executed at one through
four RAC nodes.

With this workload, Figure 13 shows that Oracle10gR2
on the EFS-CG was able to achieve 87% scalability.
Because the I/O rate tracked throughput consistently,
any significant I/O bottleneck would have prevented
this level of scalability.

16

650

1246

1773
2276

0

500

1000

1500

2000

2500

1 2 3 4

RHEL4-64 RAC Servers

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Figure 13
Oracle10gR2 OLTP
scalability with
database stored
in the EFS-CG

9The physical I/O per transaction varies due to the effect of Cache Fusion.
While the average was 6.9, the range varied from 8 at one node to 6 at
four nodes.

10gR2 RAC scalability on EFS-CG

Figure 14 shows the I/O scalability curve. It appears as
though scalability from one to four RAC nodes is only
approximately 65%. How did the I/O and transaction
rate scale differently when the workload was consistent?
The answer is in RAC itself. This is a typical cache fusion
effect, as sometimes when a data block is needed it is in
the SGA buffer pool of another instance. That was exactly
the case during this testing. For instance, during the
four-node testing, the global count of global cache
blocks received was 3,738 per second in addition to
the physical disk I/O.

The true test in I/O efficiency for OLTP is in the session
statistics for I/O service times. Perhaps the most relevant
statistic is db file sequential read wait times. Analysis of
the STATSPACK reports at the four-node level showed
these random 4K synchronous reads were serviced with
5ms latency on average. The NFS overhead at more than
13,000 random 4K transfers per second was negligible.
A typical SAN configuration with an intelligent array
would be expected to service this I/O load with 5ms
latency—over Fibre Channel Protocol. As this testing has
shown, the EFS-CG presents files over NFS with
respectable service times.

No OLTP performance analysis would be complete
without considering the cost of transaction logging. The
OLTP workload used for the EFS-CG proof of concept

exercises a respectable rate of LGWR writing. Figure 15
shows the ratio of redo writes to datafile I/O. At 893
redo writes per second, the four-node RAC test exhibited
an approximate 1:9 ratio of redo writes to db file
sequential read operations.

Redo capability is a critical aspect of OLTP and is considered
a potential problem when deploying Oracle on NAS. So
how does this workload compare to typical production
sites? It is much more stressful. Over 1,000 STATSPACK
reports10 from commercial production Oracle sites were
analyzed to determine whether or not the right level of
stress was being applied during the proof of concept.
Not only is this workload more stressful than a typical
Oracle site but its orders of magnitude are also more
stressful. At 893 LGWR writes per second, this workload
is over 10 times more logging-intensive than 98% of typical
Oracle production databases. Of the 1,000 STATSPACK
reports, only 2% showed LGWR activity within even 25%
of what was exercised in this proof of concept. Because
the EFS-CG performed admirably under this level of
OLTP duress, the proof of concept makes the case that
the EFS-CG is more than capable of handling production
Oracle I/O requirements.

17

5214

8831

11619
13743

0

5000

10000

15000

1 2 3

RHEL4-64 RAC Servers

Ra
nd

om
 4

K
IO

ps

Figure 14
OLTP I/O scalability with Oracle10gR2
on the EFS-CG

RAC OLTP I/O scalability on EFS-CG

893

5593

8150

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

redo writes datafile writes datafile reads

I/
O

 O
ps

 p
er

 S
ec

on
d

RHEL4-64 RAC Servers

OLTP I/O by TypeFigure 15
EFS-CG I/O rates for redo and datafile
read/write operations with four RAC nodes

10Special thanks to Anjo Kolk of OraPerf.com for the STATSPACK reports used to
compare the proof of concept workload to typical Oracle production workloads.

Extreme stress testing
After performing the scalability analysis, a test was
conducted for any load-related pathologies with RAC on
the EFS-CG. Unlike the scalability test, the stress test was
run without any think time to drive up the system load.
This test was executed repeatedly with sustained run times
of eight hours. The workload mix was changed slightly to
prevent any comparison of this specific test result to those
shown in Figure 14. Whereas the read-to-write ratio was
60:40, the Stress Test workload was 72:28 and LGWR
writes were lowered to 602/s from 893/s by different
transactions. Figure 16 shows the I/O throughput
measured during the Stress Test phase of the proof of concept.

At 20,22611 physical datafile I/O operations per second,
the stress test proved that the EFS-CG can deliver a
substantial rate of physical I/O and do so with excellent
stability. At 140 total disk drives, this test performed
roughly 144 physical disk transfers per disk/second—
a significant sustained I/O rate.

The last big question to address is processor utilization.
The typical presumption about Oracle on NAS is that the
NFS overhead is so significant as to leave Oracle
insufficient cycles for internal processing. The results
provided up to this point in the paper refute that notion.

Because the NFS clients used as RAC servers in the proof
of concept were configured with Red Hat® Enterprise
Linux®, the I/O was rendered through the direct I/O code
path. The NFS I/O protocol is not free but is not as bad
as most would presume. The processor utilization was
recorded during the stress test phase of the proof of
concept to ensure that a reading was taken at peak I/O
levels. Figure 17 shows that using Oracle10gR2 with
datafiles in the EFS-CG leaves 78% of the processor
cycles for user-mode processing—even at 20,226 I/Os
per second. As shown in all of the results in this paper,
78% of modern processors for Oracle yields superior
performance.

Long duration stress test
The proof of concept was not a typical benchmark. After
the extreme stress test analysis was conducted, the next
phase of testing was the long duration stress test. The
goal of this test was to stress four instances of RAC with the
proof of concept workload described above for a substantial
period of time. However, execution time was not the
primary metric of the test. Instead, physical database I/O
operations were measured in the Oracle gv$filestat view.
The goal of this test was to push four instances of RAC to
perform 10 billion12 physical disk transfers.

When Oracle makes a system call for physical I/O, it does
not actually know whether or not the I/O was satisfied in
cache at one of the many possible levels. For instance, an

18

78

22
0

20

40

60

80

100

metsySresU

Pe
rc

en
ta

ge

Figure 16
EFS-CG I/O rates for redo and datafile
read/write operations with four-node
RAC Stress Test

602

5671

14555

0

2000

4000

6000

8000

10000

12000

14000

16000

redo writes datafile writes datafile reads

I/
O

 O
ps

 p
er

 S
ec

on
d

Processor utilization during stress test

OLTP I/O during stress test

Figure 17
Processor break-out between User and System
mode for RAC at 20,226 EFS-CG IOps

Processor Mode

11This was not a reflection of storage-level cache effect. The database was
so much larger than the storage cache that random I/O was rendered to
physical disk.

12A 10 Billion is 10^9, 10 Billion is 10^10

Oracle single block read (e.g., db file sequential read)
might actually be satisfied with an OS-level logical I/O if
the block is cached in the OS page cache. Conversely, if
the downwind storage configuration has cache (e.g., a
SAN intelligent storage array), the block might be cached
at that level, eliminating a physical disk transfer. Neither
of these possibilities was true during this test. The test
workload exhibits a random I/O pattern as described
above. The main table being accessed randomly was
over 200GB and the storage array cache was only 4GB,
so activity against this table alone renders the storage
array cache obsolete. Because the RAC instances were
running on Linux servers with a 2.6 kernel, Oracle was
accessing the files in the EFS-CG filesystem through the
direct I/O code path. Essentially, no cache existed other
than the SGA. The physical disk transfers counted in the
gv$filestat table were indeed physical disk transfers.

The screen capture in Figure 18 was taken on February
19, 2006. The first arrow shows that of the four instances,
two had been up for 12 days, one for nine days and one
for two days. A query against the gv$filestat view returns
the aggregate values from each of the instances for the
columns being queried. Servers rac1 and rac4 were
taken down for maintenance reasons during the long
duration stress test, resulting in the loss of the physical
disk I/O they had performed because the test started. The
architecture of RAC accommodates taking instances down
for maintenance because no other instances are still active.
The instances were brought back online and the workload
commenced once again and continued to execute on all
four RAC nodes until the test had performed over 10 billion
physical disk transfers. The second arrow in Figure 18
points to a query against gv$filestat showing that this
RAC database had sustained 10,230,333,159 physical
transfers of which 18% were writes. Missing from this I/O
figure is redo log writer I/O transfers.

This test was concluded within approximately 12 days.
The EFS-CG NAS filesystem sustained around 10,000
physical I/Os every second of every hour during the test.
This stress test represents orders of magnitude more

physical I/O than the typical Oracle production
database. Most Oracle databases do not generate this
number of physical disk transfers in a full year.

Claims of storage subsystem stability are often based
upon MTBF13 analysis and projections. Seldom is so much
hardware submitted to such a rigorous stress test for this
duration. Most industry benchmarks, such as TPC-C14, are
executed for short periods of time, after which results are
analyzed. A single database seldom is subjected to long
duration, highly-contentious OLTP workloads with this sort
of physical I/O load.

Completing this proof of concept with a long-duration
stress test made the project results complete. The architectural
differences between the EFS-CG and other NAS
architectures has been shown and demonstrated. The
durability of this type of storage proves its fit for the
demanding I/O requirements of today’s Oracle databases.

Summary
When was the last time a lack of choice helped you solve
an IT problem? Oracle customers should feel comfortable
making the choice between NAS or SAN for their Oracle
deployments. If SAN is established in your datacenter but
it makes sense for you to deploy Oracle on NAS, why not
leverage the SAN? This paper has briefly covered the
compelling reasons why a SAN gateway product is a
good way to present filesystems via NFS to your Oracle
servers. This paper also has covered the caveats associated
with different NAS architectures. Bearing those caveats in
mind, the best path forward to Oracle on NAS should be
clearer. Only the HP Enterprise File Services Cluster
Gateway possesses the right technology for highly
available, scalable NAS for Oracle.

19

Figure 18
Physical disk transfers during
long duration stress test

13Mean Time Between Failure. Instead of executing a long stress test, many
manufactures will project how their storage would handle a workload based
on how many disks and how often they are projected to fail.

14Depending on the version of the specification, the measurement period is
as short as 30 minutes after some cache warm-up.

tsinfo.sql:
select sum(blocks) * 16 / (1024 *1024) TS_SIZE_GB
from dba_data_files where TABLESPACE_NAME = ‘CARD_TS’;

i.sql:
col INSTANCE_NUMBER format 9
col INSTANCE_NAME format a8
col HOST_NAME format a8

select INSTANCE_NUMBER,INSTANCE_NAME,HOST_NAME
from gv$instance;

tput.sql:
select sum(PHYRDS) reads,sum(PHYBLKRD * 16)/1024
readMB,
sum(PHYWRTS) writes,sum(PHYBLKWRT * 16)/1024 writeMB
from dba_data_files

Authors
Kevin Closson, Chief Architect

Oracle Database Solutions, PolyServe

Special recognition is given to the following individuals
for their knowledge and impeccable support of this effort:

Dennis Miyoshi
Head Solutions Engineer
NAS StorageWorks Division, HP

John Dupuis
WW Technical-Sales Marketing
NAS StorageWorks Division, HP

Janelle Adams
Technical Publications, PolyServe

Special thanks are given to the HP StorageWorks
organization for sponsoring this proof of concept.

Appendix
ts.sh script:
#!/bin/bash

function drop_and_recreate() {
Drops and recreates tablespace and throws away unnecessary
text returns from sqlplus via grep
sqlplus -S ‘/ as sysdba’ <<EOF | grep -i tablespace
REM drop tablespace card_ts including contents and datafiles;
drop tablespace card_ts including contents;
create tablespace card_ts
datafile ‘/u03/DATA/CARD/card_0.dbf’
SIZE 8190K REUSE
AUTOEXTEND OFF
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO
BLOCKSIZE 16K;
exit
EOF
}

function add_file() {
Uses promiscuous rsh to throw the execution over to node $NODE

local NODE=$1
local FPATH=$2
local FILE=$3
(rsh rac${NODE} “cd ~oracle;. .bash_profile> /dev/null 2>&1;sqlplus ‘/ as sysdba’ <<EOF >
/dev/null 2>&1
alter tablespace card_ts add
datafile ‘${FPATH}/card_${FILE}.dbf’
SIZE 1024M REUSE;
exit
EOF”) &
}

Main Program Body

MODE=$1
OTHER_NODE=$2
NUM_FILES=$3
FPATH=/u03/DATA/CARD

cnt=1

drop_and_recreate #function

B=$SECONDS

until [$cnt -gt $NUM_FILES]
do

FILE=$cnt
((x = $FILE % 2))

if [“$MODE” = “multinode”]
then

[[$x -eq 0]] && NODE=1 || NODE=$OTHER_NODE
else

NODE=1
fi

echo “File $FPATH/card_${FILE}.dbf will be added by node $NODE”
add_file $NODE $FPATH $FILE #function
((cnt = $cnt + 1))
done
wait
((TOT = $SECONDS - $B))
echo “Complete tm ${TOT} seconds”

For more information about HP Enterprise File Services Cluster
Gateway for Oracle Database Deployments and PolyServe Matrix
Servers software, visit www.hp.com or www.polyserve.com.
© Copyright 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change
without notice. The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional warranty.
HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Oracle is a registered U.S. trademark of Oracle Corporation, Redwood City, California. Linux is a U.S. registered
trademark of Linus Torvalds. PolyServe is a trademark of PolyServe, Inc. The PolyServe Matrix Server product uses
software developed by Spread Concepts LLC for use in the Spread toolkit. For more information about Spread, see
www.spread.org. The Red Hat logo is a trademark of Red Hat, Inc.

4AA0-4746ENW, March 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile ()
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

