

Conquering Oracle Latch Contention

(Identifying, measuring, and resolving harmful latch contention)

Latest version available at http://www.orapub.com

2 Craig A. Shallahamer

©OraPub, Inc.

This page has been intentionally left blank.

Conquering Oracle Latch Contention 3

©OraPub, Inc.

Table of Contents
TABLE OF CONTENTS ... 3

INTRODUCTION .. 4
HOW TO LEAN ABOUT ORACLE LATCHING... 4

THE PROCESS EXPLAINED.. 5

UNDERSTANDING THE GENERAL LATCHING ALGORITHM.. 6
TYPES OF ORACLE LOCKS ... 6
THE ORACLE LATCH ... 7
THE GENERAL ORACLE LATCHING ALGORITHM ... 7
HOW MULTIPLE LATCHES ARE IMPLEMENTED ... 8
HOW TIME IS RECORDED... 9

HOW TO DETECT HARMFUL LATCH CONTENTION... 10

RESOLVING HARMFUL LATCH CONTENTION ... 12

CONCLUSION... 13

ABOUT THE AUTHOR.. 13

REFERENCE ... 14

4 Craig A. Shallahamer

©OraPub, Inc.

Conquering Oracle Latch Contention

Craig A. Shallahamer (craig@orapub.com)

Original June 7, 2004

Version 1d June 23, 2004

Abstract
As Oracle server complexity, transaction throughput, and simultaneous usage all continue to
increase, latch contention can plague even the most experienced Oracle performance specialist.
This paper describes why latches exist, how they work, how to detect latching contention, and
how to resolve the contention. To demonstrate this process, the library cache latch will be used
throughout the paper as well as publicly available latching scripts.

Introduction
It’s really true. Even the most seasoned Oracle performance specialists shudder at the thought of
dealing with Oracle latch contention. I have heard some of the most respected Oracle performance
specialists say that once you get latch contention, there really isn’t a whole lot you can do. This is
absolutely wrong! Why do even the best performance specialist’s knees buckle in the face of
latch contention? Because it means understanding a great deal about not only latching, specific
Oracle architecture internals, and some queuing theory [PPM], but it also means taking risks like
suggesting bold application changes or implementing hidden instance parameters that few have
actually tried in a real production environment.

Over my years as a consultant and a teacher, I have found the best way to not only resolve but to
teach others how to resolve latch contention is to first understand Oracle’s general latching
algorithm and then understand the specific Oracle architecture component that the latch is related
to. So it’s a two-step educational process that breaks out into a seven-step contention resolution
strategy. In this paper, I’ll discuss the general latching algorithm and a supporting seven-step
process to identify, measure, and resolve latch contention. However, I will not discuss the Oracle
architecture internals related to each latch. There are many resources available, including my
Advanced Reactive Performance Management [RPM] class.

Unless specifically mentioned, all the tools and scripts mentioned and used in this paper are
available for free on OraPub’s web site, www.orapub.com. The tools are combined into a single
toolkit called the OraPub System Monitor or OSM for short. [OSM]

How To Lean About Oracle Latching
As I mentioned in the Introduction, I have found the best way to not only resolve but to teach
others how to resolve latch contention is to first learn about Oracle’s general latching algorithm
and then learn about the specific Oracle architecture area that is related to the latch. It’s kind of

Conquering Oracle Latch Contention 5

©OraPub, Inc.

like, once you learn the principle then you can apply it to the specific problem. Like honesty, once
you learn to live honestly, actually being honest in various situations just naturally occurs and
makes sense. Latching, in some ways, is just like this.

Latches protect Oracle memory structures. And while there are many Oracle memory structures,
and therefore many Oracle latches, they all operate under the same basic algorithm. So the first
step is learning about this algorithm. The second step is to learn about the memory structures.
Once you understand both the latching algorithm and the memory structure architecture, then the
solutions naturally come forth in those, all to infrequent, “ah ha” moments.

The Process Explained
There are seven steps to detecting, measuring, and resolving latch contention. The steps are
summarized below. Throughout the paper, I will explain each of the steps in more detail complete
with actual examples.

1. Understand the general latching algorithm. I’ve already mentioned this above and I’ll

detail the algorithm in the next section.

2. Detect latch contention. While it may be obvious to you, before you attempt to resolve latch

contention, make sure resolving latch contention is worth your time and will significantly
improve performance. The best way to detect latch contention is using a response time based
approach with its core based upon Oracle’s wait event interface. [RTA, SWA, RPM] For
example, if response time is unacceptable and an Oracle process or processes are waiting 90%
of the time for a latch, then it makes sense to spend your time resolving the latch contention.
But if that percentage is only 15%, then you would had better focus elsewhere. While you are
celebrating your 15% response time improvement, the users will be planning your demotion
because of the other 85%. I will discuss this in more detail later in the paper. (Not your
demotion, but detecting latch contention.)

3. Determine the latch. Once you know there is significant and harmful latch contention, you

will need to determine which specific latch. This may seem obvious, but depending on your
version of Oracle and if you are looking at performance interactively (i.e., in real time) or
historically, you may only know there is latch contention, but not the specific latch.

4. Understand the related kernel code. This is when it becomes important to understand what

the latch is actually protecting and why. For example, if you have library cache latch
contention, then you will need to know what the library cache is, how it works, and what you
can do to affect how it works. Understanding latching in general is good, but if you don’t
understand the underlying architecture, your attempts to resolve the contention will be nothing
more than a good guess. As a side note, you will also be able to quickly understand why
others’ recommendations could never solve the latch contention.

5. Understand the nature of the latch contention. Ask yourself two questions and how you

could affect the answer to the questions. The first question is, “Why is the latch held so
long?” And the second question is, “Why is the latch being requested so often?” These are
two very different questions that address two distinct yet closely related operations or the
nature of how the CPU subsystem and Oracle’s latches are working together.

6 Craig A. Shallahamer

©OraPub, Inc.

6. Devise multiple resolution strategies. Because of uptime requirements, response time
requirements, politics, and the list goes on and on, you will need to come up with multiple
ways to possibly resolve the latch contention. Hopefully one of your ideas will be able to be
implemented. Many times, latching contention solutions require unusual changes in the
system that can not or will not be allowed in your IS group. So you want to have as many
options and fallback plans as possible.

7. Take appropriate action to resolve. Finally…you have methodically worked through this

process and are ready to actually implement a change that will hopefully reduce the latch
contention. If you have followed these seven steps, you stand a very, very good chance of
improving response time.

Understanding The General Latching Algorithm
The first step to ultimately resolve latch contention is to understand Oracle’s general latching
algorithm. But even before that, it’s important to understand how Oracle uses locks and why it
uses locks, and then understanding what an Oracle latch is and why it is used. Then finally, we
are in a position to understand Oracle’s latching algorithm and more advanced topics like how
multiple latches are implemented. This section very quickly discusses each of these topics.

Types of Oracle Locks
While you never read or hear this in official Oracle Corporation presentations, I feel that Oracle
has three basic ways of protecting things. There are application locks, data dictionary locks, and
memory structure control.

Application Locks are under the control of an application developer. For example, if I type,
“lock table employee exclusive” and you type, “update employee set salary = salary * 0.75”
(which is not a nice thing to do by the way), then thankfully your operation will be
blocked…locked. Any DBA can observe this by looking at the v$lock view and also the wait
event views with an event name of “enqueue wait” of type TX (row or block related) or TM (table
related).

Data Dictionary Locks are under the control of Oracle Corporation kernel code developers.
Keep in mind, that when you type something like “create table….” Oracle must insert a row into
sys.tab$, sys.col$, and others. These tables must be appropriately locked just like the Application
Developer does. We don’t have control over these locks because we didn’t write the Oracle kernel
code. Just as with application locks, any DBA can observe data dictionary locks by looking at the
v$lock view and also the wait event views with an event name of “enqueue wait” of type TX (row
or block related) or TM (table related).

Memory Structure Control is under the control of Oracle Corporation kernel code architects and
developers. Unlike structures that are related to tables and indexes, memory structure control is
related to the memory-based structure that resides in Oracle’s cache. So while they are not
“locks” in the pure sense, they are protecting something…and that something is memory. We call
these protection structures Oracle latches. Unlike enqueues, Oracle latches do not maintain any
order. As it will be apparent later, the first process to ask for a latch could probabilistically be the
last person to receive the latch. (Thankfully it is an extremely small probability. So small, I’ve
never seen this occur.)

Conquering Oracle Latch Contention 7

©OraPub, Inc.

The Oracle Latch
Two definitions that have stood the test of time are: Oracle latches ensure serial execution of
Oracle kernel code and Oracle latches ensure Oracle’s cache is not corrupted resulting in physical
data corruption (which can lead to an ugly lawsuit). I like both definitions because each highlights
a significant aspect of an Oracle latch.

To ensure the memory structure is not corrupted, certain Oracle memory structures can only be
accessed by one and only one process. Even when reading a memory structure, Oracle must
ensure it is not changed by another process. Oracle has chosen to use a simple method to protect
memory structures and it’s called a latch. Latches protect a memory structure by surrounding any
kernel code that will access the memory structure with a latch. The latch that surrounds the library
cache kernel code is called the library cache latch. Before the kernel code can be run, the latch
must be acquired (a process I’ll describe below) and when a CPU is done running the specific
piece of kernel code the latch is released.

Piece of kernel code

related to the requested latch

If get_latch(‘latch name’, mode) {

 release(‘latch name’);

}

Figure 1. Latches Surround Kernel Code. Oracle protects memory structures by ensuring

that any kernel code that accesses the structure must first get the appropriate latch. For
example, if the kernel code is about checking to see if a buffer resides in the cache, the cache

buffer chain kernel code will need to be executed. But before this can happen, one of the
appropriate cache buffer chain latches must be acquired.

A latch can be requested in two different ways. A process (i.e., server or background) could ask
for a latch one time and if it does not get the latch, control is returned to the process (which could
ask for different latch or something entirely different). This is called asking for a latch in
immediate mode. A process could also ask for a latch once, but if the latch is not received
immediately, it keeps trying (a process I’ll describe below) until the latch is acquired. This is
called asking for a latch in willing to wait mode. Oracle Corporation architects decide which
mode is appropriate.

The General Oracle Latching Algorithm
The general Oracle latching algorithm is actually quite simple…and it should be because it must
be fast, very fast. Protecting memory structures is something you don’t want to spend a lot of time
on. (Just how much time? That’s why we have response time analysis and the wait event views.
[SWA, RTA])

8 Craig A. Shallahamer

©OraPub, Inc.

In a nutshell, when a process asks for a latch in immediate mode, if the latch is not available from
just one request (sometimes called a fast get), control is returned to the process. When a process
asks for a latch in willing to wait mode, the process asks for the latch once (just like in immediate
mode), but if the latch is not acquired the “spin and sleep” latching algorithm kicks in. Basically,
the spin and sleep algorithm process repeatedly asks for the latch and if the process does not get
the latch it takes a break and sleeps.

When a process repeatedly asks for a latch, called spinning on the latch, it’s like a child asking for
candy over and over (but really fast). It would sound like “gimme, gimme,…”. This continues
until either the latch is received or until the “gimme…” occurs spin_count times. If the spinning
does not work, that is, the process does not get the latch, the process will drop into the sleep cycle
and sleep for a specified number of milliseconds. (In general, the specified wait time…I mean
sleep time increases exponentially.) When the process wakes up, it spins once again. If the latch
is not acquired once again, then it sleeps once again. This cycle continues until either the process
gets the latch or the user gets so stink’n frustrated, they break out of the “lock.”

Let’s talk about timing for a second because this is really interesting to those of you who like to
keep track of time. Response time is composed of service time and queue time. The Oracle
community generally looks at service time as CPU time and queue time as everything else. This is
rather convenient for tracking time because CPU time can be gathered a number of different ways
from Oracle [RTA, RPM] and the queue time is recorded in Oracle’s wait event views [SWA]. By
combining the CPU time and the wait time, we can count time from a database server perspective
(not end-to-end user response time).

As you can see, the general Oracle latching algorithm is actually not all that complicated. And
I’m hoping you can also see that just understanding the algorithm will not empower you to solve
the problem. We also need to understand the underlying Oracle architecture.

How Multiple Latches Are Implemented
Have you ever wondered why Oracle would need or could use multiple latches (e.g., library cache
or cache buffer chain) if the purpose was to ensure serial execution of the kernel code? I mean,
how could Oracle ensure one and only one process can run the kernel code if there were multiple
latches? One answer is Oracle could have a master latch that would decide which child latch to
run. That would work, but there is overhead which could be avoided by a simpler approach.

Another creative approach would be to simply divide the memory structure into smaller pieces and
have one latch protect each piece. For example, instead of one super long LRU chain, why not
have five smaller LRUs each with their own latch? Or how about instead of one single cache
buffer hash chain latch covering potentially hundreds of hash buckets [RPM], use ten latches so
each latch covers just ten percent of the buckets? Oracle has done this in many cases. If you
ruminate on this awhile, it will force some interesting architectural questions, but they can all be
answered with a correct architectural understanding.

Conquering Oracle Latch Contention 9

©OraPub, Inc.

There are 5000 buffers in the Oracle buffer cache.

This single LRU contains 5000 buffers covered by 1 LRU latch.

These 5 LRUs contain 1000 buffers each and there is a total of 5 LRU latches.
Figure 2. How Oracle uses multiple latches. There are many ways Oracle could have

implement multiple latches, but they chose to segment a potentially very large single LRU
into potentially many small substructures, each protected by its own LRU latch.

How Time is Recorded
This is important. When a process is spinning on a latch it is consuming CPU time and when a
process is sleeping it is not consuming CPU time. Even though a user experiences no difference,
when a process is spinning on a latch it is recorded as CPU time and when a process is sleeping it
is recorded as wait time. That is, when you see the wait event latch free, it is the sleep time and
does not include the spinning time. So when the latch free wait event appears, you know that
processes have already been trying to get a latch by spinning (which consumes CPU time) and has
been forced to sleep.

With this in mind, you may be able to see why it is very common to have latch contention when
there is an operating system CPU bottleneck. And also why increasing spin_count can make
performance even worse than it already is. Why would you want to allow each process to
consume even more CPU when there is not enough CPU anyway? This is why increasing
spin_count usually makes performance worse. Decreasing spin_count is a valid approach to
reduce latch contention.

To summarize, time can be spent in three areas:

• Getting a latch (kernel code: spin: O/S CPU time, sleep: Queue/Wait)
• Holding a latch (kernel code: CPU time)
• Releasing a latch (kernel code: CPU time)

And remember, spinning consumes CPU time, so increasing the spin will probably consume more
CPU. Spinning on a latch does not post a wait event. And finally, sleeping consumes no CPU
time and does post a latch free wait event.

10 Craig A. Shallahamer

©OraPub, Inc.

How To Detect Harmful Latch Contention
Detecting Oracle latch contention is very easy. The challenge for most people is determining
which latch is the real problem and if they should spend their time reducing the contention. I’ll
address both of these issues in this section.

There are four possibilities. You can either be looking at contention from a system perspective or
a session perspective. And you could be looking at the situation from an interactive (i.e., real
time) or a historical perspective (i.e., gathered data and now reviewing). Regardless, with the right
tools, you can successfully identify if there is harmful latch contention and specifically the
problem latch.

For a complete explanation of how to use Oracle wait events and perform a response time
analysis, please take a few minutes to review my papers Direct Contention Identification Using
Oracle’s Wait Interface [SWA] and Oracle Response Time Analysis [RTA]. These two are some
of my most popular papers and I think you will learn quite a bit from them.

Using the session wait event views, look for the wait events that start with latch free. In Oracle
10g and higher, Oracle includes the latch name as part of the event name. If you are looking from
system perspective, look at v$system_event for the event latch free. If the latch name is not part
of the wait event name, then if you are investigating interactively, then look at v$session_wait
where the event name starts with latch free. The latch number, which can be joined with
v$latchname, is in column P2.

The basic SQL can be quite simple, but a more useful report is a bit more complicated. With
Oracle systems not reinitializing sometimes for months at a time, a simple query from
v$system_event will include perhaps thousands of hours of accumulated wait information.
Important: What has been accumulated does not necessarily indicate the current contention
situation. What you need is a report that captures information over a period of time. I call this a
delta or a blue line report in my class.[RPM, TPM, OSM] For example, you could run a report
now, store the start time data, wait a few minutes, and then run the report again to show the
difference and re-store the start time for the next run. The output from such a report is shown in
Figure 3. Identifying latch contention can be very simple. The key is to determine if the
contention is significant (i.e., harmful) and the latch. This above report shows that latching is
consuming 53% of Oracle process wait time. That is very significant. The next figure below will
show us how to identify the specific latch. Note that in Oracle 10g and higher, the latch name is
part of the event name.

If you are pre-10g and only have access to historical latching contention data via v$system_event,
you will need to use v$latch to determine which latch the processes are contending for. Figure 4
below is an example report. The impact columns (raw number and percentage figures) take into
account the number of sleeps and is by far the most accurate statistic I have seen in showing which
latch is causing the problem. This impact is based upon a Steve Adam’s script.
[http://www.ixora.com.au]

Conquering Oracle Latch Contention 11

©OraPub, Inc.

Figure 3. Identifying latch contention can be very simple. The key is to determine if the
contention is significant (i.e., harmful) and the latch. This above report shows that latching

is consuming 53% of Oracle process wait time. That is very significant. The next figure
below will show us how to identify the specific latch. Note that in Oracle 10g and higher, the

latch name is part of the event name.

Figure 4. Identify Contending Latch using v$latch. If you do not have access to real time
wait event information, such as when you are looking at historical data, you can always look
at v$latch. However, identifying the problematic latch focuses on using sleeps and gets, not
the classic hit ratios. Steve Adams [www.ixora.com.au] invented the impact calculation that

has never misled me when determining the contending latch.

12 Craig A. Shallahamer

©OraPub, Inc.

Figure 5. Identify Contending Latch using v$session_wait. If you are interactively analyzing
a system, you can simply look at v$session_wait to see what sessions are currently waiting
for. For the latch free wait event(s), column P2 contains the latch number, which can be

joined with v$latchname. Latch number 156 is the library cache latch.

Resolving Harmful Latch Contention
Once harmful latching contention has been identified and confirmed, you obviously will want to
eradicate the contention. How to do this is very specifically dependant on the contending latch.
You will need to understand what the kernel code is doing that the contending latch(es) is
surrounding. I have found that once I know the contending latch and I understand the underlying
kernel code, the possible solutions just naturally come to mind. To help in this process, I also ask
myself a few questions (see below).

In our example above, library cache latch contention is clearly the contention from an Oracle
perspective. [TPM, RPM] Below are the three questions I initially ask myself.

1. What is the library cache kernel code used for? Very generally and incomplete, the
library cache kernel code is used to check if a SQL statement is cached in the library
cache.

2. Why would a process want to run this code so often? Because there are many, many SQL

statements being run.

3. Why would processes be holding the latch so long? Because there are many, many
unique SQL statements and therefore the hash chains (this is where/why you need to
understand the underlying architecture) are relatively long. Because they are long, they
take longer to sequentially scan, which means the latch must be held longer.

Conquering Oracle Latch Contention 13

©OraPub, Inc.

So the possible solutions to consider would then naturally be:

• Use bind variables.
• Enable cursor sharing
• Increase the number of library cache latches
• Increase the number of library cache buckets
• Decrease spin_count
• Reduce the application usage/load
• Increase the number of CPUs
• Increase the speed of CPUs

How appealing these solution possibilities are, is dependant on a number of things like ease of
application modification, available CPU power, Oracle version, comfort level with changing
underscore parameters, etc. But having a list of options allows communication, discussion, and
choice…and that is what is needed in a time like this.

Conclusion
In my Oracle career, I have had the opportunity to research, write, and publish many papers.
However, latching always posed a problem because the topic could be so complex and so easy to
get lost in the details, I was never able to create a solid course module that I felt really good about.
Through the process of repeatedly and casually teaching latching in my Advanced Reactive
Performance Management course [RPM] combined with additional latching consulting
engagements, I discovered a way to quickly teach latching to DBAs. The breakthrough came
when I separated the general latching algorithm from individual latch specifics (underlying kernel
code and memory structures). I could tell from my students that they immediately “got it” and
were able to quickly arrive and understand many latching contention solution alternatives. As a
teacher, it feels really good when that happens. How well this paper communicates that, you are
the judge. But I hope you enjoyed this journey and latch contention no longer carries the stigma it
may have once caused you.

About the Author
Quoted as being "An Oracle performance philosopher who has a special place in history of Oracle
performance management," Mr. Shallahamer brings his unique experiences to many as a keynote
speaker, a sought after teacher, a researcher and publisher for ever improving Oracle performance
management, and the founder of the grid computing company, BigBlueRiver. He is a recognized
authority in the Oracle server technology community and is making waves in the grid community
the result of founding a company which provides "Massive grid processing power—for the rest of
us."

Mr. Shallahamer spent nine years at Oracle Corporation personally impacting literally hundreds of
consultants, companies, database administrators, performance specialists, and capacity planners
throughout the world. He left Oracle in 1998 to start OraPub, Inc. a company focusing on "Doing
and helping others Do" both reactive and proactive Oracle performance management. He
continues to push performance management forward with his research, writing, consulting, highly
valued teaching, and speaking engagements.

Combining his understanding of Oracle technology, the internet, and self organizing systems, Mr.
Shallahamer founded BigBlueRiver in 2002 to help meet the needs of people throughout the world

14 Craig A. Shallahamer

©OraPub, Inc.

living in developing countries. People with limited technical and business skills can now start
their own businesses which supply computing power into BigBlueRiver's computing grid. In a
small way, this is making a difference in potentially thousands of people's lives.

Whether speaking at an Oracle, a grid computing, or a spiritual gathering, Mr. Shallahamer
combines his experiences and his purpose toward communicating his unique insight into the
technologies, the challenges, and the controversies of both Oracle and grid computing.

Reference

[RPM] “Advanced Reactive Performance Management For Oracle Based Systems” Class Notes
(1998-). OraPub, Inc., http://www.orapub.com

[PPM] “Advanced Proactive Performance Management For Oracle Based Systems” Class Notes
(1998-). OraPub, Inc., http://www.orapub.com

[BBR] BigBlueRiver, Inc., Massive Grid Computing Power—For the Rest of Us.,
http://www.bigblueriver.com

[Gunther] Gunther, Neil J.; The Practical Performance Analyst. McGraw Hill, 2000. ISBN 0-
595-12674-X

[OSM] “OraPub System Monitor (OSM)” tool kit (1998-)

[TC] Shallahamer, C.; All About Oracle’s Touch-Count Data Block Buffer Algorithm. OraPub,
Inc. 2001-. http://www.orapub.com

[REORG] Shallahamer, C.; Avoiding A Database Reorganization. OraPub, Inc. 1994.
http://www.orapub.com

[SWA] Shallahamer, C.; Direct Contention Identification Using Oracle’s Session Wait Event
Views. OraPub, Inc. 1997-. http://www.orapub.com

[TRIAGE] Shallahamer, C.; Oracle Performance Triage: Stop the Bleeding! OraPub, Inc. 2000.
http://www.orapub.com

[RTA] Shallahamer, C.; Response Time Analysis for Oracle Based Systems. OraPub, Inc. 2001.
http://www.orapub.com

[TPM] Shallahamer, C.; Total Performance Management. OraPub, Inc. 1994.
http://www.orapub.com

