

Understanding Impact of J2EE
Applications On Relational
Databases

Dennis Leung, VP Development
Oracle9iAS TopLink
Oracle Corporation

J2EE Apps and Relational Data

J2EE is one of leading technologies used for
building n-tier, web applications

– J2EE based on object technology
Relational databases are the most common
data source accessed by J2EE apps
They are diverse technologies that need to be
used together
This talk identifies a few of the issues to be
considered.

Underestimation

Managing persistence related issues is
the most underestimated challenge in
enterprise Java today – in terms of
complexity, effort and maintenance.

Enterprise App Architecture
Web Server,
Content Server,
Distribution Server

Focus of attention

J2EE Architectures

J2EE Architecture Options
– Servlets
– JSP
– Session Beans
– Message Driven Beans
– Web Services

Bottom Line – Java application needs to
access relational data somehow…

J2EE Access of Relational Data

Direct JDBC – window on data
– Direct SQL calls, uses rows and result sets

directly
Entity beans/Business Objects

– Accessed as objects or components (EJBs),
transparent that the data is stored in RDB

– Need persistence layer in middle tier to handle
the object-relational mapping and conversion

– Focus of this talk

JDBC

Java Standard for
accessing databases
Issue SQL, get back
result sets/rows
All J2EE apps will use
JDBC to access RDBs

SQLrows

JDBC

Object Persistence Layer
Abstracts persistence details from the application
layer, supports Java objects/Entity Beans.

Objects

Persistence Layer

Objects

J2EE & J2EE &
Web Web

ServicesServices
object-level

querying and creation
results are objects

object creation and
updates through
object-level API

SQLrows
JDBCresults are

returned as
raw data

API uses SQL
or database
specific calls

Entity Beans - CMP

Persistence is based on information in the deployment
descriptors

– More “automatic” persistence – managed by the Application
Server

– No special persistence code in the bean
– Description of the persistence done with tools and XML files

Less control, persistence capabilities are limited to the
functionality provided.

– Very difficult to customize or extend CMP features as it is
built-in

– Do have options to plug-in a 3rd party CMP solution on an
app server

Impedance Mismatch

The differences in relational and object
technology is know as the “object-relational
impedance mismatch”
Challenging problem to address because it
requires a combination of relational database
and object expertise.

Impedance Mismatch
Factor J2EE Relational Databases

Logical Data
Representation

Objects, methods,
inheritance

Tables, SQL, stored procedures

Scale Hundreds of megabytes Gigabytes, terabytes

Relationships Memory references Foreign keys

Uniqueness Internal object id Primary keys

Key Skills Java development,
object modeling

SQL, Stored Procedures, data
management

Tools IDE, Source code
management, Object
Modeler

Schema designer, query
manager, performance profilers,
database configuration

J2EE Developer Desires

Data model should not constrain object model
Don’t want database code in object/component code
Accessing data should be fast
Minimize calls to the database – they are expensive
Object-base queries – not SQL
Isolate J2EE app from schema changes
Would like to be notified of changes to data occurring
at database

DBA Desires
Adhere to rules of database (referential integrity,
stored procedures, sequence numbers etc.)
Build the J2EE application but do NOT expect to
change schema
Build the J2EE application but the schema might
change
Let DBA influence/change database calls/SQL
generated to optimize
Be able to log all SQL calls to database
Leverage database features where appropriate (outer
joins, sub queries, specialized database functions)

Differences

Desires are contradictory
– “Insulate application from details of database but

let me leverage the full power of it”
– Different skill sets
– Different methodologies
– Different tools

Technical differences must also be
considered!

Basic J2EE Persistence Checklist
Design Time

– Mappings
– GUI, tools, database types, Java types

Run Time
– Queries
– Object Traversal
– Transactions
– Optimized database interaction
– Locking
– Caching
– Database features

How Are Databases Affected?

In reality, it’s almost the other way around,
J2EE app is influenced by database, since
RDBs are usually the incumbent technology

– Database “rules” need to be followed
– Object model may be influenced by data model
– Database interaction must be optimized for

performance
– “Source of truth” for data integrity is database,

not app server
– Existing business logic in database

Mapping

Object model and Schema must be mapped
Most contentious issue facing designers

– Which classes map to which table(s)?
– How are relationships mapped?
– What data transformations are required?

Good and Poor Mapping Support

Good mapping support:
– Business classes don’t have to be “tables”
– References should be to objects, not foreign keys
– Database changes (schema and version) easily handled.

Poor mapping support:
– Classes must exactly mirror tables
– Middle tier needs to explicitly manage foreign keys
– Classes are disjoint
– Change in schema requires extensive application changes

Mapping Tools

Lots of
mapping tools
out there,
however don’t
get fleeced by
a slick GUI.
The underlying
mapping
support is
what’s
important

Business Objects Should Not Require
Foreign Key Knowledge

Customer
id : int
addressID : int
getAddress()
getPhones()

Address
id : int

Phone
id : int
ownerID : int

CUST_TABLE
ID ... AD_ID

ADD_TABLE
ID ...

PHN_TABLE
ID EID

Should Just Reference Objects Not
Foreign Keys

Customer
id: int
address: Address
phones: Collection

Address
id: int

Phone
id: int
owner: Customer*

CUST_TABLE
ID ... A_ID

ADD_TABLE
ID ...

PHN_TABLE
ID E_ID

Data and Object Models

Rich, flexible mapping capabilities provide
data and object models a degree of
independence
Otherwise, business object model will force
changes to the data schema or vice-versa
Often, J2EE component models are nothing
more than mirror images of data model – NOT
desirable

Simple Object Model

Customer

id: int
name: String
creditRating: int

1:1 Relationship

Address

id: int
city: String
zip: String

Typical 1-1 Relationship Schema

CUST

ID NAME A_IDC_RATING
ADDR

ID CITY ZIP

Other possible Schemas…

CUST

ID NAME C_RATING C_ID

ADDR

ID CITY ZIP

A_ID

CUST_ADDR

C_ID

CUST

ID NAME C_RATE C_ID

ADDR

ID CITY ZIP

CUST

ID NAME CITY ZIPC_RATING

Even More Schemas…
CUST

ID NAME A_ID

ADDR

ID CITY ZIP

CUST_CREDIT

ID C_RATING

CUST

ID NAME

CUST_CREDIT

ID C_RATING

ADDR

ID CITY ZIP C_ID

CUST

ID NAME

ADDR

ID CITY ZIP

CUST_CREDIT

ID C_RATING A_IDCUST

ID NAME

CUST_CREDIT

ID C_RATING

ADDR

ID CITY ZIP C_ID

CUST

ID NAME

ADDR

ID CITY ZIP

CUST_CREDIT

ID C_RATING A_IDCC_ID

Mapping Summary

Just showed nine valid ways a 1-1
relationship could be represented in a
database

– Most persistence layers and application servers
will only support one

Without good support, designs will be forced
Imagine the flexibility needed for other
mappings like 1-M and M-M

Difficult Case – “Historization”

Composite primary key, consisting of “real”
pkey and date range

1/1/209912/11/20021035

12/10/20022/6/20011035

2/5/20011/12/19991035

End_DateStart_DatePolicy_ID

Insurance Historization Example

Policy

policyId: int
startDate: Date
endDate: Date

Coverage

coverageId: int
startDate: Date
endDate: Date

*

Mapping is static, but what
objects to recover is based
on dynamic information.
Can be done, but not very
transparently, especially for
relationships.

General J2EE Persistence Interaction
Application business objects/components are
modeled and mapped to relational data store
Data is read from database and business
objects/Entity Beans are created
Objects are traversed, edited, created,
deleted, cached, locked etc
Changes stored on the database
Multiple concurrent clients sharing database
connections

Reading - Queries

Java developers are not usually SQL experts
– Maintenance and portability become a concern

when schema details hard-coded in application
Allow Java based queries that are translated
to SQL and leverage database options

– EJB QL, object-based proprietary queries, query
by example

Queries
Persistence layer handles object queries and converts
to SQL
SQL issued should be as efficient as written by hand.
Should utilize other features to optimize

– Parameter binding, cached statements
Some benefits to dynamically generated SQL :

– Ability to create minimal update statements
Only save objects and fields that are changed

– Simple query-by-example capabilities

Query Requirements

Must be able to trace and tune SQL
Must be able use ad hoc SQL where
necessary
Must be able to leverage database abilities

– Outer joins
– Nested queries
– Stored Procedures
– Oracle Hints

Object Traversal – Lazy Reads

J2EE Applications work on the scale of a few
hundreds of megabytes
Relational databases routinely manage
gigabytes and terabytes of data
Persistence layer must be able to
transparently fetch data “just in time”

Just in Time Reading – Faulting Process

Orders

2. Get related
object based on
FK

3a. Check
Cache

4. Plug
result
into
Proxy

OrdersOrdersOrders

1. Accessing relationship for first
time

Customer Proxy

3b. SQL if
not cached

Object Traversals

Even with lazy reads, object traversal is not always
ideal

– To find a phone number for the manufacturer of a product
that a particular customer bought, may do several queries:

Get customer in question
Get orders for customer
Get parts for order
Get manufacturer for part
Get address for manufacturer

– Very natural object traversal results in 5 queries to get
data that can be done in 1

N+1 Reads Problem

Many persistence layers and application
servers have an N+1 reads problem
Causes N subsequent queries to fetch related
data when a collection is queried for
A side effect of the impedance mismatch and
poor mapping and querying support in
persistence layers

N+1 Reads Problem

Persistence
Layer or EJB

Container

findByCity()
2

Address

4 4

n
3

If Address had related
objects, they too may be

fetched 2n+1 Reads!

C C C C Pool of Created
Objects or Beans

1 Returns collection
findByCity()

For each Customer
Fetch their Address

6

5 5

nContainer returns results

N+1 Reads
Must have solution to minimize queries
Need flexibility to reduce to 1 query, 1+1
query or N+1 query where appropriate

– 1 Query when displaying list of customers and
addresses – known as a “Join Read”

– 1+1 Query when displaying list of customers and
user may click button to see addresses – known
as a “Batch Read”

– N+1 Query when displaying list of customers but
only want to see address for selected customer

Caching

Any application that caches data, now has to
deal with stale data.
When and how to refresh?
Will constant refreshing overload the
database?
Problem is compounded in a clustered
environment
App server may want be notified of database
changes

Caching

Results(s)

Does object exist in
cache?

SQL Query (if needed)
Query

NO – Build
bean/object from
results

Return object
results

YES – Get from
Cache

Database Triggers

Database triggers will be completely
transparent to the J2EE application.
However, their effects must be clearly
communicated and considered.
Example: Data validation –> audit table

– Objects mapped to an audit table that is only
updated through triggers, must be read-only on
J2EE

Database Triggers
More challenging when trigger updates data in
the same row and the data is also mapped into
an object.
Example: Annual salary change automatically
triggers update of life insurance premium payroll
deduction

– J2EE app would need to re-read payroll data after
salary update OR

– Duplicate business logic to update field to avoid re-
read. Saves a DB call but now business logic in 2
places.

Referential Integrity

Java developers manipulate object model in a
manner logical to the business domain
May result in ordering of INSERT, UPDATE
and DELETE statements that violate database
constraints
Persistence layer should automatically
manage this and allow options for Java
developer to influence order of statements

Cascaded Deletes

Cascaded deletes done in the database have
a real effect on what happens at J2EE layer.
Middle tier app must:

– Be aware a cascaded delete is occurring
– Determine what the “root” object is
– Configure persistence settings or application

logic to avoid deleting related objects already
covered by cascaded delete.

Transaction Management
J2EE apps typically support many clients
sharing small number of db connections
Ideally would like to minimize length of
transaction on database

Begin Txn

Ti
m

e

Begin Txn
Commit Txn

Commit Txn

Locking

J2EE Developers want to think of locking at
the object level
Databases may need to manage locking
across many applications
Persistence layer or application server must
be able to respect and participate in locks at
database level

Optimistic Locking

DBA may wish to use version, timestamp
and/or last update field to represent optimistic
lock

– Java developer may not want this in their
business model

– Persistence layer must be able to abstract this
Must be able to support using any fields
including business domain

Pessimistic Locking
Requires careful attention as a JDBC
connection is required for duration of
pessimistic lock
Should support SELECT FOR UPDATE
[NOWAIT] semantics

Ti
m

e

Begin Txn

Commit Txn

Begin Txn

Commit Txn

Pess Lock

Other Issues
Use of special types

– BLOB, Object Relational
Open Cursors
Batch Writing
Sequence number allocations
Database portability
Inheritance
Many, many more …

J2EE Apps & RDB Summary
1. Project teams should involve DBAs early
2. Don’t need to compromise object/data model
3. Need to fully understand what is happening

at database level
4. Can utilize database features
5. Do not have to hard code SQL to achieve

optimal database interaction
6. Can find solutions that effectively address

persistence challenges and let them focus on
J2EE application

Q U E S T I O N SQ U E S T I O N S
A N S W E R SA N S W E R S

	Understanding Impact of J2EE Applications On Relational Databases
	J2EE Apps and Relational Data
	Underestimation
	Enterprise App Architecture
	J2EE Architectures
	J2EE Access of Relational Data
	JDBC
	Object Persistence Layer
	Entity Beans - CMP
	Impedance Mismatch
	Impedance Mismatch
	J2EE Developer Desires
	DBA Desires
	Differences
	Basic J2EE Persistence Checklist
	How Are Databases Affected?
	Mapping
	Good and Poor Mapping Support
	Mapping Tools
	Business Objects Should Not Require Foreign Key Knowledge
	Should Just Reference Objects Not Foreign Keys
	Data and Object Models
	Simple Object Model
	Typical 1-1 Relationship Schema
	Other possible Schemas…
	Even More Schemas…
	Mapping Summary
	Difficult Case – “Historization”
	Insurance Historization Example
	General J2EE Persistence Interaction
	Reading - Queries
	Queries
	Query Requirements
	Object Traversal – Lazy Reads
	Just in Time Reading – Faulting Process
	Object Traversals
	N+1 Reads Problem
	N+1 Reads Problem
	N+1 Reads
	Caching
	Caching
	Database Triggers
	Database Triggers
	Referential Integrity
	Cascaded Deletes
	Transaction Management
	Locking
	Optimistic Locking
	Pessimistic Locking
	Other Issues
	J2EE Apps & RDB Summary

