When Good Optimizers Make Bad Choices (Sometimes!)
By Dan Tow, dantow@singingsql.com

There’s a school of thought out there that Oracle’s cost-based optimizer (CBO) has eliminated any need for manual SQL tuning. It is, certainly, a nice piece of software, but in the process of making 75% of my very nice living tuning SQL running on Oracle’s CBO, as an independent consultant, I’ve found a few reasons to tune, nonetheless. Just to get reason number 0 out of the way:
The CBO isn’t perfect.
Older versions are farther from perfection than newer versions, and I haven’t actually had occasion to tune SQL running on 10g, yet, so for all I know I’ll never find clear evidence of imperfection on 10g, but, after all, the CBO is a work of a finite number of humans with a finite amount of knowledge and time at their disposal, so there’s no reason to expect it will achieve perfection unrealized in any other human-made product. I call this reason zero, though, for a couple of reasons:
· I don’t want to get into a religious war about the details of the CBO’s imperfections, so I’m not going to go into details, here.

· The CBO’s imperfections are the least-important reason to tune SQL!

Now, let’s say we actually had a perfect CBO – what reasons might we still have to tune? There are two main categories of reasons:

· We know (or can learn) things that the CBO cannot know.

· We have fewer constraints on our problem solution than the CBO has.

What the CBO Doesn’t Know

Under the first category of reasons, here are some of the detailed things we can know that the CBO cannot:

· Precisely how restrictive is every single condition in the query? Filter conditions, conditions that refer only to a single table’s columns, are the key to optimal performance – if we discard rows early enough in the execution plan, or better still, avoid touching the rows to be discarded in the first place (by using an index), Oracle will do much less work than if Oracle joins thousands of rows to many tables only to find out in the end that we must discard them (when Oracle applies the filter too late in the plan). The only way to find out for sure the selectivity of a filter condition is to compare the rowcount before and after discarding rows that fail to meet the condition. This is simple (although sometimes time-consuming) for the human tuner to do, but not allowed to the optimizer. The optimizer must estimate the selectivity of a condition based on rules of thumb and statistics that do not require actually querying the data just to optimize the data query! When conditions are complex, involving complex nested expressions on both sides of an equality, for example, it is very unlikely that an automated optimizer can estimate the selectivity well just based on the statistics.
· Are the conditions independent, or not? If we query for very recent, open orders, the optimizer cannot know that almost all open orders are recent, and most very recent orders are open. Instead, it finds (from the statistics) that perhaps one order in a thousand is recent enough, and one in a thousand is open, and concludes that you want just one order in a million! Having mis-estimated the number of rows surviving those two filters by a factor of perhaps several hundred, it is all-too-likely to make some very nasty choices that would only be justified if the rowcount was as low as it expects. I’ve seen extreme cases of this error where the optimizer had basically concluded that no rows at all (which it rounds up to one row) would survive a step, and that the next step could safely be a Cartesian product!
· What range of values will be assigned to the bind variables? Bind variable peeking was a nice addition to Oracle 9i, but it still restricts the optimizer to selecting a plan based on just a single example of the values the bind variables might be assigned, while the human tuner can often estimate the full range of possibilities and find a plan that will handle them all robustly. The other edge of the bind-variable sword is that the optimizer can select one plan one day, and another the next day, with very confusing, inconsistent performance results for end-users executing the same pre-cached query each day.
· How long do alternative plans actually take? The human tuner has the luxury (even the responsibility) to race the credible alternatives against each other, and especially against the best plan the optimizer finds. I rarely override the optimizer’s choice without proving that my choice was substantially better in the measure that really matters – how fast does it run, but the optimizer has no such luxury, and must make its best guess before running any choice at all! When I search for a better alternative, I am not looking for improvements of a few percent, either, but usually of a factor of two or ten or more.
· How important is it to optimize the statement? The CBO must optimize every statement executed. Since it does a fine job about 99% of the time, it would be wasteful to manually optimize every statement in a complex application suite. This is very fortunately not necessary, since an application suite may easily contain tens of thousands of queries! Instead of manually tuning all queries, you should identify just the few dozen (or fewer) queries that are significant performance issues, as identified by Cary Millsap’s Method R, or similar runtime-based methods, and you should take as long as necessary to tune these, even if this involves running five hours of experiments to tune a one-hour query, a luxury clearly not available to the CBO. (It is entirely reasonable, even a bargain, to create five hours of load, if necessary, to manually tune a one-hour query, if you know that this query must run many times per day, perhaps at many sites, for years to come.)

Examples
The CBO cannot know how seemingly-independent conditions relate. For example, however good its single-column statistics may be, it cannot know that most open orders are fairly new, and that old open orders are very rare. Human tuners can often guess these relationships, especially if they know the application well. However, even when you cannot guess these relationships, you can run experimental queries to discover them.
I put together an artificial million-row table, DTow_Talk_Child, with 4,600 rows having Code_Col=’OP’ (“open”), with the “open” rows heavily weighted toward the rows having a recent date in Date_Col. I include the setup script to create, populate, index, and analyze this and all other tables of these examples in the Appendix. The ANALYZE commands run on the tables generated optimum statistics, using every row and generating detailed histograms wherever useful. The million rows are evenly spread over a recent range of 1000 consecutive days for Date_Col. You can find the entire test session for this example and the others in notes_final.txt in the Appendix. Here are some execution plans, complete with cost and cardinality estimates from the CBO, with commentary interspersed in italics:

/users/dtow/unixscriptsdir>sqlplus xxxx@yyyyy                              

SQL*Plus: Release 8.1.7.0.0 - Production on Mon Feb 28 14:06:24 2005

(c) Copyright 2000 Oracle Corporation.  All rights reserved.

Enter password:

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.5.0 - 64bit Production

With the Partitioning, Real Application Clusters, OLAP and Oracle Data Mining options

JServer Release 9.2.0.5.0 - Production

SQL> @setup_tests

Table dropped.

<deleted output>
SQL> @setup_run

Session altered.

<deleted output>
Session altered.

SQL> @exq8 test1

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2* WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

.1  SELECT STATEMENT   c=196, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=196, R=10009

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_DATE_COL: Date_Col c=27, R=10009

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test1

  3  ;

COUNT(DATA_COL)

---------------

          10000

Elapsed: 00:00:00.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 201          Physical Reads = 0

Elapsed: 00:00:00.13
Note that the CBO estimated that the date-range condition would be true for 10,009 rows (R=10009, in the last two lines of the plan output), which is almost precisely correct – so far, so good.

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=46

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.15

SQL> @test2

  4  ;

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:00.15

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 1090         Physical Reads = 0

Elapsed: 00:00:00.13
Note that the CBO correctly estimated that the index range scan would point to 4,600 rows of the table (R=4600 in the last line of the plan output) – so far, so good. However, in the second-to-last line of the plan output, the CBO estimates that the rowcount satisfying both conditions will be 46 (R=46, in the second-to-last line), which is low by almost two orders of magnitude! This is completely understandable, since the CBO assumes (incorrectly, as it happens) that these two conditions are statistically independent, and 46 rows is exactly the rowcount it should calculate in that case. If the CBO optimized a many-way join containing these two conditions, considering a plan driving from this table using nested loops to all other tables, it would underestimate the costs of the subsequent joins by a factor of 3700/46=~80! This could easily result in the CBO failing to choose an alternate plan (which it correctly estimates the cost of) that would be better by almost the same factor of 80.
SQL> @exq8 test3

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col <= TO_DATE('2005/01/01','YYYY/MM/DD')-90

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=4195

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test3

  4  ;

COUNT(DATA_COL)

---------------

            110

Elapsed: 00:00:00.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 1090         Physical Reads = 0

Elapsed: 00:00:00.12
Here, the estimation error is the converse of the error seen earlier. The query finds the exceptional rows that are both old and “open.” The optimizer quite reasonably expects that since the query sees 91.1% of the dates, it will see ~91% of the open rows (R=4195), not realizing that the conditions are highly anti-correlated. In this case, it underestimates the selectivity of the combined filter, which is actually ~38 times (4195/110) more selective than the CBO realizes, and therefore overestimates the cost of any plan that might drive from this table to subsequent joins, by a similar, large margin. The CBO would likely fail to find the ideal plan driving from this much-better-than-apparent filter to many other tables with nested loops.
This case is far more common than you might imagine – common business-exception reporting frequently revolves around queries for rows that satisfy two or more relatively common conditions, but that are highly exceptional because those conditions are not supposed to all be true at once, except perhaps very rarely.
Dynamic sampling is a useful exception to the rule that the optimizer does not read application data before choosing an execution plan. With dynamic sampling, which can be set at the system level, the session level, or with individual hints, the optimizer can sample table data to determine just the above sort of hidden correlations between conditions, to much-better estimate selectivities. Here is the test2.sql example, repeated with level-9 dynamic sampling (the highest level short of scanning every block of a table, with level-10):

SQL> alter session set optimizer_dynamic_sampling=9;

Elapsed: 00:00:00.07

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=2900

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600
Elapsed: 00:00:00.52

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> SELECT count(Data_Col)

  2  from  DTow_Talk_Child t4

  3  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  4  AND Code_Col = 'OP';

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:00.59
Note that the estimated rowcount of 2900 was still off by 22%, since sampling was imperfect, and that the execution plan was unchanged, though the query took 350ms longer to run because of the cost of the dynamic sampling, itself, at parse time.

In all, dynamic sampling is a great tool to better-inform the cost-based optimizer of the selectivity of conditions in the query, but the across-the-board increase in parsing costs make it an expensive tool to leave permanently on. Instead, we can have our cake and eat it, too, by using dynamic sampling during the tuning exercise to take better advice from the CBO. If it results in great performance, then we can freeze the better plan in place, without recurring sampling costs, by using hints that force the better plan, assuming that is a robust execution plan that will adapt well to predictable changes in the data. (A dynamic_sampling hint would also do the trick if the extra sampling cost at parse time was trivial compared to the execution cost of the SQL even after tuning.) 
Here is a more-complex example of both the value of measurement and the value of the freedom to execute application-data queries during the process of tuning. I use the same million-row DTow_Talk_Child table as before, with a 100,000-row parent table, DTow_Talk_Parent1, and a 3-row lookup table, DTow_Type. Both the parent and child tables have Type_ID columns that have highly-skewed distributions of Type_IDs pointing to the 3 types, ‘COMMON’, ‘RARE’ and ‘VERY_RARE’. The CBO has good data, since I generated histograms, regarding how skewed the Type_IDs are. However, since it does not pre-query the DTow_Type table before generating the execution plan, it cannot know that the rarest Type_ID corresponds to the type ‘VERY_RARE’. Therefore, it simply guesses that the chosen type will have an average selectivity of one-third, based on the number of distinct Type_IDs.
You can find the entire test session for this example and the others in notes_final.txt in the Appendix. Here are some execution plans, complete with cost and cardinality estimates from the CBO, with commentary interspersed in italics:

SQL> @exq8 test4

  1  SELECT

  2  count(C.Date_Col) CDate,

  3  count(P.Date_Col) PDate,

  4  count(TC.Description) TCDesc,

  5  count(TP.Description) TPDesc

  6  FROM

  7  DTow_Talk_Child C,

  8  DTow_Talk_Parent1 P,

  9  DTow_Type TC,

 10  DTow_Type TP

 11  WHERE C.FKey1_ID=P.PKey_ID

 12  AND C.Type_ID=TC.Type_ID

 13  AND P.Type_ID=TP.Type_ID

 14* and TC.Description='VERY_RARE'

.1  , R=1

..2  SORT AGGREGATE  c=_, R=1

...3  HASH JOIN   c=3050, R=331599

....4  TABLE ACCESS FULL 4*DTOW_TYPE c=2, R=3

....4  HASH JOIN   c=3046, R=331599

.....5  TABLE ACCESS FULL 2*DTOW_TALK_PARENT1 c=250, R=100280

.....5  HASH JOIN   c=2559, R=336083

......6  TABLE ACCESS BY INDEX ROWID 3*DTOW_TYPE c=2, R=1

.......7  INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

......6  TABLE ACCESS FULL 1*DTOW_TALK_CHILD c=2555, R=1008250
The first plan, without hints, reads both of the large tables through full-table scans. The CBO estimates that the join to DTow_Talk_Child will reach just over one-third of the table (R=336083, following the most-indented HASH JOIN, assuming just average selectivity for the joined-to Type_ID, in spite of having accurate histogram stats on C.Type_ID, since it does not know (at optimization time) which value of TC.Type_ID will match TC.Description='VERY_RARE'. The over-all cost estimate is 3050 (“SELECT STATEMENT   c=3050”). 
Strangely enough, dynamic sampling does no good at all, here, because apparently (in version 9.2.0, anyway) the optimizer does not think to “sample” the single row of DTOW_TYPE necessary to find out that the value of Type_ID joined to DTow_Talk_Child will be the rarest value in the histogram that it already has access to!
SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        36 16136        18166

Elapsed: 00:00:00.14

SQL> @test4

 15  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:02.10

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 18484        Physical Reads = 683

Elapsed: 00:00:00.13
The first run, untuned, with optimizer_goal=CHOOSE, requires 18484 logical I/Os, 683 physical I/Os, and 2.1 seconds, run shortly after creating (and caching most of) the tables involved.

SQL> @test4

 15  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:01.29
The second run delivers results consistent with the first run, but with somewhat lower runtime and lower physical I/O, since the first run pre-cached many of the blocks needed.
SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 18484        Physical Reads = 82

Elapsed: 00:00:00.13

SQL> @exq8 test6

  1  select count(*) from (

  2  SELECT /*+ first_rows */

  3  C.Date_Col CDate,

  4  P.Date_Col PDate,

  5  TC.Description TCDesc,

  6  TP.Description TPDesc,

  7  rownum rn

  8  FROM

  9  DTow_Talk_Child C,

 10  DTow_Talk_Parent1 P,

 11  DTow_Type TC,

 12  DTow_Type TP

 13  WHERE C.FKey1_ID=P.PKey_ID

 14  AND C.Type_ID=TC.Type_ID

 15  AND P.Type_ID=TP.Type_ID

 16* AND TC.Description='VERY_RARE')

.1  SELECT STATEMENT   c=301092, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  VIEW  1* c=301092, R=331599

....4  COUNT   c=_, R=_

.....5  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_CHILD c=3, R=3

......6  NESTED LOOPS   c=301092, R=331599

.......7  NESTED LOOPS   c=252, R=100280

........8  MERGE JOIN CARTESIAN  c=252, R=100280

.........9  TABLE ACCESS BY INDEX ROWID 4*DTOW_TYPE c=2, R=1

..........10 INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

.........9  BUFFER SORT  c=250, R=100280

..........10 TABLE ACCESS FULL 3*DTOW_TALK_PARENT1 c=250, R=100280

........8  INDEX UNIQUE SCAN DTOW_TYPE_UNQ1: type_id c=_, R=1

.......7  INDEX RANGE SCAN DTOW_TALK_CHILD_FKEY1_ID: fkey1_id c=2, R=10

The chosen FIRST_ROWS plan is even worse, in terms of end-to-end runtime, as you might expect – the CBO is correct that the “cost” of the ALL_ROWS plan above is lower, although it has mis-estimated the relative magnitudes of the runtimes, which differ by a factor of just about three, instead of the factor of 100 difference in the cost. (Note that I’ve nested the FIRST_ROWS query inside an un-mergable inline view because if you query count() directly (as in the original query), the CBO ignores the FIRST_ROWS hint. Real application queries would naturally usually return rows individually, not counts, but the example uses counts for compactness.)
SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        36 16136        18166

Elapsed: 00:00:00.15

SQL> @test6

 17  ;

  COUNT(*)

----------

      1000

Elapsed: 00:00:03.69

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 220470       Physical Reads = 80

Elapsed: 00:00:00.15

SQL> @test6

 17  ;

  COUNT(*)

----------

      1000

Elapsed: 00:00:03.74

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 220468       Physical Reads = 0

Elapsed: 00:00:00.14

SQL> @exq8 test7

  1  SELECT /*+ leading(TC) use_nl(C P) index(C DTOW_TALK_CHILD_TYPE_ID)

  2  index(P DTOW_TALK_PARENT1_UNQ1) */

  3  count(C.Date_Col) CDate,

  4  count(P.Date_Col) PDate,

  5  count(TC.Description) TCDesc,

  6  count(TP.Description) TPDesc

  7  FROM

  8  DTow_Talk_Child C,

  9  DTow_Talk_Parent1 P,

 10  DTow_Type TC,

 11  DTow_Type TP

 12  WHERE C.FKey1_ID=P.PKey_ID

 13  AND C.Type_ID=TC.Type_ID

 14  AND P.Type_ID=TP.Type_ID

 15* and TC.Description='VERY_RARE'

.1  SELECT STATEMENT   c=352856, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  HASH JOIN   c=352856, R=331599

....4  NESTED LOOPS   c=352581, R=331599

.....5  NESTED LOOPS   c=16498, R=336083

......6  TABLE ACCESS BY INDEX ROWID 3*DTOW_TYPE c=2, R=1

.......7  INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

......6  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=16496, R=336083

.......7  INDEX RANGE SCAN DTOW_TALK_CHILD_TYPE_ID: type_id c=885, R=336083

.....5  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_PARENT1 c=1, R=1

......6  INDEX UNIQUE SCAN DTOW_TALK_PARENT1_UNQ1: pkey_id c=_, R=1

....4  TABLE ACCESS FULL 4*DTOW_TYPE c=2, R=3

Finally, we have an execution plan that reaches only the 1000 (out of 1,000,000) VERY_RARE-type rows, forced with detailed hints. Notice that the CBO estimates the execution plan to be 100-times more expensive than the 8-plus-times-longer-running chosen ALL_ROWS plan, and slightly more expensive than the 23-times-longer-running chosen FIRST_ROWS plan! These are enormous errors in estimation, and with larger tables, I could easily generate larger errors of almost any size.
SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        36 16136        18166

Elapsed: 00:00:00.14

SQL> @test7

 16  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:00.16

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 3013         Physical Reads = 0
The above test shows an 8-fold runtime improvement over the best runtime seen above for the same query in the absence of “directive” hints (hints that direct the CBO to specific access paths, as opposed to “intentional” hints such as “FIRST ROWS”,  which simply reveals the intent of the developer to optimize the whole runtime or just the runtime needed to reach the first rows). The improvement in logical and physical I/O is consistent with the observed improvement in runtime.
What the CBO Cannot Do
The second category of reasons to tune, then, is the relative lack of constraints on the human tuner. Let’s examine the constraints on the CBO:

· The CBO can only choose the best plan that uses database objects that already exist! The human tuner can and should find a plan that delivers the necessary speed (which the CBO cannot even know), even if it requires ordinary or functional indexes that do not yet exist, or even denormalizations. Denormalizations are only rarely necessary, but new or altered indexes are one of the most frequent requirements for tuning high-load SQL.

· The optimizer can rarely take advantage of existing denormalizations. A few denormalizations, such as materialized views, are accessible to the optimizer, but the optimizer is unaware of most denormalizations. Undeclared denormalizations are not even theoretically available to the optimizer to exploit automatically, but the human tuner can still use them.

· The CBO must avoid transformations that even theoretically might change the functional result. Trivial corner-case changes can disallow hugely useful query transformations that human tuners make every day. 

· The CBO is only allowed to tune the SQL, not the application. It cannot conclude that the fundamental problem is that the query returns more rows than it needs to, or runs too often, or should be broken into multiple queries, or combined with another query, or moved off-hours, yet the result of a careful SQL-tuning exercise is often one of these conclusions, which in turn leads to a necessary, performance-enhancing change at the application layer, which is impossible just by tuning the single query as it arrives at the optimizer.

Example

The CBO is, quite rightly, forbidden from taking even the slightest risk of generating a wrong-rows bug, even where the corner case is outrageously unlikely, and the performance of the plan used is terrible.

I put together an artificial million-row table, DTow_Talk_Child, with a number-type primary key, PKey_ID. Imagine that this represents a custom table added to a database for a packaged application. I also generated a million-row table called DTow_Talk_Generic, which might join one-to-one with DTow_Talk_Child. Imagine that this represents a generic table present in the packaged application’s database. For flexibility, including flexibility to join to custom tables, the packaged application includes flexible generic character-type columns named Generic01, Generic02,… (Such character-type generic columns are common in packaged applications, since character-type columns, using type-conversion, can store number and date types, as well as character strings.) I include the setup script to create, populate, index, and analyze this and all other tables of these examples in the Appendix. The ANALYZE commands that run on the tables generated optimum statistics, using every row. You can find the entire test session for this example and the others in notes_final.txt in the Appendix. Since this sort of problem requires human judgment to choose to actually change (however slightly) the functional result, dynamic sampling is of no use, here! Here are some execution plans and execution-runtime results, with commentary interspersed in italics:

SQL> @exq8 test5

  1  SELECT

  2  C.PKey_ID CKey_ID,

  3  C.Date_Col CDate,

  4  G.PKey_ID GKey_ID

  5  FROM DTow_Talk_Child C,

  6  DTow_Talk_Generic G

  7  WHERE C.PKey_ID=G.Generic01

  8* AND C.PKey_ID=654321

.1  SELECT STATEMENT   c=2170, R=1

..2  NESTED LOOPS   c=2170, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=3, R=1

....4  INDEX UNIQUE SCAN DTOW_TALK_CHILD_UNQ1: pkey_id c=2, R=1

...3  TABLE ACCESS FULL 2*DTOW_TALK_GENERIC c=2167, R=1
Although I have a unique index on DTow_Talk_Generic.Generic01, the CBO cannot find its way to reach that million-row table with that index, instead choosing a much more expensive full-table scan. The reason for this perplexing choice is that the join

WHERE C.PKey_ID=G.Generic01
requires a type conversion, having a number-type column on one side, and a character-type column on the other side. Oracle recognizes that the truth-value of

C.PKey_ID=TO_NUMBER(G.Generic01)

is not necessarily the same as the truth-value of

TO_CHAR(C.PKey_ID)=G.Generic01
since, for example, 14=TO_NUMBER(’14.0’) but TO_CHAR(14)=’14’ and TO_CHAR(14)!=’14.0’.

This creates a dilemma for Oracle, since the truth value of C.PKey_ID=G.Generic01 must not depend, even in the most-obscure corner cases, on the chosen execution plan. Oracle resolves the dilemma by defining the truth value of all type-inconsistent comparisons (which necessarily use implicit type conversions that are character-type on exactly one side) to be the value that results from converting the character-type to the other type involved. Therefore, the join

WHERE C.PKey_ID=G.Generic01
is really executed (implicitly) as

WHERE C.PKey_ID=TO_NUMBER(G.Generic01)

I have no functional index on TO_NUMBER(Generic01), and the CBO must not use the existing index on Generic01, lest it create a corner-case defect. The human tuner, however, likely knows (or can find out) that Generic01 always stores the result of TO_CHAR() of a simple integer, so this corner case may be of no concern to the human tuner. Even if this corner case is a worry, the human tuner can ensure that the current values of Generic01 are always simple strings of digits, and can create a constraint on the column to ensure that they always will be just strings of digits. (Even apart from the performance issue, this is a useful thing to do, since it prevents future type-conversion errors when executing this SQL – see this author’s article at http://www.onlamp.com/pub/a/onlamp/2004/09/02/wrongerrorbugs.html.) 
SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        46 2679         11886

Elapsed: 00:00:00.14

SQL> @test5

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:01.27

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 14282        Physical Reads = 0

Elapsed: 00:00:00.13
The above test shows that the CBO’s choice for the original query ran 1.27 seconds, even though the entire million-row DTow_Talk_Generic table was fully cached (seeing no physical I/O), and it required 14282 logical I/Os to execute the query.

SQL> @test5

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:01.26

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 14282        Physical Reads = 0

Elapsed: 00:00:00.12
The above test repeats the earlier test, showing results very consistent with the earlier test.

SQL> @exq8 test8

  1  SELECT

  2  C.PKey_ID CKey_ID,

  3  C.Date_Col CDate,

  4  G.PKey_ID GKey_ID

  5  FROM DTow_Talk_Child C,

  6  DTow_Talk_Generic G

  7  WHERE TO_CHAR(C.PKey_ID)=G.Generic01

  8* AND C.PKey_ID=654321

.1  SELECT STATEMENT   c=6, R=1

..2  NESTED LOOPS   c=6, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=3, R=1

....4  INDEX UNIQUE SCAN DTOW_TALK_CHILD_UNQ1: pkey_id c=2, R=1

...3  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_GENERIC c=3, R=1

....4  INDEX RANGE SCAN DTOW_TALK_GENERIC_GENERIC01: GENERIC01 c=2, R=1
Now notice that by accepting the hypothetical corner-case functional change that results from performing the type conversion explicitly on the other side of the join, I get an ideal plan, reaching a single row of each table through the two indexes! The CBO actually agrees that this is a lower-cost plan (“c=6” versus “c=2170“ for the original plan, but the new plan was out-of-bounds without the explicit conversion TO_CHAR(C.PKey_ID), for the reasons already explained. By making the conversion explicit on the correct side, I have tuned the query, but I have not restricted the CBO’s freedom-of-action with hints. On the contrary, I have freed the CBO to find a plan it prefers.
SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        46 2679         11886

Elapsed: 00:00:00.14

SQL> @test8

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:00.13

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 9            Physical Reads = 0

Elapsed: 00:00:00.13
The above test shows that the human-tuned  query ran 0.13 seconds, a roughly ten-fold improvement, and it required just 9 logical I/Os to execute the query!
SQL> @test8

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:00.12

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 9            Physical Reads = 0
The above test repeats the earlier test, showing results very consistent with the earlier test.

This case is far more common than you might imagine. Purists may object that a proper database design ought to have prevented the type-inconsistency between the foreign key and the primary key involved in this join, but we must tune in the real world! In the real world, we must often tune database designs that were designed “by committee”, or that are effectively frozen, or outside of our control, and, especially in this case, packaged applications’ database designs cannot take into account every customization that local installations may make.
Objections to Human Tuning, Addressed

The CBO’s assumptions and approximations are fine! It finds a great plan, or at least a good enough plan, 99% of the time.
This is quite true, but off the point. If you correctly choose which SQL to tune (a very small fraction of all the SQL, usually), finding only the few statements that really matter to your application performance, you will actually have a very high probability of finding room for major improvement (by a factor of two, ten, or even better!). This is precisely because the relatively-rare non-optimalities are usually the reason this SQL is creating a problem!
Most developers do not know enough to outsmart the CBO.

This may be true. If you believe you are included among “most developers,” I have a very fine book and a class to suggest that can teach you how to beat the CBO… Given the right knowledge, and with all the “unfair” advantages humans enjoy, such as freedom to create new indexes as needed, mortals can still beat the CBO!

The CBO only fails when the database (or application) design is bad.

It is sometimes true that bad design is the root-cause of the CBO’s failure, but even if it were always true, this is off the point. Bad design happens, often by committee, often long before you got involved in tuning that application, but that does not free the organization from needing better performance! In any case, the tuning exercise is often a great way to identify the most-needed design improvements!

Even if you can improve the query, today, tuning is a bad idea because hints will over-constrain the CBO in the future.

Less than half of SQL tuning even involves beating the CBO at its own game!
· Add indexes, change the application, denormalize,…

· These changes do not constrain the future CBO! On the contrary, they often give the CBO new, better choices.
Even when you beat the CBO at its own game, you don’t always need hints to do it!
· E.g., convert subqueries to inline views.

· E.g., convert view-using queries to queries of simple tables.

· These changes do not constrain the future CBO!

When you do need hints to beat the CBO at its own game, so be it! These are big improvements!
· Take the “bird in the hand”!

· Use a robust execution plan, one that adapts well to predictable changes in the data distributions. My book, SQL Tuning, published by O’Reilly, discusses at length how to choose robust execution plans.

· The SQL will probably change, anyway, long before your hint will be even marginally likely to get in the CBO’s way!
Conclusion

Oracle’s Cost-Based Optimizer is a fine piece of software, but it does not eliminate the need for manual tuning of an application’s most performance-impacting SQL. The CBO, effectively, plays a different “game” than the human tuner, and plays by different, much-more-restrictive rules, rules which leave enormous advantages for the human player, with plenty of room to find superior manual solutions that elude the CBO or that lie entirely outside of the boundaries of the problem the CBO solves.
Appendix

In the course of SQL tuning nearly full-time, as a profession, I find examples of tuning opportunities, daily. Typically, these involve speed-ups of ten-fold, one-hundred-fold, or more. I count it a disappointment if I can only find an opportunity to speed up a slow query two-fold – we can usually do better than this. I encounter, then, an embarrassment of examples of all of the sorts of tuning opportunities I’ve described. Unfortunately, the SQL involved is generally proprietary to my clients, and the data is inevitably so, even if it were practical to provide the huge data volumes these problems involve. The challenge in this paper, was to make these examples as perfectly reproducible as possible, while demanding modest resources of anyone needing to reproduce them, and without violating my clients’ secrets. The examples used in this paper were, therefore, produced with wholly artificial data that are created through the compact scripts herein. The largest tables have just one million rows, so these examples should fit on even a very small test database. The examples were crafted to be both simple-enough to quickly grasp in the context of a one-to-two-hour seminar, and typical of some of the simpler tuning problems I encounter daily. Unfortunately, this, combined with the smallness of the tables and the very large cache in my test database, meant that the examples of “slow” queries in need of tuning were not very dramatic, running in at most a few seconds. However, the relative speed-ups were, nonetheless, substantial, and if you crave more-dramatic, longer-running examples, you can easily take the framework given and scale up both table sizes and query complexities.
These examples were performed on a full-scale UNIX server. The CBO-related tuning parameters were typical and mostly default or irrelevant to the examples, except in a few cases, where I reset them at the session level with the script setup_run.sql, shown later in this appendix. The relevant portions of output of v$parameter2 are shown later in this appendix. Remember, though, that several of these parameters were overridden at the session level through setup_run.sql to make a more generic test environment.
In these examples, I made use of three fairly simple scripts I built and own, for purposes of showing easy-to-read, informative execution plans and runtime performance data. These are:

· exq8.sql: Script to display execution plans. It is run from the sqlplus command line while logged into sqlplus on a UNIX platform. You run:                             SQL> @exq8 <filename>                                                                                   where <filename>.sql is the name of a file, in the same directory you were in when you logged into sqlplus, containing the bare SQL to be tuned, with no blank lines and no terminating ";". The output is an enhanced execution plan showing the first several column names (for many-column indexes) of each index involved, the CBO-estimated "cost" at each step of the plan (following "c=", and the CBO-estimated cardinality (rowcount) at each step of the plan (following "R=". The column types of the indexed columns are shown by the case of the column names, ALL_UPPER_CASE for character-types, all_lower_case for number types, and Init_Cap for date-type columns. The depth of each step of the plan is shown as a number at the beginning of each line of the plan, aiding in reading complex plans, along with the usual indentation. The "instance" of the alias being reached at each table access is shown just before each table name, for example, "2*" to show the second instance. This generally reveals where in the SQL the alias is found, first, second, third, et cetera, in the FROM clause, although it gets more complicated when views and subqueries are involved. This can be useful to resolve ambiguity when the same table appears (with different aliases) more than once in a query. This script requires some privileges to see SYS dictionary tables, and it calls several other scripts, while running, including some scripts it creates in spool files. The output, including a copy of the SQL being tuned, appears in your sqlplus session, and is also saved (if too long to see) in the file ex.out. For iterative tuning, you can tweak the file containing the SQL (in one window) and rerun @exq8 (in another window) without re-entering the filename.

· mysid9.sql: Script to find your own SID and PID information, for a sqlplus session, and, more importantly for these tests, to initialize some variables with the current count of logical and physical I/O for that session, assuming this is an Oracle 9i session.
· reads9.sql: Script to find the logical and physical I/O used by the session by all statements run since the last run of mysid9.sql or reads9.sql, assuming that this is an Oracle9i session.

You can download all three of these scripts, and a few more, from http://www.singingsql.com/sqlscripts.zip, or you can use your own favorite tools for tracking execution plans and performance.
Here are the scripts specific to these tests:

setup_tests.sql:

DROP TABLE DTow_Talk_Dummy;

DROP TABLE DTow_Talk_Child;

DROP TABLE DTow_Talk_Parent1;

DROP TABLE DTow_Type;

CREATE TABLE DTow_Talk_Child(

PKey_ID NUMBER NOT NULL,

FKey1_ID NUMBER,

FKey2_ID NUMBER,

FKey3_ID NUMBER,

FKey4_ID NUMBER,

Date_Col DATE,

Type_ID NUMBER,

Code_Col CHAR(2),

Data_Col VARCHAR2(100))

STORAGE (INITIAL 256M NEXT 256M PCTINCREASE 0);

CREATE UNIQUE INDEX DTow_Talk_Child_UNQ1 ON DTow_Talk_Child(PKey_ID)

STORAGE (INITIAL 256M NEXT 8M PCTINCREASE 0);

CREATE INDEX DTow_Talk_Child_FKey1_ID ON DTow_Talk_Child(FKey1_ID);

CREATE INDEX DTow_Talk_Child_FKey2_ID ON DTow_Talk_Child(FKey2_ID);

CREATE INDEX DTow_Talk_Child_FKey3_ID ON DTow_Talk_Child(FKey3_ID);

CREATE INDEX DTow_Talk_Child_FKey4_ID ON DTow_Talk_Child(FKey4_ID);

CREATE INDEX DTow_Talk_Child_Date_Col ON DTow_Talk_Child(Date_Col);

CREATE INDEX DTow_Talk_Child_Type_ID ON DTow_Talk_Child(Type_ID);

CREATE INDEX DTow_Talk_Child_Code_Col ON DTow_Talk_Child(Code_Col);

CREATE TABLE DTow_Talk_Dummy(X NUMBER);

INSERT INTO DTow_Talk_Dummy VALUES (0);

INSERT INTO DTow_Talk_Dummy VALUES (1);

INSERT INTO DTow_Talk_Dummy VALUES (2);

INSERT INTO DTow_Talk_Dummy VALUES (3);

INSERT INTO DTow_Talk_Dummy VALUES (4);

INSERT INTO DTow_Talk_Dummy VALUES (5);

INSERT INTO DTow_Talk_Dummy VALUES (6);

INSERT INTO DTow_Talk_Dummy VALUES (7);

INSERT INTO DTow_Talk_Dummy VALUES (8);

INSERT INTO DTow_Talk_Dummy VALUES (9);

COMMIT;

INSERT INTO DTow_Talk_Child SELECT /*+ ORDERED */

D1.X*100000+D2.X*10000+D3.X*1000+D4.X*100+D5.X*10+D6.X,

D1.X*10000+D2.X*1000+D3.X*100+D4.X*10+D5.X,

TRUNC((D1.X*10000+D2.X*1000+D3.X*100+D4.X*10+D5.X)/2),

TRUNC((D1.X*10000+D2.X*1000+D3.X*100+D4.X*10+D5.X)/4),

TRUNC((D2.X*10000+D3.X*1000+D4.X*100+D5.X*10+D6.X)/8),

TO_DATE('01/01/2005','MM/DD/YYYY')- (1000-(D1.X*100+D2.X*10+D3.X)),

DECODE((D4.X*100+D5.X*10+D6.X),0,1,1,2,2,2,3,2,4,2,5,2,3),

DECODE(D1.X,9,

       DECODE(D5.X*10+D6.X,49,'OP',

              DECODE(D2.X,9,

                     DECODE(D6.X,3,'OP',6,'OP',9,'OP',

                            DECODE(D3.X,9,'OP','CL'))

                     )

              )

       ),

'ABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJ'||

'ABCDEFGHIJABCDEFGHIJABCDEFGHIJ' /* 80 CHARS */

FROM /* Deliberate Cartesian product to generate rows */

DTow_Talk_Dummy D1, DTow_Talk_Dummy D2, DTow_Talk_Dummy D3,

DTow_Talk_Dummy D4, DTow_Talk_Dummy D5, DTow_Talk_Dummy D6;

COMMIT;

CREATE TABLE DTow_Talk_Parent1(

PKey_ID NUMBER NOT NULL,

FKey1_ID NUMBER,

FKey2_ID NUMBER,

FKey3_ID NUMBER,

FKey4_ID NUMBER,

Date_Col DATE,

Type_ID NUMBER,

Code_Col CHAR(2),

Data_Col VARCHAR2(100));

CREATE UNIQUE INDEX DTow_Talk_Parent1_UNQ1 ON DTow_Talk_Parent1(PKey_ID);

INSERT INTO DTow_Talk_Parent1 SELECT /*+ ORDERED */

D1.X*10000+D2.X*1000+D3.X*100+D4.X*10+D5.X,

D1.X*1000+D2.X*100+D3.X*10+D4.X,

TRUNC((D1.X*1000+D2.X*100+D3.X*10+D4.X)/2),

TRUNC((D1.X*1000+D2.X*100+D3.X*10+D4.X)/4),

TRUNC((D2.X*1000+D3.X*100+D4.X*10+D5.X)/8),

TO_DATE('01/01/2005','MM/DD/YYYY')- (1000-D1.X*100+D2.X*10+D3.X),

DECODE((D3.X*100+D4.X*10+D5.X),0,1,1,2,2,2,3,2,4,2,5,2,3),

DECODE(D1.X,9,

       DECODE(D4.X*10+D5.X,49,'OP',

              DECODE(D2.X,9,

                     DECODE(D5.X,3,'OP',6,'OP',9,'CL',

                            DECODE(D3.X,9,'OP','CL'))

                     )

              )

       ),

'ABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJ'||

'ABCDEFGHIJABCDEFGHIJABCDEFGHIJ' /* 80 CHARS */

FROM /* Deliberate Cartesian product to generate rows */

DTow_Talk_Dummy D1, DTow_Talk_Dummy D2, DTow_Talk_Dummy D3,

DTow_Talk_Dummy D4, DTow_Talk_Dummy D5;

ANALYZE TABLE DTow_Talk_Child COMPUTE STATISTICS;

ANALYZE TABLE DTow_Talk_Parent1 COMPUTE STATISTICS;

ANALYZE TABLE DTow_Talk_Child COMPUTE STATISTICS

        FOR COLUMNS Type_ID SIZE 254, Code_Col SIZE 254;

ANALYZE TABLE DTow_Talk_Parent1 COMPUTE STATISTICS

        FOR COLUMNS Type_ID SIZE 254, Code_Col SIZE 254;

CREATE TABLE DTow_Type(Type_ID NUMBER, Description VARCHAR2(20));

INSERT INTO DTow_Type VALUES(1,'VERY_RARE');

INSERT INTO DTow_Type VALUES(2,'RARE');

INSERT INTO DTow_Type VALUES(3,'COMMON');

COMMIT;

CREATE UNIQUE INDEX DTow_Type_UNQ1 on DTow_Type(Type_ID);

CREATE INDEX DTow_Type_Description on DTow_Type(Description);

ANALYZE TABLE DTow_Type COMPUTE STATISTICS;

DROP TABLE DTow_Talk_Generic;

CREATE TABLE DTow_Talk_Generic(

PKey_ID NUMBER NOT NULL,

Generic01 VARCHAR(50),

Generic02 VARCHAR(50),

Generic03 VARCHAR(50),

Generic04 VARCHAR(50),

Generic05 VARCHAR(50),

Data_Col VARCHAR2(100))

STORAGE (INITIAL 256M NEXT 256M PCTINCREASE 0 MINEXTENTS 1);

CREATE UNIQUE INDEX DTow_Talk_Generic_UNQ1 ON DTow_Talk_Generic(PKey_ID)

STORAGE (INITIAL 256M NEXT 8M PCTINCREASE 0);

CREATE INDEX DTow_Talk_Generic_Generic01 ON DTow_Talk_Generic(Generic01)

STORAGE (INITIAL 256M NEXT 8M PCTINCREASE 0);

INSERT INTO DTow_Talk_Generic SELECT /*+ ORDERED */

D1.X*100000+D2.X*10000+D3.X*1000+D4.X*100+D5.X*10+D6.X+1000000,

TO_CHAR(D1.X*100000+D2.X*10000+D3.X*1000+D4.X*100+D5.X*10+D6.X),

NULL,

NULL,

NULL,

NULL,

'ABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJ'||

'ABCDEFGHIJABCDEFGHIJABCDEFGHIJ' /* 80 CHARS */

FROM /* Deliberate Cartesian product to generate rows */

DTow_Talk_Dummy D1, DTow_Talk_Dummy D2, DTow_Talk_Dummy D3,

DTow_Talk_Dummy D4, DTow_Talk_Dummy D5, DTow_Talk_Dummy D6;

COMMIT;

ANALYZE TABLE DTow_Talk_Generic COMPUTE STATISTICS;
setup_run.sql
alter session set optimizer_mode=choose;

/* Following appears to only matter with stored procedures. */

alter session set "_optimizer_mode_force"=TRUE;

/* Following appears to only affect first_rows queries */

alter session set "_sort_elimination_cost_ratio"=5; 

/* Setting to default value. */

alter session set optimizer_index_cost_adj=100;

/* Setting to default value. */

alter session set optimizer_index_caching=0;

/* Setting to default value. */

alter session set "_fast_full_scan_enabled"=TRUE;

/* Following sets value almost to default, but a bit lower to avoid limiting */

/*   the number of starting tables that the optimizer considers. */

alter session set optimizer_max_permutations=79000;

/* Setting to default value. */

alter session set "_like_with_bind_as_equality"=FALSE;

/* must be set at session level in init.ora: optimizer_features_enable= 9.2.0 */

alter session set db_file_multiblock_read_count=8;

test1.sql:

SELECT count(Data_Col) FROM DTow_Talk_Child

WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10
test2.sql:

SELECT count(Data_Col) FROM DTow_Talk_Child

WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

AND Code_Col = 'OP'
test3.sql:

SELECT count(Data_Col) FROM DTow_Talk_Child

WHERE Date_Col <= TO_DATE('2005/01/01','YYYY/MM/DD')-90

AND Code_Col = 'OP'
test4.sql:

SELECT

count(C.Date_Col) CDate,

count(P.Date_Col) PDate,

count(TC.Description) TCDesc,

count(TP.Description) TPDesc

FROM

DTow_Talk_Child C,

DTow_Talk_Parent1 P,

DTow_Type TC,

DTow_Type TP

WHERE C.FKey1_ID=P.PKey_ID

AND C.Type_ID=TC.Type_ID

AND P.Type_ID=TP.Type_ID

and TC.Description='VERY_RARE'
test5.sql:

SELECT

C.PKey_ID CKey_ID,

C.Date_Col CDate,

G.PKey_ID GKey_ID

FROM DTow_Talk_Child C,

DTow_Talk_Generic G

WHERE C.PKey_ID=G.Generic01

AND C.PKey_ID=654321
test6.sql:

select count(*) from (

SELECT /*+ first_rows */

C.Date_Col CDate,

P.Date_Col PDate,

TC.Description TCDesc,

TP.Description TPDesc,

rownum rn

FROM

DTow_Talk_Child C,

DTow_Talk_Parent1 P,

DTow_Type TC,

DTow_Type TP

WHERE C.FKey1_ID=P.PKey_ID

AND C.Type_ID=TC.Type_ID

AND P.Type_ID=TP.Type_ID

AND TC.Description='VERY_RARE')
test7.sql:

SELECT /*+ leading(TC) use_nl(C P) index(C DTOW_TALK_CHILD_TYPE_ID)

index(P DTOW_TALK_PARENT1_UNQ1) */

count(C.Date_Col) CDate,

count(P.Date_Col) PDate,

count(TC.Description) TCDesc,

count(TP.Description) TPDesc

FROM

DTow_Talk_Child C,

DTow_Talk_Parent1 P,

DTow_Type TC,

DTow_Type TP

WHERE C.FKey1_ID=P.PKey_ID

AND C.Type_ID=TC.Type_ID

AND P.Type_ID=TP.Type_ID

and TC.Description='VERY_RARE'
test8.sql:

SELECT

C.PKey_ID CKey_ID,

C.Date_Col CDate,

G.PKey_ID GKey_ID

FROM DTow_Talk_Child C,

DTow_Talk_Generic G

WHERE TO_CHAR(C.PKey_ID)=G.Generic01

AND C.PKey_ID=654321

run_tests.sql:

--To run the tests and get the output recorded in notes_final.txt,

--*type* the following, one at a time, into the SQL> command line:

@setup_tests

@setup_run

@exq8 test1

@mysid9

@test1

;

@reads9

@exq8 test2

@mysid9

@test2

;

@reads9

@exq8 test3

@mysid9

@test3

;

@reads9

@exq8 test4

@mysid9

@test4

;

@reads9

@test4

;

@reads9

@exq8 test6

@mysid9

@test6

;

@reads9

@test6

;

@reads9

@exq8 test7

@mysid9

@test7

;

@reads9

@test7

;

@reads9

@exq8 test5

@mysid9

@test5

;

@reads9

@test5

;

@reads9

@exq8 test8

@mysid9

@test8

;

@reads9

@test8

;

@reads9

notes_final.txt: (The full, exact output of the tests, only with username@instance altered)

/users/dtow/unixscriptsdir>sqlplus xxxxx@yyyyyy
SQL*Plus: Release 8.1.7.0.0 - Production on Mon Feb 28 14:06:24 2005

(c) Copyright 2000 Oracle Corporation.  All rights reserved.

Enter password: 

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.5.0 - 64bit Production

With the Partitioning, Real Application Clusters, OLAP and Oracle Data Mining options

JServer Release 9.2.0.5.0 - Production

SQL> @setup_tests

Table dropped.

Table dropped.

Table dropped.

Table dropped.

Table created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Table created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Commit complete.

1000000 rows created.

Commit complete.

Table created.

Index created.

100000 rows created.

Table analyzed.

Table analyzed.

Table analyzed.

Table analyzed.

Table created.

1 row created.

1 row created.

1 row created.

Commit complete.

Index created.

Index created.

Table analyzed.

Table dropped.

Table created.

Index created.

Index created.

1000000 rows created.

Commit complete.

Table analyzed.

SQL> @setup_run

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

SQL> @exq8 test1

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2* WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

.1  SELECT STATEMENT   c=196, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=196, R=10009

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_DATE_COL: Date_Col c=27, R=10009

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test1

  3  ;

COUNT(DATA_COL)

---------------

          10000

Elapsed: 00:00:00.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 201          Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=46

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.15

SQL> @test2

  4  ;

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:00.15

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 1090         Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test3

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col <= TO_DATE('2005/01/01','YYYY/MM/DD')-90

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=4195

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test3

  4  ;

COUNT(DATA_COL)

---------------

            110

Elapsed: 00:00:00.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 1090         Physical Reads = 0

Elapsed: 00:00:00.12

SQL> @exq8 test4

  1  SELECT

  2  count(C.Date_Col) CDate,

  3  count(P.Date_Col) PDate,

  4  count(TC.Description) TCDesc,

  5  count(TP.Description) TPDesc

  6  FROM

  7  DTow_Talk_Child C,

  8  DTow_Talk_Parent1 P,

  9  DTow_Type TC,

 10  DTow_Type TP

 11  WHERE C.FKey1_ID=P.PKey_ID

 12  AND C.Type_ID=TC.Type_ID

 13  AND P.Type_ID=TP.Type_ID

 14* and TC.Description='VERY_RARE'

.1  SELECT STATEMENT   c=3023, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  HASH JOIN   c=3023, R=333333

....4  TABLE ACCESS FULL 4*DTOW_TYPE c=2, R=3

....4  HASH JOIN   c=3020, R=333333

.....5  TABLE ACCESS FULL 2*DTOW_TALK_PARENT1 c=250, R=100000

.....5  HASH JOIN   c=2559, R=333333

......6  TABLE ACCESS BY INDEX ROWID 3*DTOW_TYPE c=2, R=1

.......7  INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

......6  TABLE ACCESS FULL 1*DTOW_TALK_CHILD c=2555, R=1000000

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.15

SQL> @test4

 15  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:01.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 18484        Physical Reads = 0

Elapsed: 00:00:00.12

SQL> @test4

 15  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:01.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 18484        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test6

  1  select count(*) from (

  2  SELECT /*+ first_rows */

  3  C.Date_Col CDate,

  4  P.Date_Col PDate,

  5  TC.Description TCDesc,

  6  TP.Description TPDesc,

  7  rownum rn

  8  FROM

  9  DTow_Talk_Child C,

 10  DTow_Talk_Parent1 P,

 11  DTow_Type TC,

 12  DTow_Type TP

 13  WHERE C.FKey1_ID=P.PKey_ID

 14  AND C.Type_ID=TC.Type_ID

 15  AND P.Type_ID=TP.Type_ID

 16* AND TC.Description='VERY_RARE')

.1  SELECT STATEMENT   c=300252, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  VIEW  1* c=300252, R=333333

....4  COUNT   c=_, R=_

.....5  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_CHILD c=3, R=3

......6  NESTED LOOPS   c=300252, R=333333

.......7  NESTED LOOPS   c=252, R=100000

........8  MERGE JOIN CARTESIAN  c=252, R=100000

.........9  TABLE ACCESS BY INDEX ROWID 4*DTOW_TYPE c=2, R=1

..........10 INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

.........9  BUFFER SORT  c=250, R=100000

..........10 TABLE ACCESS FULL 3*DTOW_TALK_PARENT1 c=250, R=100000

........8  INDEX UNIQUE SCAN DTOW_TYPE_UNQ1: type_id c=_, R=1

.......7  INDEX RANGE SCAN DTOW_TALK_CHILD_FKEY1_ID: fkey1_id c=2, R=10

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test6

 17  ;

  COUNT(*)

----------

      1000

Elapsed: 00:00:03.60

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 220516       Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @test6

 17  ;

  COUNT(*)

----------

      1000

Elapsed: 00:00:03.59

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 220514       Physical Reads = 0

Elapsed: 00:00:00.17

SQL> @exq8 test7

  1  SELECT /*+ leading(TC) use_nl(C P) index(C DTOW_TALK_CHILD_TYPE_ID)

  2  index(P DTOW_TALK_PARENT1_UNQ1) */

  3  count(C.Date_Col) CDate,

  4  count(P.Date_Col) PDate,

  5  count(TC.Description) TCDesc,

  6  count(TP.Description) TPDesc

  7  FROM

  8  DTow_Talk_Child C,

  9  DTow_Talk_Parent1 P,

 10  DTow_Type TC,

 11  DTow_Type TP

 12  WHERE C.FKey1_ID=P.PKey_ID

 13  AND C.Type_ID=TC.Type_ID

 14  AND P.Type_ID=TP.Type_ID

 15* and TC.Description='VERY_RARE'

.1  SELECT STATEMENT   c=340711, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  HASH JOIN   c=340711, R=333333

....4  NESTED LOOPS   c=340470, R=333333

.....5  NESTED LOOPS   c=7137, R=333333

......6  TABLE ACCESS BY INDEX ROWID 3*DTOW_TYPE c=2, R=1

.......7  INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

......6  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7135, R=333333

.......7  INDEX RANGE SCAN DTOW_TALK_CHILD_TYPE_ID: type_id c=843, R=333333

.....5  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_PARENT1 c=1, R=1

......6  INDEX UNIQUE SCAN DTOW_TALK_PARENT1_UNQ1: pkey_id c=_, R=1

....4  TABLE ACCESS FULL 4*DTOW_TYPE c=2, R=3

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test7

 16  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:00.16

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 3012         Physical Reads = 0

Elapsed: 00:00:00.12

SQL> @test7

 16  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:00.14

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 3012         Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test5

  1  SELECT

  2  C.PKey_ID CKey_ID,

  3  C.Date_Col CDate,

  4  G.PKey_ID GKey_ID

  5  FROM DTow_Talk_Child C,

  6  DTow_Talk_Generic G

  7  WHERE C.PKey_ID=G.Generic01

  8* AND C.PKey_ID=654321

.1  SELECT STATEMENT   c=2170, R=1

..2  NESTED LOOPS   c=2170, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=3, R=1

....4  INDEX UNIQUE SCAN DTOW_TALK_CHILD_UNQ1: pkey_id c=2, R=1

...3  TABLE ACCESS FULL 2*DTOW_TALK_GENERIC c=2167, R=1

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test5

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:01.26

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 14282        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @test5

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:01.27

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 14282        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test8

  1  SELECT

  2  C.PKey_ID CKey_ID,

  3  C.Date_Col CDate,

  4  G.PKey_ID GKey_ID

  5  FROM DTow_Talk_Child C,

  6  DTow_Talk_Generic G

  7  WHERE TO_CHAR(C.PKey_ID)=G.Generic01

  8* AND C.PKey_ID=654321

.1  SELECT STATEMENT   c=6, R=1

..2  NESTED LOOPS   c=6, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=3, R=1

....4  INDEX UNIQUE SCAN DTOW_TALK_CHILD_UNQ1: pkey_id c=2, R=1

...3  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_GENERIC c=3, R=1

....4  INDEX RANGE SCAN DTOW_TALK_GENERIC_GENERIC01: GENERIC01 c=2, R=1

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

        78 3705         11178

Elapsed: 00:00:00.14

SQL> @test8

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:00.15

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 9            Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @test8

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:00.12

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 9            Physical Reads = 0

Elapsed: 00:00:00.13

SQL> 

CBO-related parameters:

SQL> select name, value from v$parameter2

  2  ;

NAME

----------------------------------------------------------------

VALUE

-----------------------------------------------------------------------------

… <deleted irrelevant rows throughout>
timed_statistics

TRUE

cpu_count

12

db_block_buffers

0

db_block_size

8192

db_cache_size

2013265920
db_cache_advice

OFF

compatible

9.2.0

db_file_multiblock_read_count

8

parallel_server_instances

2

parallel_min_percent

0

parallel_min_servers

8
parallel_max_servers

300

hash_join_enabled

TRUE

hash_area_size

131072

sort_area_size

65536
sort_area_retained_size

0

optimizer_mode

CHOOSE

_optimizer_mode_force

TRUE
_sort_elimination_cost_ratio

5

_fast_full_scan_enabled

FALSE
parallel_adaptive_multi_user

FALSE
parallel_threads_per_cpu

2

parallel_automatic_tuning

FALSE
optimizer_max_permutations

2000
optimizer_index_cost_adj

10

optimizer_index_caching

90
query_rewrite_enabled

true
query_rewrite_integrity

enforced

_like_with_bind_as_equality

TRUE

optimizer_dynamic_sampling

1
db_cache_advice

OFF

…
269 rows selected.

Setup_run_dyn.txt:

alter session set optimizer_mode=choose;

/* Following appears to only matter with stored procedures. */

alter session set "_optimizer_mode_force"=TRUE;

/* Following appears to only affect first_rows queries */

alter session set "_sort_elimination_cost_ratio"=5; 

/* Setting to default value. */

alter session set optimizer_index_cost_adj=100;

/* Setting to default value. */

alter session set optimizer_index_caching=0;

/* Setting to default value. */

alter session set "_fast_full_scan_enabled"=TRUE;

/* Following sets value almost to default, but a bit lower to avoid limiting */

/*   the number of starting tables that the optimizer considers. */

alter session set optimizer_max_permutations=79000;

/* Setting to default value. */

alter session set "_like_with_bind_as_equality"=FALSE;

/* must be set at session level in init.ora: optimizer_features_enable= 9.2.0 */

alter session set db_file_multiblock_read_count=8;

/* test of dynamic sampling at the highest level */

alter session set optimizer_dynamic_sampling=10;

notes_dyn.txt: (The exact output of the tests):

... (normal, error-free, but scrolled off screen before capture)

Index created.

Index created.

Table created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Commit complete.

1000000 rows created.

Commit complete.

Table created.

Index created.

100000 rows created.

Table analyzed.

Table analyzed.

Table analyzed.

Table analyzed.

Table created.

1 row created.

1 row created.

1 row created.

Commit complete.

Index created.

Index created.

Table analyzed.

Table dropped.

Table created.

Index created.

Index created.

1000000 rows created.

Commit complete.

Table analyzed.

SQL> @setup_run_dyn

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

Session altered.

SQL> set echo on

SQL> @setup_run_dyn

SQL> alter session set optimizer_mode=choose;

Session altered.

SQL> /* Following appears to only matter with stored procedures. */

SQL> alter session set "_optimizer_mode_force"=TRUE;

Session altered.

SQL> /* Following appears to only affect first_rows queries */

SQL> alter session set "_sort_elimination_cost_ratio"=5;

Session altered.

SQL> /* Setting to default value. */

SQL> alter session set optimizer_index_cost_adj=100;

Session altered.

SQL> /* Setting to default value. */

SQL> alter session set optimizer_index_caching=0;

Session altered.

SQL> /* Setting to default value. */

SQL> alter session set "_fast_full_scan_enabled"=TRUE;

Session altered.

SQL> /* Following sets value almost to default, but a bit lower to avoid limiting */

SQL> /*   the number of starting tables that the optimizer considers. */

SQL> alter session set optimizer_max_permutations=79000;

Session altered.

SQL> /* Setting to default value. */

SQL> alter session set "_like_with_bind_as_equality"=FALSE;

Session altered.

SQL> /* must be set at session level in init.ora: optimizer_features_enable= 9.2.0 */

SQL> alter session set db_file_multiblock_read_count=8;

Session altered.

SQL> /* test of dynamic sampling at the highest level */

SQL> alter session set optimizer_dynamic_sampling=10;

Session altered.

SQL> set echo ff

SP2-0265: echo must be set ON or OFF

SQL> set echo off

SQL> @exq8 test1

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2* WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

.1  SELECT STATEMENT   c=196, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=196, R=10009

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_DATE_COL: Date_Col c=27, R=10009

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.16

SQL> @test1

  3  ;

COUNT(DATA_COL)

---------------

          10000

Elapsed: 00:00:00.15

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 201          Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=3700

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> @test2

  4  ;

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:01.97

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 17919        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test3

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col <= TO_DATE('2005/01/01','YYYY/MM/DD')-90

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=110

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.13

SQL> @test3

  4  ;

COUNT(DATA_COL)

---------------

            110

Elapsed: 00:00:01.92

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 17919        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test4

  1  SELECT

  2  count(C.Date_Col) CDate,

  3  count(P.Date_Col) PDate,

  4  count(TC.Description) TCDesc,

  5  count(TP.Description) TPDesc

  6  FROM

  7  DTow_Talk_Child C,

  8  DTow_Talk_Parent1 P,

  9  DTow_Type TC,

 10  DTow_Type TP

 11  WHERE C.FKey1_ID=P.PKey_ID

 12  AND C.Type_ID=TC.Type_ID

 13  AND P.Type_ID=TP.Type_ID

 14* and TC.Description='VERY_RARE'

.1  SELECT STATEMENT   c=3023, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  HASH JOIN   c=3023, R=333333

....4  TABLE ACCESS FULL 4*DTOW_TYPE c=2, R=3

....4  HASH JOIN   c=3020, R=333333

.....5  TABLE ACCESS FULL 2*DTOW_TALK_PARENT1 c=250, R=100000

.....5  HASH JOIN   c=2559, R=333333

......6  TABLE ACCESS BY INDEX ROWID 3*DTOW_TYPE c=2, R=1

.......7  INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

......6  TABLE ACCESS FULL 1*DTOW_TALK_CHILD c=2555, R=1000000

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> @test4

 15  ;

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:01.16

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 18484        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test6

  1  select count(*) from (

  2  SELECT /*+ first_rows */

  3  C.Date_Col CDate,

  4  P.Date_Col PDate,

  5  TC.Description TCDesc,

  6  TP.Description TPDesc,

  7  rownum rn

  8  FROM

  9  DTow_Talk_Child C,

 10  DTow_Talk_Parent1 P,

 11  DTow_Type TC,

 12  DTow_Type TP

 13  WHERE C.FKey1_ID=P.PKey_ID

 14  AND C.Type_ID=TC.Type_ID

 15  AND P.Type_ID=TP.Type_ID

 16* AND TC.Description='VERY_RARE')

.1  SELECT STATEMENT   c=300252, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  VIEW  1* c=300252, R=333333

....4  COUNT   c=_, R=_

.....5  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_CHILD c=3, R=3

......6  NESTED LOOPS   c=300252, R=333333

.......7  NESTED LOOPS   c=252, R=100000

........8  MERGE JOIN CARTESIAN  c=252, R=100000

.........9  TABLE ACCESS BY INDEX ROWID 4*DTOW_TYPE c=2, R=1

..........10 INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

.........9  BUFFER SORT  c=250, R=100000

..........10 TABLE ACCESS FULL 3*DTOW_TALK_PARENT1 c=250, R=100000

........8  INDEX UNIQUE SCAN DTOW_TYPE_UNQ1: type_id c=_, R=1

.......7  INDEX RANGE SCAN DTOW_TALK_CHILD_FKEY1_ID: fkey1_id c=2, R=10

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> @test6

 17  ;

  COUNT(*)

----------

      1000

Elapsed: 00:00:03.59

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 220519       Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test7

  1  SELECT /*+ leading(TC) use_nl(C P) index(C DTOW_TALK_CHILD_TYPE_ID)

  2  index(P DTOW_TALK_PARENT1_UNQ1) */

  3  count(C.Date_Col) CDate,

  4  count(P.Date_Col) PDate,

  5  count(TC.Description) TCDesc,

  6  count(TP.Description) TPDesc

  7  FROM

  8  DTow_Talk_Child C,

  9  DTow_Talk_Parent1 P,

 10  DTow_Type TC,

 11  DTow_Type TP

 12  WHERE C.FKey1_ID=P.PKey_ID

 13  AND C.Type_ID=TC.Type_ID

 14  AND P.Type_ID=TP.Type_ID

 15* and TC.Description='VERY_RARE'

.1  SELECT STATEMENT   c=340731, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  HASH JOIN   c=340731, R=333333

....4  NESTED LOOPS   c=340490, R=333333

.....5  NESTED LOOPS   c=7157, R=333333

......6  TABLE ACCESS BY INDEX ROWID 3*DTOW_TYPE c=2, R=1

.......7  INDEX RANGE SCAN DTOW_TYPE_DESCRIPTION: DESCRIPTION c=1, R=1

......6  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7155, R=333333

.......7  INDEX RANGE SCAN DTOW_TALK_CHILD_TYPE_ID: type_id c=863, R=333333

.....5  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_PARENT1 c=1, R=1

......6  INDEX UNIQUE SCAN DTOW_TALK_PARENT1_UNQ1: pkey_id c=_, R=1

....4  TABLE ACCESS FULL 4*DTOW_TYPE c=2, R=3

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> @test7

; 16  

     CDATE      PDATE     TCDESC     TPDESC

---------- ---------- ---------- ----------

      1000       1000       1000       1000

Elapsed: 00:00:00.16

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 3012         Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test5

  1  SELECT

  2  C.PKey_ID CKey_ID,

  3  C.Date_Col CDate,

  4  G.PKey_ID GKey_ID

  5  FROM DTow_Talk_Child C,

  6  DTow_Talk_Generic G

  7  WHERE C.PKey_ID=G.Generic01

  8* AND C.PKey_ID=654321

.1  SELECT STATEMENT   c=2170, R=1

..2  NESTED LOOPS   c=2170, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=3, R=1

....4  INDEX UNIQUE SCAN DTOW_TALK_CHILD_UNQ1: pkey_id c=2, R=1

...3  TABLE ACCESS FULL 2*DTOW_TALK_GENERIC c=2167, R=1

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> @test5

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:01.27

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 14282        Physical Reads = 0

Elapsed: 00:00:00.13

SQL> @exq8 test8

  1  SELECT

  2  C.PKey_ID CKey_ID,

  3  C.Date_Col CDate,

  4  G.PKey_ID GKey_ID

  5  FROM DTow_Talk_Child C,

  6  DTow_Talk_Generic G

  7  WHERE TO_CHAR(C.PKey_ID)=G.Generic01

  8* AND C.PKey_ID=654321

.1  SELECT STATEMENT   c=6, R=1

..2  NESTED LOOPS   c=6, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=3, R=1

....4  INDEX UNIQUE SCAN DTOW_TALK_CHILD_UNQ1: pkey_id c=2, R=1

...3  TABLE ACCESS BY INDEX ROWID 2*DTOW_TALK_GENERIC c=3, R=1

....4  INDEX RANGE SCAN DTOW_TALK_GENERIC_GENERIC01: GENERIC01 c=2, R=1

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> @test8

  9  ;

   CKEY_ID CDATE        GKEY_ID

---------- --------- ----------

    654321 21-JAN-04    1654321

Elapsed: 00:00:00.12

SQL> @reads9

LIO                          PIO

---------------------------- ----------------------------

Logical Reads = 9            Physical Reads = 0

Elapsed: 00:00:00.13

SQL> 

SQL> alter session set optimizer_dynamic_sampling=1;

Elapsed: 00:00:00.07

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=46

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=2;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=46

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=3;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=46

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=4;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=6959

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=5;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=3444

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=6;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=4390

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=7;

Elapsed: 00:00:00.07

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=2172

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=8;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=2496

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=9;

Elapsed: 00:00:00.07

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=2900

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=10;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=3700

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=4;

Elapsed: 00:00:00.07

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=6959

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=5;

Elapsed: 00:00:00.06

SQL> @exq8 test2

  1  SELECT count(Data_Col) FROM DTow_Talk_Child

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3* AND Code_Col = 'OP'

.1  SELECT STATEMENT   c=7, R=1

..2  SORT AGGREGATE  c=_, R=1

...3  TABLE ACCESS BY INDEX ROWID 1*DTOW_TALK_CHILD c=7, R=3444

....4  INDEX RANGE SCAN DTOW_TALK_CHILD_CODE_COL: CODE_COL c=1, R=4600

SQL> alter session set optimizer_dynamic_sampling=10;

Elapsed: 00:00:00.07

SQL> delete from plan_table;

Elapsed: 00:00:00.11

SQL> explain plan for SELECT count(Data_Col)  

  2  from  DTow_Talk_Child t

  3  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  4  AND Code_Col = 'OP'

  5  ;

Elapsed: 00:00:01.84

SQL> rollback;

Elapsed: 00:00:00.10

SQL> alter session set optimizer_dynamic_sampling=1;

Elapsed: 00:00:00.07

SQL> delete from plan_table;

Elapsed: 00:00:00.10

SQL> explain plan for SELECT count(Data_Col)

  2  from  DTow_Talk_Child t2

  3  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  4  AND Code_Col = 'OP'

  5  ;

Elapsed: 00:00:00.08

SQL> rollback;

Elapsed: 00:00:00.10

SQL> alter session set optimizer_dynamic_sampling=10;

Elapsed: 00:00:00.06

SQL>  delete from plan_table;

Elapsed: 00:00:00.10

SQL> explain plan for SELECT count(Data_Col)  

  2  from  DTow_Talk_Child t

  3  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  4  AND Code_Col = 'OP';

Elapsed: 00:00:01.85

SQL> rollback;

Elapsed: 00:00:00.15

SQL> SELECT count(Data_Col) from  DTow_Talk_Child t 

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3  AND Code_Col = 'OP';

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:01.91

SQL> SELECT count(Data_Col) from  DTow_Talk_Child t 

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3  AND Code_Col = 'OP';

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:00.15

SQL> SELECT count(Data_Col) from  DTow_Talk_Child t2

  2  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  3  AND Code_Col = 'OP';

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:01.86

SQL> alter session set optimizer_dynamic_sampling=1;

Elapsed: 00:00:00.06

SQL> desc dba_tables

 Name                                                                             Null?    Type

 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 OWNER                                                                            NOT NULL VARCHAR2(30)

 TABLE_NAME                                                                       NOT NULL VARCHAR2(30)

 TABLESPACE_NAME                                                                   VARCHAR2(30)

 CLUSTER_NAME                                                                      VARCHAR2(30)

 IOT_NAME                                                                          VARCHAR2(30)

 PCT_FREE                                                                          NUMBER

 PCT_USED                                                                          NUMBER

 INI_TRANS                                                                         NUMBER

 MAX_TRANS                                                                         NUMBER

 INITIAL_EXTENT                                                                    NUMBER

 NEXT_EXTENT                                                                       NUMBER

 MIN_EXTENTS                                                                       NUMBER

 MAX_EXTENTS                                                                       NUMBER

 PCT_INCREASE                                                                      NUMBER

 FREELISTS                                                                         NUMBER

 FREELIST_GROUPS                                                                   NUMBER

 LOGGING                                                                           VARCHAR2(3)

 BACKED_UP                                                                         VARCHAR2(1)

 NUM_ROWS                                                                          NUMBER

 BLOCKS                                                                            NUMBER

 EMPTY_BLOCKS                                                                      NUMBER

 AVG_SPACE                                                                         NUMBER

 CHAIN_CNT                                                                         NUMBER

 AVG_ROW_LEN                                                                       NUMBER

 AVG_SPACE_FREELIST_BLOCKS                                                         NUMBER

 NUM_FREELIST_BLOCKS                                                               NUMBER

 DEGREE                                                                            VARCHAR2(10)

 INSTANCES                                                                         VARCHAR2(10)

 CACHE                                                                             VARCHAR2(5)

 TABLE_LOCK                                                                        VARCHAR2(8)

 SAMPLE_SIZE                                                                       NUMBER

 LAST_ANALYZED                                                                     DATE

 PARTITIONED                                                                       VARCHAR2(3)

 IOT_TYPE                                                                          VARCHAR2(12)

 TEMPORARY                                                                         VARCHAR2(1)

 SECONDARY                                                                         VARCHAR2(1)

 NESTED                                                                            VARCHAR2(3)

 BUFFER_POOL                                                                       VARCHAR2(7)

 ROW_MOVEMENT                                                                      VARCHAR2(8)

 GLOBAL_STATS                                                                      VARCHAR2(3)

 USER_STATS                                                                        VARCHAR2(3)

 DURATION                                                                          VARCHAR2(15)

 SKIP_CORRUPT                                                                      VARCHAR2(8)

 MONITORING                                                                        VARCHAR2(3)

 CLUSTER_OWNER                                                                     VARCHAR2(30)

 DEPENDENCIES                                                                      VARCHAR2(8)

 COMPRESSION                                                                       VARCHAR2(8)

SQL> select blocks from dba_tables where table_name = 'DTOW_TALK_CHILD';

    BLOCKS

----------

     16826

Elapsed: 00:00:00.49

SQL> select 128*32 from dual;

    128*32

----------

      4096

Elapsed: 00:00:00.12

SQL> alter session set optimizer_dynamic_sampling=9;

Elapsed: 00:00:00.06

SQL> delete from plan_table;

Elapsed: 00:00:00.10

SQL> explain plan for SELECT count(Data_Col)  

  2  from  DTow_Talk_Child t

  3  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  4  AND Code_Col = 'OP';

Elapsed: 00:00:00.52

SQL> @mysid9

SESSION_ID Oracle_PID   Client_PID

---------- ------------ ------------

       169 29957        22910

Elapsed: 00:00:00.14

SQL> SELECT count(Data_Col)

  2  from  DTow_Talk_Child t4

  3  WHERE Date_Col >= TO_DATE('2005/01/01','YYYY/MM/DD')-10

  4  AND Code_Col = 'OP';

COUNT(DATA_COL)

---------------

           3700

Elapsed: 00:00:00.59










