
Preventing the Post-
Production Perfor-
mance Problem
A performance monograph by
Cary Millsap.
See page 20.

Second Internation-
al NoCOUG SQL
Challenge
From the archive.

See page 22.

Confessions of a
Relational Bigot
Gaja’s journey from Oracle to
NoSQL!
See page 4.

Much more inside . . .

Vol. 34, No. 2 · MaY 2020

http://www.nocoug.org

http://aws.amazon.com/aurora

3The NoCOUG Journal

2020 NoCOUG Board
Andy Sutan

Vice President

Babu Srinivasan
Oracle Liaison

Dan Grant
Exhibitor Coordinator

Eric Hutchinson
Webmaster

Iggy Fernandez
President, Journal Editor

Kamran Rassouli
Social Director

Linda Yang
Member at Large

Manoj Bansal
Conference Chair

Mingyi Wei
Catering Coordinator

Naren Nagtode
Secretary, Treasurer, President Emeritus

Sherry Chen
Catering Coordinator

Tu Le
Speaker Coordinator

Vadim Barilko
Webmaster

Volunteers

Brian Hitchcock
Book Reviewer

Saibabu Devabhaktuni
Board Advisor

Tim Gorman
Board Advisor

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer
ence. Ar ti cle sub missions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Special Feature ... 4

Performance Monograph 20

From the Archive.. 22

Picture Diary ... 26

ADVERTISERS

Amazon ... 2

Quest ... 26

FlashGrid ... 27

MemSQL .. 28

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12year period.

Next, the Journal is professionally copyedited and proofread by veteran copy

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Franciscobased Giraffex.

And, finally, the Journal is printed and shipped to us. This is the 134th issue

of the NoCOUG Journal. Enjoy! s

http://nocoug.org
http://nocoug.org
mailto:journal@nocoug.org
mailto:journal@nocoug.org

4 May 2020

S P E C I A L
F E AT U R E

Confessions of a
Relational Bigot

My Journey from Oracle to NoSQL
by Gaja Krishna Vaidyanatha Gaja Krishna Vaidyanatha

Greetings of love, peace, and harmony! Thank you for
taking the time to read my professional musings. I
will share thoughts and experiences relating to my
work life and the two database technologies that I

have had the pleasure of working with. I have no intention of
starting a war of words or a technical debate. This is a platform
where I wish to share my journey in the database world. I seek
your patience and understanding if what I share is not congruent
with your own thoughts and perceptions. I am a certified rela
tional bigot and an evolved data practitioner. There, I have come
out and said it! This technologyinduced bias was formed early
in my professional upbringing with the Oracle RDBMS. Despite
this bias, one thing is still clear—change is the most permanent
thing. We are, after all, living in a timespace continuum.
Nothing stays constant, and we need to continually grow and
evolve.

In my early work years you couldn’t have convinced me to
design or build anything without using an Oracle database. In
my mind, nothing was beyond Oracle! And, for the most part
during the first two decades of my professional life, that was true.
I was blessed with the many learning opportunities that have
been bestowed upon me in a technical career that has spanned
over 27 years (25 years of relational: Oracle 6 to Oracle 12c). I am
very thankful for that!

However, an important transformation occurred in 2017. I
came face to face with a data integration problem that required a
different approach. I knew that if I forced the issue and traveled
down my usual relational route, there was a high probability of
project failure. For the first time, I was overwhelmed by a huge
sense of discomfort. And that was a sign of the need to grow and
get out of my comfort zone. I pondered the problem and spent a
great deal of time in research. The solution to the problem that
surfaced (time and again) was a NoSQL database. For a rela
tional bigot like me, entering the NoSQL world was analogous to
changing my religion. But I had to open myself, as I had no plans

of intentionally failing. At least I could not fail due to my own
denial of the facts from the technical research I had undertaken.
The problem warranted a change in my approach and thought
process.

The data landscape in the past 25 years has undergone many
a transformation. This metamorphosis requires relevant data
management techniques to change as well. When you know ex
actly what you want to store (numbers, character strings, and
dates, for the most part), how you want to store it, and how much
you want to store—and there is a relatively static data model that
supports the data persistence method—there is no better option
than a relational database. An RDBMS is all about table structure
and organization (columns and rows). Yes, it has grown and ma
tured to support other data aspects over the last few decades, but
its foundation has not changed. Relational databases came into
being from set theory, an integral component of structured
mathematics. Here is some additional reading on the topic for
you: en.wikipedia.org/wiki/Structure_(mathematical_logic).

The lack of a continually evolving physical enterprise data
model poses all sorts of challenges for data integration. Data
models (more often than not) are not kept up to date with the
business models. This is due to the fact that the rate of change in
the business is difficult to match in the relational world. It makes
it super hard to implement a single source of the data truth
sourced from disparate data sources when business models con
tinually change. To state the obvious: if the data model does not
continually evolve, the benefits of your data integration efforts
will be short lived. This is because the world we live and work in
is a continuous flow of change. Data persistence (in the form of
business objects delivered to the enterprise) needs to continually
change with time and keep up with the business.

If the data model is frequently forced to change by business
factors, there is a definite need for a different approach from a
relational database. Further, the fragmentation of data stores
across the enterprise today, caused by a historically undisciplined

“In my early work years you couldn’t have convinced me to design or
build anything without using an Oracle database. In my mind, nothing
was beyond Oracle! And, for the most part during the first two decades

of my professional life, that was true. However, an important
transformation occurred in 2017. I came face to face with a data

integration problem that required a different approach.”

https://en.wikipedia.org/wiki/Structure_%28mathematical_logic%29

5The NoCOUG Journal

approach to data management (fueled either by lack of data gov
ernance and/or corporate politics), will push any relational data
integration database to its breaking point. How is a relational
database expected to deliver the goods in a consistent fashion
without the required structure of a stable data model? Relational
databases were neither designed for fluid data models nor for
natively handling the transformation challenges of today’s busi
nesses and today’s data.

When faced with the above challenge, a NoSQL database—
with its inherent flexibility and evolutionary approach to har
monization (both of the data model and the data)—provides a
reasonable solution to a complex technical problem. Having
taken ACID transactions for granted for many years, I looked for
a NoSQL database that supported ACID functionality across
multiple rows or objects. The flexibility of a NoSQL database’s
persistence layer that would evolve with time is a game changer
in this space. After over 25 years of data management in the re
lational realm, my next round of professional evolution had
begun.

The Early Days
(1992–1997)

Spring had just sprung in Toledo, Ohio, in the month of May.
The year was 1992. Nature was working overtime to make itself
seen, having spent many months under the cloak of a hard win
ter. The extent of the transformation that the spring of 1992
would bring upon me wouldn’t be known to the fullest extent
until many years later. I was pursuing my master’s degree in com
puter science at Bowling Green State University (BGSU), Bowling
Green, Ohio. It was (and still is) a fantastic school for computer
science (among other majors), but the U.S. job market at the time
was jittery, fueled by the 1991 recession and the Persian Gulf
War. As a rite of passage, I applied and interviewed for a few in
ternships at BGSU’s oncampus job fairs. Unbeknownst to me,
the company that chose me (and I chose) for my internship
would play a pivotal role in transforming my professional life.

Transitioning from C to Relational Data Management
On my first day at OwensCorning Fiberglas (OC) in Toledo

(Fiberglas Tower, 200 North Saint Clair St.), I was informed that
my assigned manager was Mark Amos. I was hired as an intern
for my C programming skills and was originally told that I was
going to be developing a system in C. I had not interviewed with
Mark and thus was not sure what to expect. After exchanging
pleasantries, Mark’s first question to me was, “ Do you know
Oracle?” Sheepishly, I replied, “You mean, am I into fortune tell
ing?” Until that day, I had never heard of relational databases, let
alone Oracle. Mark read the humor of the situation, smiled ear to
ear, reached under his desk, and handed me an Oracle Computer
Based Training (CBT) package.

At the end of my first two weeks, my right thumb was sore
from continually hitting the space bar on the keyboard (required
to advance the CBT program). It was a Friday and I reported
back to Mark that I had successfully completed the Oracle CBT.
He said, “Good, now you can go and build us an Executive Infor
mation System (EIS). And oh, by the way, we will be using Light
ship as the client. Let me know if you have any questions. Have
fun!” I thus was thrown into my first technical deependmust
learntoswim experience. I was back in the office early on Mon
day morning, and I began to swim my first professional lap.

Projects, Oracle 6, Windows 3.0 Client Memory
Management, and OSI Model

My relational journey as part of building an EIS started with
Lightship (clientside BI software that no longer shows up on a
Google search), which connected to an Oracle Database 6.0.31,
housed in an HP 9000 Series 500 server running a proprietary
version of Unix — HPUX. Here is some fun reading of hardware
specifications from way back when: en.wikipedia.org/wiki/
HP_9000.

From the getgo, I was very comfortable with the server side
of things. I loved vi as I saw the indomitable power of the Unix
editor that could run shell commands from within—not to men
tion that its support for 26 clipboards (copypaste buffers that
can be named from A to Z) is unprecedented. After vi, came the
editors vim, emacs, and jove into my work life. Unix became my
happy place, despite the lack of a graphical user interface on my
desktop. In those days the spiffy and fancy Unix workstations
were meant only for the system administrators. “Ah, the life of a
sys admin: she gets to play with Unix using a GUI!” I thought to
myself.

After successfully developing and deploying the EIS on
Lightship and Oracle in the first six months at OC, I went on to
my next adventure. Mark asked me to build an emailbased re
port delivery system using SMTP, KornShell scripts, and SQL.
Basically, there was a need to publish nightly reports via email
using the data that was collected during the day. Thus began the
building of an SMTPbased reporting system. The AWK utility
(more like a programming language) became an indispensable
part of the code stack, with its incredible power and brevity for
data manipulation and extraction. The serverside gravitational
pull was stronger than ever, and the journey to become an Oracle
database administrator continued.

Charlie Mather, a seasoned campaigner at OC and my men
tor, taught me how to write complex SQL. He and I shared many
a lunchtime meal discussing all sorts of technical topics. Charlie
was a great guy to work with and was always supportive of my
unending list of questions. He was also the one who introduced
me to Forest and Trees (analytics client software that breathed its
last in 1999).

The Oracle RDBMS 6.0.31 was quite primitive compared to
the functionality that it boasts these days. Oracle 6 had only two
types of indexes: unique and nonunique. As a matter of fact, the
database did not even have constraints, which were later sup
ported in Oracle 7. Thus, to implement a primary key constraint
in Oracle 6, you had to create the relevant column(s) as NOT
NULL and then create a UNIQUE index on the said column(s).
This feels surreal when you compare the support for pluggable
databases in Oracle 12c and beyond.

Those were also the days when Oracle Corporation used to
ship its software on floppy disks via Federal Express. I still re
member how the 47th diskette of a 48disk pack would invari
ably be corrupt and unreadable. Once in a while a little wiggling
of the diskette brought it back to life. You considered yourself
fortunate if that happened. More often than not, one had to wait
another three days for the replacement pack to show up, delete
everything you did so far, and start over. If you could imagine a
world without productdownload websites, MetaLink, or OTN,
that would be then. Dialup modems had staggering download
speeds of 19.2 Kbps—if you could download something over
night without the connection hanging up, your stars were defi

https://en.wikipedia.org/wiki/HP_9000
https://en.wikipedia.org/wiki/HP_9000

6 May 2020

nitely lined up. I am not sure whether the database technologists
of today can even relate to this.

The Oracle 6 documentation was shipped as books (another
FedEx package), and the entire Oracle 6 library fit on your desk.
Today, if printed, the Administrator’s Guide and Reference
Manual will pretty much occupy the same amount of desk real
estate. Those days, when you said you “knew” Oracle, you pretty
much knew all of it, including but not limited to the database and
its utilities (you may recall SQL*DBA), SQL*Net, the relevant
Pro*Compilers, SQL, and PL/SQL. We had SQL*Net drivers/
adapters for TCP/IP, SPX/IPX, IBM LU6.2, Novell, and DECnet.
These days, Oracle is an ocean of applications, features, and func
tionality that make it impossible to know it comprehensively.

A fundamental requirement for maintaining your sanity
while working with PCs those days was to proactively manage
the 640K of baseaddressable memory. We did this by using the
Quarterdeck Extended Memory Manager (QEMM). QEMM
assisted in the management of the order in which the device
drivers were loaded from the Windows configuration files
(AUTOEXEC.BAT and CONFIG.SYS). This was to ensure the
diligent use of the precious 640K of core memory. The ultimate
goal was to generate the fewest number of holes or fragments in
core memory. We had to engage in this activity to get PCs to be
useful, despite the prevailing urban legend at the time that 640K
ought to be enough for anybody.

One networking issue that I’ll never forget is when my Win
dows 3.0/3.1 client would render itself completely useless and
display the infamous blue screen of death (BSOD). This occurred
when an attempt was made to save a SQL statement within
Lightship. Lightship was connected to an Oracle 6 database via
SQL*Net for TCP/IP. The BSOD was inevitably followed by the
threefinger salute (CTRL+ALT+DEL) and a coffee break, as it
took about 10 minutes for the PC to reboot. The IBM OS/2
WARP machine that I also had the pleasure of keeping company
with in my cube took even longer during reboots.

Without any idea why my computer was freezing and becom
ing inoperable so frequently, I approached Mark. I explained to
him what was going on, and after patiently listening to my tech
norant, he thought about it for a bit and said, “Maybe you’re
losing your connection to the network.” He had a theory that
something in the SQL parser in Lightship was causing the prob
lem. We then tested the theory on his machine. Sure enough,
after 16 SQL syntax errors, Mark’s PC froze just like mine.

After grabbing a cup of coffee and talking about his sailing
pursuits, Mark quickly got down to troubleshoot the problem.
He was able to unearth the TCP errors from the logs (my first
realworld experience in troubleshooting), which then led him to
proclaim that “16 SQL syntax errors cause your transport layer to
become inoperable. You don’t have any sockets left. There is
probably a bug in the interface layer of Lightship and SQL*Net.”
When I requested a simple explanation in English, Mark drew
the seven layers of the Open Systems Interconnection (OSI)

model on a flipchart with two stacks on each end, one for the
client and one for the server. He then went on to explain in great
detail how each layer mapped to our installed technology stack.
I carry that understanding of clientserver, peertopeer comput
ing, and networking with me to this very day. Mark was not only
my manager but also my other mentor.

I am deeply indebted to Mark and Charlie for all of their con
tributions to my learning. I grew a lot technically during my 15
months at OC, and my hat is off to both of them. Much respect,
gentlemen!

Oracle Education, Oracle 7, and Drinking from a Firehose
On May 23, 1994, a couple of weeks after completing my mas

ter’s degree, I joined Oracle Corporation’s Cleveland, Ohio, office
in their consulting division. After completing some basic train
ing, I was on the bench for a few weeks. During this time, I asked
my manager whether I could teach some classes for Oracle Edu
ca tion (OE). This was supposed to be a stopgap arrangement
before I was assigned to a suitable consulting project.

The first course I picked up to teach was Introduction to
Oracle 7, and in a matter of few weeks I was able to gain a good
level of mastery. After picking up Advanced SQL Queries, one
thing led to another, and soon I started teaching Oracle Database
Administration I and II, following that with Oracle 7 Performance
Tuning. If my first rapid learning experience at OC was charac
terized as baptism by fire, the learning stint at OE could be char
acterized as baptism by fire while drinking from a firehose, but it
was super gratifying. In December 1994, I officially transferred
from Consulting to Education, after I had communicated to my
respective managers on both sides my desire to learn, share, and
teach Oracle for a living.

I loved reading the Oracle 7 Concepts manual and did so many
times. I also enjoyed playing with the database more than ever
before. I had access to training databases where I knew I could go
all out. I attended database internals boot camps and got my
hands on every shred of relevant information and documenta
tion on the database. If I may say so myself, I trained like a rela
tional marine. As time progressed, I got better in my under standing
of the internal workings of Oracle. The Friday afternoon course
evaluations were a constant reiteration of what I did well and
where I had to improve.

During the latter half of 1996 through early 1997 I had the
pleasure of being part of a team that designed, developed, and
reviewed the courseware as part of the Oracle 8 Beta Program.
This was a great opportunity to learn the new version in detail,
with time to read the Concepts manual over again. My years at
OE laid a solid foundation for my understanding of Oracle. I had
to learn the database much more deeply than the level at which I
taught the courses. After a great ride at OE, I joined Stonebridge
Technologies at Austin, Texas, in October 1997.

I would be completely remiss if I did not express my gratitude
to some of my colleagues at OE: Scott Gossett, Chuck Muehlbrad,

“The fragmentation of data stores across the enterprise today, caused by
a historically undisciplined approach to data management, will push any

relational data integration database to its breaking point. Relational
databases were neither designed for fluid data models nor for natively

handling the transformation challenges of today’s businesses and today’s data.”

7The NoCOUG Journal

Inderpal Tahim, Stephen Jackson, Susan Jang, David Austin, and
Keith Roshto. These folks contributed to my learning of the in
ternal workings of the Oracle database. I also thank Yolanda
Salas and Nancy Hall for believing in me during those early days.

The Growth Years
(1998–2003)

The 1990s were a transformational period for computing, as
the glory days of the mainframe ended and clientserver/open
systems took center stage in every IT organization. The PC mar
ket was going gangbusters. There were quite a few people who
became Dellionaires (either working for Dell Corporation or
playing their stock). Others made their riches on Oracle, Sun
Microsystems, Cisco, Microsoft, and International Business
Machines (IBM), to name just a few. The relational database
market was defined and dominated by five players : Oracle,
Sybase, Informix, DB2 UDB, and SQL Server.

Relational Databases and the Internet Bubble
To this day I believe that Informix had quite possibly the best

database technology (based on version 7–9). Informix defined
and drove the objectrelational space (with the Illustra acquisi
tion) and boasted groundbreaking functionality. It was a great
database that provided time series and spatial extensions for the
usual relational fare in hightransactionrate applications. At the
time it was very evident that Oracle and Microsoft were both
playing catchup to Informix’s innovations. Emblematic of the
time were the billboard wars of the 1990s on California’s High
way 101, along the Marine World Parkway exit. If Informix Cor
pora tion had gotten its act together, the relational market would
be quite different today. But they were plagued with a lot of in
ternal issues—ineffective marketing, lack of corporate gover
nance, and executive wrongdoing. Informix was unable to stay in
business on its own and was acquired by IBM for USD $1 billion
in July 2001. In April 2017, IBM outsourced the future develop
ment of Informix to the Indian services company HCL, through
a 15year partnership agreement.

Similarly, Sybase had one of the best database replication
technologies and was deployed in many hightransactionrate
environments (some of the largest logistics companies in the
world used Sybase for their package tracking systems). It had a
very loyal customer base but lacked the staying power in an ever
changing market. It too could not hold it together on its own.
SAP eventually acquired Sybase for USD $5.8 billion in 2010.

In comparison, Oracle did really well, continually delivering a
solid database product to the market. It demonstrated a relentless
quest to be a market leader. During my early years, Oracle had
approximately 40–48% of the relational database market. Al
though it was initially perceived as weak in the applications seg
ment, the relaunch of Oracle Apps as a 100% Java product and
the M&A activities from 2002 changed that perception. The ac
quisition of PeopleSoft, Siebel, and a slew of other companies
gave Oracle the foothold and dominant position in the applica
tions space.

The midtolate 1990s was also the era when relational data
bases were perceived as one of the coolest technologies to work
with. Oracle was considered the flagship database product and
dominated the market during the internet boom. You would be
aggressively headhunted with multiple offers in the job market if
you could just spell Oracle (today’s “talent acquisition” equals
yesterday’s “headhunting”). Oracle skills were in such high de
mand that people started to move into the space in droves. This
high demand created a false sense of job security. The stock
market saw excessive speculation on anything that had the word
“Internet” or the “e/E/i/I” prefix or suffix. This hype caused stock
prices to rise to dizzying but artificial heights. The fundamentals
of finance and business went out the window. This false sense of
prosperity made the future very ominous. The market eventually
came to its senses and crashed in 2001–2002. The false sense of

job security quickly vanished when the bubble burst and dot
com companies fell by the wayside. Unemployment suddenly
skyrocketed, and that meant a very hard landing for many peo
ple.

Proprietary Hardware and Unix
The Unix server market was dominated by Sun Microsystems

(Sun), HewlettPackard (HP), Digital Equipment Corporation
(DEC), and IBM. They all had their own proprietary chip archi
tectures and their own flavors of Unix (Solaris, HPUX, Digital
UNIX/Tru64, and AIX, respectively). This technically hand
cuffed a customer whenever a singlevendor decision was made.
Companies that went the route of a single vendor called them
selves an IBM shop, a Sun shop, an HP shop, and so on. The
larger companies, whose pockets were deep, had the luxury of
playing with multiple vendors and then deciding which one best
suited their needs. Dell Corporation and COMPAQ Corporation
dominated the Windows server market. Most corporate entities
aligned themselves with a primary server vendor.

With the Texas Oracle Education team (1996)

“The Oracle 6 documentation was
shipped as books, and the entire
Oracle 6 library fit on your desk.
Those days, when you said you

“knew” Oracle, you pretty much
knew all of it. These days, Oracle is
an ocean of applications, features,

and functionality that make it
impossible to know it

comprehensively.”

8 May 2020

One other vendor of Unixbased servers requires an honor
able mention here: Sequent Computer Systems. Sequent had a
symmetric multiprocessing computing platform and a Non
Uniform Memory Architecture (NUMAQ)–based computing
paradigm. It was considered state of the art for the time. Sequent’s
version of Unix was called DYNIX. I had the pleasure of working
on a Sequent system in 1998, during one of my consulting proj
ects. But then again, with the market rapidly changing and com
modity hardware becoming the norm, Sequent was forced to
shut its doors in 1998 when IBM bought it for USD $810 million.
I will write about Silicon Graphics Inc. (SGI), another hardware
vendor, in the next chapter, as it played a bigger part in my jour
ney.

Procurement —Then and Now
Given the focus on hardware and servers in this chapter, let’s

talk about the 1990s’ method of hardware procurement and
systems deployment. During this period, project planning for
systems always involved an onsite visit from your favorite hard
ware sales team. They took your requirements during your
planning phase and came back with a quote for a server. The
entire process of hardware procurement could take up to 16–24
weeks. It all depended on the size of the company you worked
for, its budget and purchasing power, its level of influence with
the vendor, and other geopolitical factors. Not to mention the
many weeks that you spent after the system was delivered in
stalling all of the software and making it ready for use. You were
stuck with the system that you procured, regardless of how it
worked or was sized.

Compare that to today’s world, where you can procure and
deploy an enterpriseclass server (albeit a virtual one) on Ama
zon Web Services (AWS), Microsoft Azure, or Google Cloud
Platform (GCP), installed with your choice of the OS and data
base, in a matter of minutes. You also get to shrink and expand
your system, pretty much at will. It is amazing how cloud com
puting has truly transformed the way hardware procurement and
systems deployment is done. This is great progress! If hardware
provisioning at your company still takes 16 weeks, it is my hum
ble opinion that the clock in your company has stopped in the
1990s.

RAID —More Than an Insecticide
For the first seven years of my life in the U.S. (1990–1997), the

only RAID I knew was the insecticide that’s found in the aisles of
the grocery store. The term “Redundant Array of Inexpensive/
Independent Disks” (the other RAID) came into my vocabulary
in early 1998. I was working for Stonebridge Technologies as an
Oracle consultant in Austin, Texas, and the hardware vendor at
our customer site introduced me to RAID and the different fla
vors — RAID 0–7 (not counting RAIDS and AutoRAID). The
popular ones were 0, 1, 0+1, 1+0, and 5.

The distributed parity of RAID 5 (in lieu of mirroring) and

the overhead it posed worried me from the first time I read about
it. I just could not fathom how this significant overhead, both
during writes and during “rebuilding from partial failures in
degraded mode,” would contribute positively to the performance
of writeintensive applications. Yes, it worked well for a pre
dominantly read workload, but it was marketed as less expensive
when compared to RAID 10 (mostly without including the cost
of the cache). Storage vendors at the time did everything to mask
the performance problem of RAID 5. They allocated large
amounts of cache to their storage systems to mask the problem.
More often than not, the Oracle performance issues encountered
in a RAID 5 storage environment stemmed from inadequate
storage performance capacity (IOPS and transfer rate), which
then resulted in very high service times. The parity overhead
stuck out like a sore thumb.

My Love for DEC and SGI
During a project with Stonebridge Technologies in 1997, the

customer had Oracle 8 running on a DEC Alpha 8500 series with
Digital UNIX. In the 12+ months that I was involved in the proj
ect, neither the OS nor the server had a single hiccup. Oracle also
seemed to be a lot more stable (fewer issues when compared to
its predecessor on HPUX). And it was fast, with a discernible
difference in elapsed times across all of the SQL in our core
workload. It was a fantastic OS housed inside a fabulous server.
Digital UNIX/Tru64 was my first taste of a 64bit operating sys
tem. I absolutely loved it!

In early 1998, while still with Stonebridge, an SGI consultant
introduced me to the Origin 2000 server—en.wikipedia.org/
wiki/SGI_Origin_2000—at one of our customer sites. I was in
absolute awe as I listened to him raving about its capabilities as a
true highperformance computing platform that scaled for the
needs of the time. It had its own flavor of Unix called IRIX, and
it was also a true 64bit OS, based on a nodebased architecture,
with up to 512 processors and 512 GB of memory. The nodes
were linked with a nonuniform memory architecture (NUMA)

With the MFADS team and the SGI Origin 2000 (1998)

“You can procure and deploy an enterprise-class server (albeit a virtual one)
on AWS, Azure, or GCP, installed with your choice of the OS and database, in

a matter of minutes. You also get to shrink and expand your system, pretty
much at will. It is amazing how cloud computing has truly transformed the

way hardware procurement and systems deployment is done.”

https://en.wikipedia.org/wiki/SGI_Origin_2000
https://en.wikipedia.org/wiki/SGI_Origin_2000

9The NoCOUG Journal

interconnect, and it had a Crossbow (XBOW) architecture for its
I/O subsystem that could support a ton of I/O. Remember the
timeframe: 1998. This was a server and a half!

As part of the 1 TB data warehouse that we were deploying in
1998, we looked at the available RAID options that the Origin
2000 offered. RAID 3 (striped volume with a dedicated bitlevel
parity disk) caught our attention. In all of our comparison tests
between RAID 5 and RAID 3, the latter won by a significant
margin (measured in elapsed time of the jobs, IOPS, average
service time, and transfer rate). Armed with the results and solid
performance data, we made the decision to implement the stor
age layer in RAID 3. We then refactored the code to leverage the
great throughput capacity of the Origin 2000. We parallelized
relevant operations within the Oracle database and optimized
the code. There were batch jobs that previously did not finish in
three days but now completed in 45 minutes. This megaproject,
which was originally in “red” status, went to “green” in 45 days.
The project went live on time! Thank you, Paul Scott and Kevin
Embree for giving me the freedom to express myself at work. I
thoroughly enjoyed our time together in Austin, and it was a
pleasure working for both of you.

SGI’s incredible mediastreaming server from the 1990s had
all the traits of a supercomputer and could have made a killing as
the preferred platform for very large databases (VLDBs). In my
mind they had the perfect server for data warehousing. They
missed that huge opportunity and did not evolve when the x86
based commoditization began. Instead, they tried launching
Windows NT workstations with their expensive hardware. Beats
me as to why that made any business sense to anyone when Dell
was selling cheaper commodity Windows NT PCs like hotcakes.
At the time of the writing of this article the remains of SGI is
owned by Rackable Systems. SGI filed for bankruptcy in 2009.
Sigh.

The year 1998 remained a terrible one with the fall of another
computing giant. It was the beginning of the end for DEC, as
they sold the bulk of their products, IP, and assets to COMPAQ.
DEC was first sold to COMPAQ, followed by COMPAQ being
acquired by HP. Digital UNIX and SGI IRIX were some of the
best flavors of Unix that I have worked on. At the time, they were
miles ahead of HPUX, Solaris, AIX, and DYNIX. I will go on
record and state that they were even better than any flavor of
Linux I have worked on.

Breaking Free
The underlying reasons why so many wellestablished hard

ware companies fell one after another were the same: commoditi
zation of hardware, the role of Intel in the chip market, and the
surge of x86 as an industry standard. X86 and all of its successors
became a viable alternative for expensive and proprietary chip
architectures. It is human nature to seek freedom when we are
shackled. It was only a matter of time before we broke free from
proprietary architectures. This quest for freedom is the funda
mental reason why the “hardware bloodbath” occurred in the
first place. It also reinforces the importance of two elements that
are still relevant:
 1. The need for continuous technical evolution
 2. A tendency to voluntarily embrace mandatory market

factors
In hindsight, IBM had the foresight to play their cards right

and embrace the x86 revolution and Linux. They still stand
strong after all these years. To a large extent, HP also has stood
the test of time with its dominance in the blade server market.
Sun, the darling server company of the dotcom age, does not
exist in its original form anymore. The hardware vendors who
evolved and opened their doors to commodity hardware and
opensource Unix (Linux) have thrived. As for the others, they
have made the annals of computing with historians writing about
them. In the software space, clear messaging and marketing that
are congruent with the market forces is important. Of course,
credibility and integrity are required elements in business. When
legal boundaries are pushed in pursuit of profits or personal
greed, the consequences will be pretty dire.

You’ve Got Mail
If you haven’t done it already, go ahead and watch the 1998

movie “You’ve Got Mail,” featuring Meg Ryan and Tom Hanks,
which qualifies as the early internet days. Those three words are
what people loved hearing. The internet service provider America
Online (AOL) announced that you had email in your Inbox each

time you logged in. You will get a kick out of this one and will
also appreciate how far we have come in 20+ years.

Getting on the Information Superhighway and accessing the
World Wide Web was a fashionable thing to do in the late 1990s,
in order to check email and browse the world of information and
marketing (the Internet, with a capital “I”). Thus began the era of
dialup modems with speeds up to 56 Kbps. The crackling sound
of a dialup modem became part of every household. Check this
out for old times’ sake: www.youtube.com/watch?v=abapFJN6glo.
Digital Subscriber Line (DSL) and its successors soon followed
suit, supporting much higher bandwidth and speeds. I also re
member my first mobile phone, a Nokia 5110 released in 1998,
parade.com/5457/iraphael/the-evolution-of-the-cell-phone/,
which now looks like an ancient space gadget.

We browsed the web using Yahoo Search, Excite, AltaVista (a
DEC contribution), or AskJeeves. Google came into my life in
2000, when a coworker showed me the power of a simple search
box without any unnecessary marketing content. I have never
looked back. Netscape Navigator was the competitive offering to
Internet Explorer (IE). It was first released in 1994 and was con
sidered the cooler browser. There were browser wars between IE
and Netscape, each competing to outdo the other in every new

“The underlying reasons why so
many well-established hardware
companies fell one after another

were the same: commoditization of
hardware, the role of Intel in the

chip market, and the surge of x86 as
an industry standard. It is human

nature to seek freedom when we are
shackled. It was only a matter of
time before we broke free from

proprietary architectures.”

https://www.youtube.com/watch%3Fv%3DabapFJN6glo
https://parade.com/5457/iraphael/the-evolution-of-the-cell-phone/

10 May 2020

release. Mozilla Firefox came much later in 2002 and Google
Chrome even later in 2008.

Oracle Performance Management—Time for Some Oracle
Geek Speak

In 1999 I had the pleasure of rereading the Yet Another Per
formance Profiler (YAPP) paper written by Anjo Kolk. It
changed my perspective and that of many others who worked on
Oracle Database performance. The paper talked about the im
portance of the mantra Response Time = Service Time + Wait
Time. This made a huge impression on me, and I felt the need to
reengineer my own thought processes in the space of Oracle
performance tuning.

I embraced the Oracle Wait Interface (v$system_event,
v$session_event, v$session_wait, and the 10046 diagnostic event)
with both arms and started approaching Oracle tuning engage
ments very differently. I started to focus more on the application
problem (SQL) and the steplevel execution plan inefficiencies
(thanks to ROWSTATS in Oracle 9i) and less on instance con
figuration. Yes, when set incorrectly certain Oracle parameters
can cause performance issues, but SQL is responsible for 90% or
more of most application performance problems.

This was the inflection point when I totally moved into the
area of Oracle performance. In hindsight, what I taught in the
Oracle 7/8 Performance Tuning classes for Oracle Education
(1995–1997) was unnecessarily focused on the various init.ora
parameters and cachehit ratios instead of asking, “What re
sources is the SQL consuming and waiting for?” We need to
continually filter the noise and pay enough attention to the im
portant aspects of our lives.

The huge potential of the Oracle Wait Interface got me to
author a paper and presentation titled “Oracle Performance
Management,” which I then presented at the International Oracle
Users Group Americas (IOUGA) in 2000. Along with my
peers at the Oaktable Network, I embarked on a twoyear jour
ney, where we extensively spoke about this alternate method at
every possible conference. I even got my audiences to chant
“Cachehit ratios are for losers” at the beginning of the talk. Jokes
aside, I wanted them to focus on SQL waits and logical I/O
(Oracle’s foreground CPU time is mostly spent here). Everything
else was secondary. Those were exciting times. We made an im
pact and people saw the benefit of this approach. This laid the
foundation for my first literary project : Oracle Performance
Tuning 101, published by Oracle Press in 2001.

Storage Management for Oracle—The Israel Connection
My interest in the performance of Oracle combined with its

interplay with the OS and storage continued as I delved deeper
in the area of systems performance management. It was during
one of those IOUGA conferences in San Diego, Calif., that I met
Eyal Aronoff, the CTO of Quest Software at the time. He was
considered a product visionary in the Oracle tools market. He
provided the vision for many products at Quest Software, includ
ing Space Manager, LiveReorg, Spotlight on Oracle, Quest
Central, and SharePlex. We chatted after one of my Oracle on
RAID presentations, and that resulted in an offer for me to work
at Quest Software. My role was to head up the Storage Manage
ment Products Group and to provide technical and strategic di
rection for a new product line. This was my first stint at product
management and the year was 2000. Although I still lived in

Geekcruises—Database Discovery (2001)

Hotsos conference speakers (2003). Standing: Anjo Kolk, Carol
Dacko, Julian Dyke, Wolfgang Breitling, Cary Millsap, Jonathan
Lewis, and Tom Kyte. Kneeling: Gaja Krishna Vaidyanatha, Kyle
Hailey, Eric Grancher, Mogens Norgaard, and Stephan Haisley.

Dallas, Texas, at the time, I was most definitely transported to the
moon and back!

On my first visit to Tel Aviv, Israel, in 2000 (at the height of
the IsraeliPalestinian conflict), I met the StorageXpert engineer
ing team. I have some very interesting stories to tell you on how
I did StorageXpert product demos for the Israeli Security Forces
at Ben Gurion Airport at 3:00 a.m. on the day(s) of my
departure(s)—but that is for another time. Quest Software Israel
was located in Or Yehuda, one of Tel Aviv’s suburbs. Apart from
learning a little Hebrew and savoring Mediterranean cuisine
(chatzileem, baba ghanoush, tahini, and more), I got to know two
incredible guys really well: Eyal Kalderon and Shlomo Urbach.
They were senior engineers on the team. I have met some really
smart guys in my work life, but these guys were on a different
level. They took me on a deep dive into the internals of some
Unix system calls including (but not limited to) wstop. This sys
tem call allowed you to stop a system call, capture the parameters
in the call, and let it proceed, all within a fraction of a microsec
ond. Cool, huh?

In the latter half of 2001 we brought to market the firstever
objectlevel I/O bottleneck detection tool: StorageXpert for
Oracle. StorageXpert was supported on Oracle 7.3, 8.0, and 8i
across all relevant Unix flavors (Solaris, HPUX, Digital UNIX,

11The NoCOUG Journal

AIX, and Windows NT). As a software vendor in the early 2000s,
you were required to support the various flavors of the operating
systems (OS) that the server vendors supported. Porting software
across multiple flavors of Unix had a plethora of issues, primar
ily due to the lack of a standard or a core OS code set in Unix
land. Although IEEE released the Portable Operating System
Interface (POSIX) standard in 1988, not all hardware vendors
embraced it immediately, and the different flavors of Unix had
varying degrees of POSIX compliance over the years.

StorageXpert was a revolutionary product as it visually ex
posed blocklevel hot spots within a table or index. The identifi
cation of hot tables and indexes allowed an administrator to take
the necessary action from an optimization standpoint (e.g., tune
the SQL, reduce blocklevel contention, and so on). Administrators
were also able to perform relevant tierbased storage provision
ing for the colder objects. When you moved colder objects out of
Tier 1 storage, you created more capacity (both space and perfor
mance) for the primary hot objects (usually a smaller subset).

This was especially true for ERP applications that boasted
tens of thousands of tables and even more indexes. Tier 1 storage
was still very expensive in those days, and StorageXpert helped
companies maximize and leverage the Tier 1 storage investment
for much longer time periods. It was also a period of recession
(after the internet bubble burst) and IT spending was cut across
the board, making the value proposition unquestionable. The
movement of objects from one tablespace to another (Tier 1 to
Tier 2) was integrated with LiveReorg. I wish someone would
lend me a time machine so that I could go back to those days. I
truly was in techie heaven.

Floating Points with Oracle and Orcas
In June 2001, I had the pleasure of presenting at a very special

conference. Let’s just say that it gave new meaning to the term
“floating point.” The presentation room swayed from side to side
during my talks and it depended on a variety of geoclimatic fac
tors. I was aboard a Holland America cruise ship, MS Veendam,
on a “geek cruise” titled Database Discovery 2001. The cruise
took us through the Inside Passage from Vancouver, BC, to
Seward, Alaska, making port calls at Ketchikan, Sitka, and
Juneau. The cruise lasted seven days and it was a fantastic experi
ence. I did three Oracle talks at the conference and—in ex
change—got to see nature like never before. Alaska was
stunningly beautiful. I was fortunate enough to learn more about
the Native American culture at Sitka and interact with a pod of
orcas during a shore excursion in Juneau. I also got to share a
meal one evening with my dear friend Tim Gorman, who was
radiating while wearing a Scottish kilt! I couldn’t have asked for
more out of a technical conference. Thank you, Neil Bauman, for
enriching my life with this wonderful experience.

Back to the Mothership
I rejoined Oracle Corporation at Redwood Shores, Calif., in

the System Management Products Group in June 2002. I was
initially asked to build functionality in Oracle Enterprise
Manager (OEM) that competed with StorageXpert. But the uni
verse had different plans for me. As it turned out, Kyle Hailey,
John Beresniewicz, James Morle, Graham Wood, and I got to
gether to rearchitect the performance pages of OEM (renamed
as Oracle GridControl) in Oracle 10g. Graham was already
working on Active Session History (ASH) and Automatic Data

“When summoned to solve a
performance problem without any

background or context, I first try to
get a good understanding of the
workload that the database is

processing. This includes getting a
high-level one-hour workload
profile via Oracle’s Automatic

Workload Repository (AWR) report
and looking at where the database is
spending most of its time: DB Time

(CPU Time + Wait Time).”

base Diagnostic Monitor (ADDM), and our collaboration (be
tween system management products and server technologies)
was deemed perfect. The foundation of the performance screens
in Oracle GridControl 10g revolved around three things: SQL,
Waits, and Sessions. I called it the Triangle of Performance (ToP).
We used Scalar Vector Graphics (SVG), an Adobe plugin for
rendering the realtime graphs. And, with that, we changed
Oracle’s offering in the database performance tools market.

Flying Solo
(2004–2016)

In March 2004 I decided to go on my own and thus launched
a small consulting company: DBPerfMan LLC. DBPerfMan
stands for DataBase Performance Management, and we made
our humble beginnings in my apartment in Sunnyvale, Calif. We
primarily helped customers in the area of Oracle Systems Per
formance, in both the proactive and reactive contexts.

Performance Management in the Land of the Rising Sun
The first project fell into my lap, thanks to my dear friend

Anjo Kolk (the author of the YAPP paper I mentioned in the
Growth Years story). Anjo was friends with Ichiro Obata (Obata
san) of Insight Technologies in Chigasaki, Japan (a small town on
the outskirts of Tokyo, in the Kanagawa Prefecture). Anjo and
Obatasan had known each other for many years, since both had
worked at Oracle. Insight was looking for someone with experi
ence in the area of Oracle performance to evaluate and upgrade

their Performance Insight tool. They wished to play a significant
part in the Oracle performance tools market in Japan and wanted
to make sure the product was ready for prime time. I had just
launched DBPerfMan after a fouryear stint in product manage
ment at Quest and Oracle. It was mutually agreed that our part
nership was a good fit.

Japan, an incredible country with deep roots in culture and
tradition, provides anyone a kaleidoscope of experiences—
mountainous national parks, temples, shrines, historic monu
ments, and imperial palaces. Mt. Fuji stands majestically above
everything else, lending an incredible backdrop to this great

12 May 2020

country. In addition, it is the land of bullet trains (Shinkansen),
sushi, anime and Pokémon. The Japanese were also pioneers in
providing mobility to music. Sony invented the Walkman and
Discman many moons ago.

Doing business or working in Japan requires a totally different
mindset. Apart from the obvious need for translation from Eng
lish to Japanese and back (which makes for very long meetings),
the work culture is mostly structured in a 100% consensusbased
approach. At least that was my impression with the two projects,
one with Tokyo Disneyland and other with Insight Technologies.
If you were in a meeting, everyone in the room had to be con
vinced of a decision that was being made. Reading body lan

guage during meetings is a required skill. Work relationships are
very hierarchical—respect is an integral part of everyday human
interaction, and very few Japanese will openly disagree with
anyone, let alone their superiors. As an external consultant,
things were a tad different, but not by much. The universal head
nod always indicated to me that I was on the right track. As for
disagreement, I quickly picked up an audio cue (a very long
aaanhh before the actual sentence is spoken), which is a clear
signal that what I’ve just said is not sitting well with the people
in the room.

The Japanese are hardworking people and have a great sense
of pride in their work and their culture—and rightfully so.
Companies like Hitachi, Mitsubishi, Nissan, Mizuho Financial,
Softbank, Honda, Fujitsu, Toyota, and many others are house
hold names all over the world. The term kaizen has deep roots
in the Japanese work culture. It signifies change for the better,
continuous improvement with small daily changes. It propagates
the idea that the workforce will better absorb continuous small
incremental changes than occasional big radical changes. Japan
should be given credit for the wide adoption and use of kanban
boards in software development. After all, they were invented by
Toyota.

For all practical purposes we were on a performance tuning
kaizen, making small yet significant changes to the product on a
daily basis. The first few weeks were spent sorting out the Oracle
performance data that was feeding the various screens of the
product. Once we got the data synchronization issues sorted out,
we then went down the path of minimalism.

Don’t Make Me Think
The process of converting data to information is an art form.

No two people see the world the same way, yet there is a need to
ensure that only relevant information is rendered in an applica
tion. A welldesigned application should automatically draw
users to the important information. This goes with the construct
of developing effective applications that have minimal (if any)
distractions. If you are planning on building applications and
care about usability and HCI, I’d highly recommend that you
read Don’t Make Me Think, by Steve Krug. It will transform your
perspectives on visualization.

Fortyeight hours after a GUI team meeting in which we dis
cussed car dashboards as a visualization metaphor, the lead GUI
engineer came up with mockups of how to meaningfully display
the Oracle performance data in a dashboard. A car’s dashboard
is minimalistic by nature. It does not show every agonizing detail
of how a car functions. It displays the most important five as
pects of the car. Yet when something malfunctions, the error is
displayed in a contextsensitive message. By building a series of
visually intuitive widgets, the GUI engineers triggered the re
birth of the product. That was the day Insight Technologies rein
vented themselves and their Oracle performance product.

I worked with Insight Technologies through November of
2004. I loved my interactions with everyone at Insight and
EGlobalEdge. Special thanks are in order to Toyosuke Torimoto
(Torimotosan) for providing translation services for many weeks.
This project gave me an opportunity to engage in product innova
tion while experiencing the beautiful history and culture of Japan.
As the locals would say at the end of a hard day’s work, “Otskare
Samadesu! Domo arigato gosaimasu! Mata ashita ne!” (That was
a great day’s work! Thank you very much! See you tomorrow!)

A Weird Database Performance Problem
When summoned to solve a performance problem without

any background or context (other than the fact that the applica
tion is slow), I usually begin my investigation from the database
and work toward the application. I first try to get a good under
standing of the workload that the database is processing. This
includes getting a highlevel onehour workload profile via Ora
cle’s Automatic Workload Repository (AWR) report and looking at
where the database is spending most of its time: DB Time (CPU
Time + Wait Time). Along with this, the relevant operating sys
tem metrics, CPU usage (%usr, %sys, %wio, and %idle), CPU run
queue (the runnable queue—column “r” in a vmstat output), and
memory usage (other relevant columns of vmstat) are also re
viewed for the same time period. It is important to superimpose
the database workload with the operating system metrics from
the same time period in order to understand fully the interplay
between Oracle and the operating system.

In 2005–2006, during one such performance tuning engage
ment, I found the database not doing much. A onehour AWR
report showed about five minutes of real work (DB Time), yet
the claim was that the application was running at full speed.
There was nothing inherently wrong with the SQL that was cap
tured. However, it was observed that as the days went by in a
given month, the application got progressively slower. That was
the first clue that time played a crucial factor in the performance
of the application. How does one reconcile such a huge disparity?
Sixty minutes of clock time on a multicore system versus a total
of five minutes of database time. Something was not adding up!

“When you start designing and
drafting any architecture, the

problems that you solve during the
initial rounds should not keep

resurfacing. That is the first sign
that something is fundamentally

wrong with the approach. For me,
this moment of truth arrived when
I realized that the problem I was

trying to solve could not be solved
in the realm of Oracle and

relational databases.”

13The NoCOUG Journal

The relevant next step was to trace one or more active applica
tion sessions that were connected to the Oracle database. Nor
mally, tracing the SQL workload provides deep insight into how
the application is interacting with the database. But clearly in
that case an extended SQL trace (via the diagnostic event 10046)
was not going to reveal anything different from the AWR report.
Nevertheless, in an effort not to deviate from my own process, I
traced one of the active application sessions. As expected, I did
not find anything to write home about. It was consistent with the
AWR report. Not much was happening in regard to work on the
database.

At this stage I would have done a Java trace using JProfiler or
an equivalent to find out more about the application code. The
code was a thirdparty package, and I was given the option of
doing a source code review with the vendor. After an overview
discussing the application architecture, we began to walk through
the code. The application in question was scheduling software,
which provided three available timeslots when a customer called
in for service. The elapsed time for determining these three avail
able timeslots increased as the month progressed. At the begin
ning of the month, timeslots were generated quickly, but as time
passed, the availability of timeslots was reduced and elapsed time
for timeslot generation became an issue.

Complexity and Big O
When we finally got to the core of the scheduling functional

ity, I asked the lead engineer what data structure was used to
store the available timeslots. He said, “We are using a linked list.”
Analysis of algorithms from graduate school flashed before me.
I recalled the whole discussion about algorithmic complexity, its
relevance on runtime performance, and how data structures
played a critical part in it. If I’d been playing the lottery, I just hit
the jackpot. What are the odds that I had just uncovered the root
cause of the application’s performance problem with one ques
tion?

O (known as Big O) denotes the algorithmic complexity of a
given algorithm. An algorithmic complexity of O(n) is consid
ered linear, which implies that the complexity (runtime) of the
algorithm proportionately increases with n. In comparison, an
algorithmic complexity of O(logn) is considered logarithmic,
which implies that the increase in runtime is not proportionate
to n. Said in another way, O(logn) demonstrates a dispropor
tionate increase in runtime, with an increase in n, and that is
exactly what you want when you write code. From an algorithm’s
standpoint, O(logn) is much better than O(n). An algorithm
is considered scalable when it demonstrates a complexity of
O(logn) on average.

A linked list has an algorithmic complexity of O(n) for access
or searches. Here n is the number of nodes in the data structure.
In comparison, a binary tree or a skip list has an algorithmic
complexity of O(logn) for access or searches. Thus, it became

clear that as time progressed in a given month, the search time it
took to get an empty slot in the scheduling calendar increased
linearly. This is due to the sequential access method of a linked
list. The engineers who designed this may have chosen this data
structure, which is optimized for data insertion. They were prob
ably blindsided by the search time issue. An obvious side effect
of increased search time is increased CPU usage. I will leave you
with the following links, which will serve as additional study
material if you are interested in this aspect of Computer Science:
 1. Linked list: en.wikipedia.org/wiki/Linked_list
 2. Skip list: en.wikipedia.org/wiki/Skip_list
 3. Algorithmic complexity: en.wikipedia.org/wiki/Time_

complexity
 4. Big O cheat sheet: bigocheatsheet.com/

The Public Cloud, the Private Cloud, and Reinventing
the Wheel

Over the years, hosting companies evolved from an applica
tion service provider (ASP) model in the dotcom era to a man
aged service provider (MSP) model when they took complete
responsibility for the entire IT infrastructure, in addition to pro
viding hosted database and application environments. These days
you will find many an MSP rebranding their services as a cloud
service provider (CSP). To some extent that might be true, but
they would have to provide way more functionality than a classi
cal MSP (hosting and managed support) to become a CSP. In
addition to all of the usual hosting and managed support that an
MSP provides, a CSP has to provide and support the following:
 1. Selfservice portal
 2. Automation
 3. Dynamic provisioning and teardown
 4. Elasticity
 5. Scalability
 6. Chargeback and metering
 7. Monitoring
 8. Data consolidation
 9. High availability and disaster recovery
 10. Governmentgrade security

I was a spectator (as a consultant) at a few corporations where
a quest to build a private cloud was in progress. To everyone’s
discomfort in every relevant meeting, I repeatedly asked the
question, “Why they we doing this?” Data privacy and regulatory
compliance were common reasons tendered, but more often
than not there was no convincing answer. The thought process
went on these lines, “If Amazon, Microsoft, or Google can do it,
so can we.” Oh dear, where do I start? Getting private clouds
done right is a very difficult undertaking.

If data privacy and security is the primary argument and if

“Data integration is a significant and complex effort to bring data and data
models together from multiple systems. Data integration allows organizations

to achieve a more holistic view of their businesses by providing high-quality
integrated data. It helps them understand their customers, products, and

services better. If your data is not integrated, your business is flying blind”.

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Time_complexity
https://www.bigocheatsheet.com

14 May 2020

regulation mandates that client data should never leave the
premises, then so be it. At the least, the majority of the data foot
print (other than client data) can be stored on the cloud. How
does a transaction table purely with numeric keys and numbers
in any way jeopardize the privacy of a client? Are we seriously
stating that reverse engineering of client_id and asset_id key
values can be done on the fly without any lookup tables? That’s a
discussion for another day.

There is this false sense of security in some circles that any
thing within the firewall is secure and anything outside is not.
However, there are reports of corporate data centers being com
promised left and right (either breached or under a cyber attack).
This should get us to rethink our opinions and biases about
data in the public cloud. AWS, Azure, or Google Cloud provide
very secure infrastructure and implementation practices for
securing your systems and data. But if we don’t do our part in
securing our own data, we can’t then turn around and blame the
CSPs for it.

For example, if a company enables (inadvertently or other
wise) public access to an Amazon S3 data bucket on AWS with
sensitive information on it, blaming AWS for a data breach is not
reasonable. Data breaches don’t happen on CSPs because of some
mythical public cloud vulnerability or conspiracy theory. They
occur because someone has carelessly left a window or door
open, or taped the code to the alarm system in plain sight on the
keypad. This is true even with recent events where a certain cor
poration’s employees left a door ajar, only to quit the company
and then break in—which could happen whether or not some
thing is in the cloud or within the firewall. The true issue is how
do you prevent such leavingthedoorajar events? The public
cloud does not in any way obviate the need to secure the data
exactly the way it was onpremises. If we did our part in data
security, I wager that data stored in the public cloud (in, say,
AWS) is more secure than in your own data center. This is be
cause of the CSPs’ continuous investment in security monitoring
and hardening of the attack surfaces.

Some final thoughts on this subject: Let’s stop reinventing the
wheel when it comes to infrastructure and service provisioning.
Let’s work with the relevant governing bodies and regulators in
our respective vertical markets and get the required clearances to
get our data into the public cloud. Let’s build the necessary con
trols and security mechanisms to ensure that systems and data
are safe. If the prediction that 70% or more of all of the world’s
computing will be in the cloud by this year (2020) is valid, this
computer systems engineering shift is more prevalent than the
desktop revolution of the 1990s. If you are planning to truly in
novate, disrupt your marketplace, and scale your business with
computing at web scale, you need to get out of data centers. Pub
lic cloud vendors like AWS, Azure, and Google Cloud are defi
nitely where your data and your systems belong.

Evolve, Learn, and Transform
(2017)

“You can’t handle the truth.” Those were famous words by
Col. Nathan R. Jessep, played by Jack Nicholson in the 1992
block buster A Few Good Men. Evolution brings about change in
our thought processes. Learning occurs when the mind is open
to receive new ideas.

Transformation is a frequent and continuous process that
converts new ideas into pertinent information and actions. This
was and still is my ELT, and it has revealed this truth to me: Just
because I have done something in a certain way for many years,
it does not necessarily warrant that I do it the same way now.

The Truth Arrives
“The law of the instrument” was proposed by Abraham Kap

lan in 1964. He said, “Give a small boy a hammer, and he will
find that everything he encounters needs pounding.” We have
rephrased this: “If you have a hammer, every problem looks like
a nail.” In my humble opinion, this cognitive bias prevents us
from reaching our fullest potential in problem solving. In early
2017, I almost became the poster child for the law of the instru
ment.

As mentioned before, I had worked with relational databases
(specifically Oracle) for many years. I had the mindset that I
could figure out a way to do almost anything with Oracle. And
for the most part that was true. When you start designing and
drafting any architecture, the problems that you solve during the
initial rounds should not keep resurfacing. That is the first sign
that something is fundamentally wrong with the approach. For
me, this moment of truth arrived when I realized that the prob
lem I was trying to solve could not be solved in the realm of
Oracle and relational databases.

Integrate or Go Out of Business
Data integration is a significant and complex effort to bring

data and data models together from multiple systems. Data inte
gration allows organizations to achieve a more holistic view of
their businesses by providing highquality integrated data. It
helps them understand their customers, products, and services
better. With this renewed understanding, organizations are able
to provide better products and services, reduce costs, increase
sales, expand marketshare, and increase revenue. Said in an
other way, data integration fuels growth—and it also mitigates
risk and regulatory issues that may arise due to bad data. Data
integration is a fundamental right of every organization. If your
data is not integrated, your business is flying blind.

Harmonize and Canonicalize
The process of harmonization and canonicalization is used to

“Evolution brings about change in our thought processes. Learning occurs
when the mind is open to receive new ideas. Transformation is a frequent and

continuous process that converts new ideas into pertinent information and
actions. Just because I have done something in a certain way for many years,

it does not necessarily warrant that I do it the same way now.”

15The NoCOUG Journal

bring different versions of the data to a standardized single
source of the truth. Let’s set the stage by giving you a very spe
cific example: Take, for instance, the case of the CUSTOMER
table. Let’s keep this very simple with one column, the
CUSTOMER_ID, the primary key (PK) of CUSTOMER. Let’s
also assume that CUSTOMER_ID is our standard name for this
PK. When you have dozens of systems and they all have their
own version of the CUSTOMER table (due to a lack of consistent
data management practices of the past), the PK will have differ
ent names.

This poses a huge problem for the target data integration re
pository. You do not have the option of changing the name of the
CUSTOMER table’s PK in existing systems. Yet we are faced with
the task of equalizing CUST_ID, CUSTOMERID, CID, C_ID,
and 42 other versions to the standard CUSTOMER_ID. How do
you go about this? Let me gently remind you that we are discuss
ing a single column in a single table. There are hundreds of
tables, each having dozens of columns, and this blows out the
scope and complexity of the problem. I have not even touched on
the 42 different versions of a given customer’s record (yes, the
data). That is another issue that needs to be dealt with. We’ll put
it on the back burner for now.

The act of enforcing naming standards needs to be done not
in the current systems but in the data integration repository. It is
unrealistic to expect existing systems and the relevant applica
tions to change to the standard CUSTOMER_ID. That would be
a disruptive and expensive approach to standardization, and
no body is going to sign up for that. The process of enforcing
standards is called “canonicalization.” Data model and data har
monization are the Holy Grail for building any data integration
repository. They make a single version from many. Combined,
the two functions convert the 42 different versions of the
CUSTOMER’s primary key, to look and feel as one, CUSTOMER_
ID. Canonicalization is a continuous and frequent process, and
is an integral part of the evolution of data quality. However,
without canonicalization the value proposition of the unified
data integration repository’s target state significantly diminishes.
In the end, data integration fails without canonicalization.

So how do enterprises achieve this in the relational world?
Well, they start by first creating an Enterprise Data Model
(EDM) at the conceptual level, followed by creating it at the
logical level, and then finally at the physical model. When the
EDMs become available, they need to be continually kept up to
date, as it needs to change along with the business. Also, every
system from the past and in the future would be required to
conform to the physical EDM. This ensures the use of standard
ized names for the relevant entities and attributes (eventually
resulting in standardized table and column names). The prob
lem of different versions of data in different systems is still not
addressed by data modeling. However, the problem of 42 differ
ent versions of data can be addressed in the relational world with
large amounts of custom code that can be run at the Extract
Trans form Load (ETL) layer during ingestion time. All of this
requires a significant amount of policing. This is expensive, time
consuming, and difficult to sustain in the long run.

Undertaking the effort of everything mentioned in the previ
ous paragraph (after the fact) is monumentally complex. Sadly,
tragedy strikes right after the EDMs are ready. They become
obsolete right out of the starting block. Why so? In the many
months that it took to develop the three EDMs, the business

undergoes a significant transformation, requiring additional ef
fort to update the EDMs—and this cycle repeats all over again.

For a business that requires a holistic 360degree view of
every facet, waiting for many months to get a data integration
repository ready and then figuring out that it needs more work is
not acceptable. This changes the rules of the game. We are faced
with a situation where data and data model harmonization needs
to be achieved without the three different EDMs. Enter the data
base that saves the day: NoSQL.

ACID, BASE, and the Database
Even as I made my switch to NoSQL, there were certain

things that I was unwilling to compromise on. In the world of
transactional databases, maintaining ACID (Atomicity, Con
sistency, Isolation, Dur a bility) properties is something we all
take for granted. It is beyond the scope of this article to discuss

in detail what ACID is all about. However, I will cover ACID’s
viable alternative, BASE (Ba sically Available, Softstate, Eventual
Consistency). Although it is normal for NoSQL vendors to relax
the consistency property and adopt the eventual consistency
aspect of BASE, the implementation of this aspect needs to be
done correctly. Let’s take a closer look at this.

First of all, ACID compliance should not have disclaimers
attached to it: single document ACID compliance, single row
ACID compliance, or single object ACID compliance. ACID
compliance should never be limited to a single row or object or
document. It should be across multiple rows or objects or docu
ments. And please, let’s not call something ACIDcompliant and
then turn around and support dirty reads!

Dan Pritchett, the author who published BASE, is a former
eBay Technical Fellow. In his BASE paper (dl.acm.org/citation.
cfm?id=1394128), he refers to Eric Brewer’s CAP theorem and
why building purely ACIDcompliant applications can have an
impact on scalability. The CAP theorem states that you can have
only up to two of three characteristics of CAP (Consistency,
Availability, and Partition Tolerance) to maintain scalability.
Thus was born the idea of BASE.

First of all, BASE is not purely relevant to NoSQL databases.
It is implementable even in a relational ACID environment.
BASE was originally proposed with a relational backdrop, and it
brings forth the idea of designing applications with decoupled

“It is powerful to pick and choose
columns from different data sources
and harmonize data—and the idea

of provisioning a golden merged
version of the customer record from
above is pretty awesome. We have
done all of this without an EDM.
You are free to change any of it at
any time. It is truly evolutionary

and clearly supports the ever-
changing business environment

of today.”

https://dl.acm.org/doi/10.1145/1394127.1394128
https://dl.acm.org/doi/10.1145/1394127.1394128

16 May 2020

transaction man agement. This is achieved by primarily utilizing
asynchronous queues and achieving eventual consistency. De
coupling is definitely a good thing for scalability—when it’s done
right. Just to be clear, Mr. Pritchett never postulated that ACID
compliant applications would never scale. He urged the reader
to understand the limitations of coupling in an application’s
transaction architecture. Coupling can cause scalability bottle
necks; thus, BASE proposes decoupling to eliminate these
bottlenecks.

The rudiments of ACID ensure us that when a transaction
commits, there is no question whether the data shows up in the
database. A COMMIT’s guarantee should never be in question.
On those lines, it is required to ensure that in a distributed data
base configuration, the primary database and secondary data
bases are eventually in sync. If we choose to utilize the primary
for transactions and the secondary for reporting, database repli
cation (logical or physical) has to do its part in keeping the sec
ondary up to date. The secondary should be eventually consistent
with the primary within a finite period of time. We should not
have to worry about write concerns or read preferences to make
a distributed database environment functional. Both the primary
and the secondary databases should work out of the box. I urge
you to do your homework with regard to reliable COMMITs in
NoSQL databases and make an informed decision, lest you regret
your choice later.

To recap: I needed to design and create a data integration
repository to provide a holistic 360degree view of the business.
There were dozens of existing systems with no standard naming
conventions that sourced the data. This required data and data
model harmonization, due to the absence of a physical EDM.
Time was not on my side, as I did not have many months to in
vest in creating an EDM. I needed the NoSQL database (non
cloud) to be reliable, consistent, scalable, secure (elementlevel
security), and rocksolid, and to support ACID properties and
be enterprise class. The NoSQL database chosen was MarkLogic.

Note: You may wonder why I chose to work in a non-cloud ver-
sion of NoSQL. Let’s just say, for simplicity, that at the time I was
not given much of a choice.

The Richness of MarkLogic—Indexing, Search Engine, and
More

MarkLogic was an incredibly powerful NoSQL database that

boasted some great features. The Universal Indexing policy en
sures that pretty much everything (other than binary files) is
indexed upon loading. This facilitated quick access to the data
upon loading. Unlike the others, you did not have to provide a
path to create an index. Everything got indexed automatically
upon loading. The value proposition was apparent right after the
data was loaded. This database came with a builtin search en
gine out of the box and was 100% integrated. You did not have to
attach a thirdparty search engine to this NoSQL database. You
could, quickly, launch a web application that talked to the data
base, putting the data to use. Simultaneously, you could work on
the data quality in an iterative manner.

As a relational technologist, I have spent many hours lining
up data and ensuring that everything is perfect before applica
tions could utilize it. With NoSQL databases, even with partial
canonicalization, data presents itself with great value. For ex
ample, here is a sample query right off the loading process: “Give
me all occurrences of the string ‘Acme’ regardless of which ele
ment/column it occurs in.” If you have tried anything remotely
resembling this in SQL across your entire database, you will ap
preciate how difficult this is to pull off in the world of relational
databases. Yet queries like these are child’s play for NoSQL data
bases.

Data Integration at Work
The need for data and data model harmonization brought me

to NoSQL. In my mind this is fundamental to data integration.
In this final chapter of my journey to NoSQL I will dive a bit
deeper into this subject. In a previous section I introduced you
to harmonization with a simple CUSTOMER table. Now I want
to show, by example, the power of canonicalization, which al
lows us to achieve both data and data model harmonization.

NoSQL databases support different persistence formats,
“document” being one of the more common formats. In keeping
brevity and a smaller persistence footprint in mind, using JSON
as the document type is an easy choice for relational data. Har
monization is not a oneshot effort. It is iterative by nature, just
as any transformation effort should be. The quality and content
of data improves over time. This brings to focus a novel ap
proach to data management—ELT.

ELT (yes, the other one) stands for Extract, Load, and Trans
form. When compared to ETL (the classical approach to data

“I did not even think once during my Oracle career that I would open
myself up to another relational database, let alone a NoSQL database. The
land of NoSQL promises some very exciting times in my data management
journey. A part of me will always relational. As for the rest, time will tell.”

“If the data model cannot change with time, it becomes obsolete—and so does
the system that is built upon it. In the end, the system does not match the

business requirements and problems arise. In the case of NoSQL databases, it
even supports storing a different number of columns/elements for each record/

document. That is also unheard of in the realm of relational databases.”

17The NoCOUG Journal

management), ELT is much more powerful. With ELT, you do
not leave any data on the table. You load the data (as is) and then
transform it, postload, in place—multiple times: ELT(n). This
transformation process is usually done in phases—first for data
model harmonization, then data harmonization, and then with
data enrichment (i.e., adding geographical and spatial charac
teristics). ETL is a oneshot approach, and what is not loaded,
due to the rules at the time of loading, does not make it to the
database.

The following steps explain the process of data harmonization
and canonicalization.

Step #1—Relational to JSON conversion and metadata
incorporation

In Step #1, we bring CUSTOMER data from two systems. The
data is brought into the database as is. Please note that data from
the first system has CUSTID as the primary key (PK), and the

second system has CUST_ID as the
PK. We have made the decision that
CUSTOMER_ID is going to be our
standard. We will deal with the other
columns later. The data is ingested
from a CSV file, and the rows are con
verted into individual JSON docu
ments. We have also added metadata
for each document, and this can be
done in a variety of ways (details are
beyond the scope of this article). We
have pictorially represented the rela
tional to JSON representation in Fig
ure 1.

Step #2—Canonical identifies
CUSTOMER_ID as the standard

Welcome to canonicalization. In
Step #2, the canonical directive is
int ro duce d and t h i s ident i f i e s
CUSTOMER_ID as the standard col
umn. Figure 2 visually describes how
this is done.

Notice that in this simple example, we have brought two cus
tomer records into the database, one from SYSTEM1 for
CUSTOMER_ID = 1 and the other from SYSTEM2 CUST_ID
= 2. The column names are all over the place. We are just stan
dardizing on CUSTOMER_ID in this iteration.

Note: Canonicalization is shown in red and is actually achieved
using a simple program after the data is loaded.

Step #3—Additional source with differing column names
In Step #3, we will bring more data, this time from SYSTEM3,

and in this case all data columns will be harmonized for all
sources in an iterative fashion. The ingestion of data from
SYSTEM3 is illustrated in Figure 3. We have chosen to canoni
calize the remaining columns.

Observe that the canonical directive is applied for the PK
CUSTOMER_ID and beyond. We have chosen our standard for

the remaining columns:
L A S T _ N A M E ,
F I R S T _ N A M E ,
A D D R E S S , a n d
CLASSIFICATION.
Notice how the column
names in SYSTEM3
a r e d i f f e r e nt f r o m
S Y S T E M 1 a n d
SYSTEM2.

Without canoni
calization, these nam
ing differences of the
d a t a e l e m e nt s w i l l
make it very difficult to
interact with the data
integration repository.
Here we have truly in
tegrated three different
d a t a m o d e l s f r o m
three different source

Figure 1

Figure 2

18 May 2020

systems. This data model integration lays the foundation for the
bigger data harmonization and the program at large.

Step #4—One more source with differing column names and
data

In Step #4, we are going to complicate life a little by bringing
in another copy of CUSTOMER_ID = 3, but this time from
SYSTEM4. Why are we intentionally bringing in a duplicate
record? The answer is data quality. Our own internal data quality
analysis has determined the following:

The version of CUSTOMER#3 from SYSTEM3 has good
data for FIRST_NAME and LAST_NAME. Notice that the
ADDRESS of Jane Roe is listed as 12345 Acme Street. It needs to
be Acme Ave. The ADDRESS and CLASSIFICATION data is
incorrect.

It h a s a l s o b e e n d e t e r m i n e d t h at A DDR E S S an d
CLASSIFICATION is good from SYSTEM4. Notice the name is
all in upper case and Janet’s last name is misspelled as “DOE”
instead of “Roe”. The ADDRESS and CLASSIFICATION in
SYSTEM4 is deemed more reliable.

This provides you the rationale as to why data harmonization
needs to be undertaken. There is no point creating a data integra

tion repository where data
quality is questionable. A
pictorial representation of
d a t a i n g e s t i o n f r o m
SYSTEM4 is presented in
Figure 4.

The NoSQL database will
retain both original records
(d o c u m e n t s) f r o m
SYSTEM3 and SYSTEM4.
This allows us to trace the
lineage of the data. We will
create a new standardized
version for CUSTOMER#3
in the next step. So, in theo
ry, we will have three ver
sions of CUSTOMER_ID =
3, with the merged version
as the “golden” record.

Step #5—Create merged record using two sources
Now we are taking data integration to a new level by perform

ing data harmonization. The new merged record (document) is
the golden copy, and it contains the good data elements from two
previous records (documents) from SYSTEM3 and SYSTEM4.
This is illustrated in Figure 5. It is powerful to pick and choose
columns from different data sources and harmonize data—and
the idea of provisioning a golden merged version of the cus
tomer record from above is pretty awesome. We have done all of
this without an EDM. Now, that’s impressive!

To be clear, nothing here is cast in concrete. You are free to
change any of it at any time. It is truly evolutionary and clearly
supports the everchanging business environment of today. Data
models in today’s world need to be fluid. It is difficult to support
today’s businesses with rigid models. If the data model cannot
change with time, it becomes obsolete—and so does the system
that is built upon it. In the end, the system does not match the
business requirements and problems arise. In the case of NoSQL
databases, it even supports storing a different number of col
umns/elements for each record/document. That is also unheard
of in the realm of relational databases, as the closest you get

to this is a sparse matrix.
Figure 5 represents the
design of the merged re
cord.

With the aforemen
tioned 5step process,
our data and the data
model are both harmo
nized. This is integral to
the quality of what is
being stored in the data
base. Now you can trust
the business ins ights
coming out of your ana
lytics initiative.

One Final Confession
I need to fess up that I

tried to implement rela

Figure 4

Figure 3

19The NoCOUG Journal

tional canonicalization at the record level by creating the neces
sary metadata columns at the table level and then populating it
after the load. But this approach did not pan out well. In many
cases I ended up with a cumbersome metadata column be
cause the canonical directive—which included all columns—
needed to be stored as text within a single column.

With a single metadata column, a significant parsing over
head of the text (post load) comes in play. Think about it: If you
have 100 columns in your table and if you are going to have a
canonical directive for each column, you are going to end up
with a very long string. When elementlevel operations were
attempted, things got messy very quickly. Yes, I can perform
JSONlike operations in Oracle 12c, but I will still have to store
the content in a VARCHAR or CLOB—and then create virtual
columns and virtual indexes on top of it. That is analogous to
placing a square object inside a larger circle and then desperately
trying to justify its congruence. In this case it makes no sense
to store relational data in string format in a VARCHAR or CLOB
column and then turn around and attempt to JSONize it.

When the canonical directive was broken down into individ
ual columns, it got very unwieldy (100 metadata columns for 100
data columns is just crazy). If I created a pivoted metadata table
and took the rowbased approach, I ended up with 100 million
rows of metadata for a table with 100 columns and 1 million rows
of data. Any way I looked at it, it was messy in the relational
realm. This approach also increased the risk of bad data and in
consistency. Thus, based on the above, it is safe to state that we
should refrain from canonicalization attempts using relational
databases! JSON is natively supported in most NoSQL databases
via the document persistence model and thus makes harmoniza
tion, canonicalization, and integration much easier. It gets the
job done.

Epilogue
I owe a great deal of gratitude to Jason Hunter for the many

hours of discussions, whiteboarding sessions, and technical
content review of this article. Also, thanks to Frank Pacione for

”

Figure 5
providing me a relation
altoJSON strawman,
which I could build upon
for my learning.

As I look back to my
humble professional be
ginnings at OwensCorning
in 1992, I can’t help but
wonder how d i f ferent
things would have been if
Mark Amos had not been
my manager. What would
have become of me if he
had not guided me into the
relational world? I did not
even think once during my
Oracle career that I would
open myself up to another
relational database, let
alone a NoSQL database. I
am very thankful for hav
ing been a student of the
Oracle RDBMS all these

years. It has enriched me in more ways than meet the eye. It has
provided me a livelihood and more.

The land of NoSQL promises some very exciting times in my
data management journey. A part of me will always remain rela
tional. As for the rest, time will tell. It has been my pleasure writ
ing about my first 25 years. I thank you for joining me on my
journey. I wish you and your family the very best that life has to
offer. Like the Jedi Master ObiWan Kenobi has always said:
“May the Force be with you!”

Until we meet again . . . s

Gaja Krishna Vaidyanatha is a seasoned data practitioner with a
27-year proven track record of managing and integrating large
data footprints, on-premises and in the cloud. During his career he
has worked with a variety of data stores—relational (Oracle and
MySQL), Hadoop, NoSQL (HBase, MarkLogic, DynamoDB, and
FireStore), and columnar databases (BiqQuery). Gaja is an AWS
Certified Cloud Practitioner and AWS Certified Solutions Architect
Associate. He has co-authored two books—Oracle Performance
Tuning 101, published by Oracle Press, and Oracle Insights: Tales
of the Oak Table, published by Apress. His publications on
Serverless Data Integration can be found at www.cloud-data.biz/
publications. He is a member of the OakTable Network and the
inventor of the term Compulsive Tuning Disorder (CTD), circa
2000.

Copyright © 2020, Gaja Krishna Vaidyanatha
Originally published as a series of articles on LinkedIn in 2017

www.cloud-data.biz/publications
www.cloud-data.biz/publications

20 May 2020

PERFORMANCE
MONOGRAPH

Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

Oracle tracing is an economical but
rich performance data source.

Good tools make huge volumes of
trace data manageable.

If you’re building your own appli-
cation, you can make tracing an
easy-to-use feature.

Tracing reduces chaos and simpli-
fies performance optimization into
a single process throughout your
software life cycle.

Using trace data in code reviews
leads to more efficient applications,
and it bonds DBAs and developers
into better partners.

Trace data can help you detect
performance regressions before
your users notice them.

Trace data helps everyone in your
organization make better-informed
business decisions.

How confident are you that those new features
you’re adding to your production application will
be fast and efficient? What if they’re not? You
need a process that finds inefficient code earlier,
and a process to fix the inefficiencies that evade
early detection. One process can accomplish
both goals.

by Cary Millsap

Preventing the Post-Production
Performance Problem

Method RTM

 Oracle® Performance Monograph № 2

Problem
Many Oracle adopters have no process in
place for detecting performance problems
before the application go-live milestone.
The results can be ugly. Once I saw an
application that was so inefficient it
couldn’t support its initial 20-user training
rollout. This thing was supposed to serve
thousands of users. It cost $30 million and
had taken five years to write.

Companies that don’t have a process for
preventing performance problems have to
figure out a process for solving them later.
Do you really want to wager your career
on expensive-sounding ideas derived from
troubleshooting methods and tools you’ve
created on the fly, through trial and error,
under the crushing, unrelenting pressure
of your users and leadership scrutinizing
every step you take?

You know that solving problems earlier in
the software life cycle is better for every-
body, but how?

Plan
You need a method for troubleshooting
performance problems that works both
before and after go-live, for any perfor-
mance problem. You need a method you
can practice and get good at, that everyone

on your team—your DBAs, your develop-
ers, your sysadmins, your architects, even
your users and leadership—can learn.

Next, you need for your application to
integrate with your method. You want it
to be easy to collect the performance data
you need, throughout your software life
cycle: from testing your earliest prototypes,
to evaluating the efficiency of new features,
to baselining your well-behaved appli-
cations, to diagnosing your misbehaving
applications.

Finally, you need software tools that help
you manage, mine, and manipulate the
performance data your application collects.
You need tools that help everyone on your
team understand how your programs
spend your time.

Analysis
The method and tools for accomplish-
ing these goals do exist. We learned in
the early 2000s that the most valuable
performance data for Oracle Database
applications is extended SQL trace data.
Tracing is a basic feature of every release
of every Oracle edition. Used correctly,
tracing is a high-detail data source that
creates virtually no perceptible sacrifice in
system performance.

Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

Oracle tracing is an economical but
rich performance data source.

Good tools make huge volumes of
trace data manageable.

If you’re building your own appli-
cation, you can make tracing an
easy-to-use feature.

Tracing reduces chaos and simpli-
fies performance optimization into
a single process throughout your
software life cycle.

Using trace data in code reviews
leads to more efficient applications,
and it bonds DBAs and developers
into better partners.

Trace data can help you detect
performance regressions before
your users notice them.

Trace data helps everyone in your
organization make better-informed
business decisions.

How confident are you that those new features
you’re adding to your production application will
be fast and efficient? What if they’re not? You
need a process that finds inefficient code earlier,
and a process to fix the inefficiencies that evade
early detection. One process can accomplish
both goals.

by Cary Millsap

Preventing the Post-Production
Performance Problem

Method RTM

 Oracle® Performance Monograph № 2

Problem
Many Oracle adopters have no process in
place for detecting performance problems
before the application go-live milestone.
The results can be ugly. Once I saw an
application that was so inefficient it
couldn’t support its initial 20-user training
rollout. This thing was supposed to serve
thousands of users. It cost $30 million and
had taken five years to write.

Companies that don’t have a process for
preventing performance problems have to
figure out a process for solving them later.
Do you really want to wager your career
on expensive-sounding ideas derived from
troubleshooting methods and tools you’ve
created on the fly, through trial and error,
under the crushing, unrelenting pressure
of your users and leadership scrutinizing
every step you take?

You know that solving problems earlier in
the software life cycle is better for every-
body, but how?

Plan
You need a method for troubleshooting
performance problems that works both
before and after go-live, for any perfor-
mance problem. You need a method you
can practice and get good at, that everyone

on your team—your DBAs, your develop-
ers, your sysadmins, your architects, even
your users and leadership—can learn.

Next, you need for your application to
integrate with your method. You want it
to be easy to collect the performance data
you need, throughout your software life
cycle: from testing your earliest prototypes,
to evaluating the efficiency of new features,
to baselining your well-behaved appli-
cations, to diagnosing your misbehaving
applications.

Finally, you need software tools that help
you manage, mine, and manipulate the
performance data your application collects.
You need tools that help everyone on your
team understand how your programs
spend your time.

Analysis
The method and tools for accomplish-
ing these goals do exist. We learned in
the early 2000s that the most valuable
performance data for Oracle Database
applications is extended SQL trace data.
Tracing is a basic feature of every release
of every Oracle edition. Used correctly,
tracing is a high-detail data source that
creates virtually no perceptible sacrifice in
system performance.

21The NoCOUG Journal

Method RTM

 Oracle® Performance Monograph Series

© 2019 Method R Corporation.

Method R, Method R Workbench, and Method R Trace and their respective logos
are trademarks of Method R Corporation. Oracle is a registered trademark of Oracle
and/or its affiliates. Other names may be trademarks of their respective owners.

Method RTM

method-r.com
info@method-r.com

Tracing is infeasible when you don’t have
good tools to manage, mine, and manipu-
late the huge volume of detail that it gives
you. Our Method R Workbench software
is the interface between your mountain of
data and the job to be done.

The method, itself called Method R, keeps
you focused on measuring the response
times of the programs that are important
to your business. With Method R, your
process for preventing problems before
go-live becomes identical to your process
for diagnosing problems in production.

Solution
Accomplishing your goals begins with a
few process changes:

1. Application designers and developers
make your application easy to trace.
This way, everyone on your team can
have easy access to your programs’
detailed performance data. If you’ve
bought (not built) your application,
it may not have all the performance
measuring features you’d like built in,
but any Oracle-based application can
be traced.

2. If you have in-house programmers,
they trace routinely during devel-
opment to find inefficiencies and
understand how their programs spend
time.

3. Before any new application feature is
promoted to production, a database
performance specialist reviews the new
code’s trace data. If your programmers
are in-house, the trace data for their
code is analyzed at every code review.

4. Database operators routinely trace
key application features in production.
Routine tracing reveals tiny perfor-
mance regressions before your users

notice them, and performance baselines
make it easier to diagnose problems
later.

5. When you do encounter a production
performance problem, use trace data
to find where your programs spend
their time. Even if you have to trace
every program on your system for
a few hours, Oracle and Method R
Workbench can handle the volume.

6. Everyone—both technical and non—
participates in the culture of measuring
over guessing. For example, before your
next upgrade, measure the response
times of your key application features.
Predict how the upgrade should change
the response time for each feature. After
the upgrade, measure response times
again and calibrate your forecast. If your
forecast was wrong, learn why. It’s
your fast-path to performance expertise.

Results
Every code review that finds an ineffi-
ciency is a problem that no user will ever
experience. It’s a programmer learning
how to write better code, and it’s an
organization that is more intimate with the
performance of the software it counts on
for survival.

The rare problem that does slip through
your code review filter, you’ll deal with
using the same method and data that you
use in your code reviews. At first, you’ll
think, “I can’t believe I didn’t notice that;
I’ll never make that mistake again.” And
then you won’t. Over time your per-
formance (both your application’s and
yours personally) will get more and more
bulletproof.

On your production system, your database
operators will trace the performance of

your application’s key features even on
good days when users aren’t having prob-
lems, because you want to see any little
jiggle of creeping performance problems.
Keeping those trace files will make it easier
to diagnose problems later.

Your company will spend less on hard-
ware upgrades, because more efficient
software runs faster on less hardware.
When you do upgrade, you’ll predict how
much faster your different programs will
be. “TPS reports will run in 72% less time.
Pick-to-Ship will improve by only 8%;
but it’s already subsecond, so it doesn’t
matter.” And you’ll be right.

Your whole organization will achieve a
continual intimacy with the performance
of your application. You know where
your performance risks are, and you know
what it looks like when your application
is creeping toward problematic behavior.
You’ll still find the occasional surprise, but
most of your surprises will be in pre-pro-
duction tests, and for the rare surprise that
occurs in production, you’ll have your
method and your data ready.

Technology
Method R Workbench is easy-to-use,
high-precision Oracle time measurement
software for software development, code
reviews, performance tests, concept
proofs, hardware and software evaluations,
upgrades, troubleshooting, and more—for
Oracle developers, DBAs, and deci-
sion-makers in every phase of the software
life cycle.

9Workbench
Method RTM

22 May 2020

F R O M T H E
A R C H I V E

The Second International NoCOUG SQL Challenge
was published on February 13, 2011, in the February
2011 issue of the NoCOUG Journal (http://bit.ly/
gVNZsW). SQL commands to create the data were

provided at http://bit.ly/g58WVn. The challenge was to find the
secret message hidden in a seemingly random collection of
words. The winners are Andre Araujo (Australia), Rob van Wijk
(Netherlands), and Ilya Chuhnakov (Russia.) Each winner will
receive an Amazon Kindle from contest sponsor Pythian and the
August Order of the Wooden Pretzel, in keeping with the pro
nouncement of Steven Feuerstein that “some people can perform
seeming miracles with straight Es-Cue-El, but the statements end
up looking like pretzels created by somebody who is experimenting
with hallucinogens.”

The first reaction to the challenge was one of puzzlement.
Van Wijk wrote on his blog on February 14, 2011: “Unfortunately,
I don’t understand what needs to be done. Is it forming a sentence?
Three sentences? Do all words need to be used? If so, lots of sen-
tences can be made; how do I know which is the right one? I’m
afraid I don’t think it is a *SQL* Challenge, but I may be missing
something.” However, the puzzle quickly fell to the combined
onslaught of the international database community. At 6:11 a.m.
PST on February 15, 2011, we received a solution from Araujo.
He had realized that the words formed a binary tree and used
“recursive common table expressions” to decode the secret mes
sage (the winning solution to a contest conducted by columnist
Marilyn vos Savant in which contestants had to write a sensible
paragraph of one hundred unique words).

“TRYING TO TYPE ONE HUNDRED DISTINCT WORDS
IN A SINGLE PARAGRAPH IS REALLY TOUGH IF I CANNOT
REPEAT ANY OF THEM THEN PROBABLY THOSE WITH
MANY LET TERS SHOULD BE USED MAYBE SOME
READERS WILL UTILIZE DICTIONARIES THESAURUSES
THESAURI OR POSSIBLY EVEN ENCYCLOPEDIAS BUT MY
PREFERENCE HAS ALWAYS BEEN THAT GRAY MATTER
BETWEEN YOUR EARS SERIOUSLY MARILYN CHAL
LENGES SUCH AS THIS REQUIRE SKILLS BEYOND MATH
SCIENCE AND PHYSICS SO WHAT DO YOU ASK READING
COMPREHENSION WRITING ABILIT Y GOOD OLD
FASHIONED ELBOW GREASE SCIENTISTS DON’T CARE
ABOUT STRUCTURE THEY WANT RESULTS HEY LOOK
ONLY ELEVEN MORE LEFT FIVE FOUR THREE TWO
DONE”

Araujo posted a detailed analysis of the problem at http://
www.pythian.com/news/20757/nocoug-sql-challenge-
entry-2/. He admitted that—even though he had successfully
decoded the secret message—his solution would not work for all

binary trees. At 1:08 p.m. PST the same day, van Wijk sent us a
recursive CTE solution that works for all binary trees. Here is the
solution with some modifications for extra clarity.

-- Assign an ordering string to each node
WITH CTE(word1, word2, word3, ordering) AS
(
 -- This is the anchor member of the recursive CTE
 -- Identify the root of the binary tree
 SELECT
 r.word1, r.word2, r.word3,
 -- The ordering string for the root node is '1'
 cast('1' AS VARCHAR2(4000)) AS ordering
 FROM riddle r
 WHERE NOT EXISTS (
 SELECT * FROM riddle r2
 WHERE r.word2 IN (r2.word1, r2.word3))

 UNION ALL

 -- This is the recursive member of the recursive CTE
 -- Identify the left and right nodes if any
 SELECT
 r.word1, r.word2, r.word3,
 -- Compute the ordering string for this node
 CASE
 -- Handle the case of a left node
 WHEN r.word2 = CTE.word1
 -- Change the last digit to '0' and then append '1'
 THEN replace(CTE.ordering, '1', '0') || '1'
 -- Handle the case of a right node
 WHEN r.word2 = CTE.word3
 -- Change the last digit to '2' and then append '1'
 THEN replace(CTE.ordering, '1', '2') || '1'
 END AS ordering
 FROM riddle r JOIN CTE
 ON r.word2 IN (CTE.word1, CTE.word3)
)
-- Sort the words using the ordering string
SELECT word2 FROM CTE ORDER BY ordering;

A recursive CTE consists of an “anchor” member and one or
more “recursive” members. The anchor member generates seed
data, while the recursive member generates additional data. Any
additional data is fed right back to the recursive mem ber, and
the process continues until no more data is found. To help un
derstand van Wijk’s solution, store the words of the sentence
“Quick brown Fox jumps over the lazy dog” in a binary tree as
shown in Figure 1.

CREATE TABLE riddle
(
 word1 VARCHAR2(32),
 word2 VARCHAR2(32) NOT NULL,
 word3 VARCHAR2(32)
);
INSERT INTO RIDDLE VALUES (NULL, ‘Quick’, NULL);
INSERT INTO RIDDLE VALUES (‘Quick’, ‘brown’, NULL);
INSERT INTO RIDDLE VALUES (‘brown’, ‘Fox’, ‘dog’);

Second International
NoCOUG SQL Challenge

Reprinted from the November 2011 issue

(continued on page 25)

http://bit.ly/gVNZsW
http://bit.ly/gVNZsW
http://bit.ly/g58WVn
http://www.pythian.com/news/20757/nocoug-sql-challenge-entry-2/
http://www.pythian.com/news/20757/nocoug-sql-challenge-entry-2/
http://www.pythian.com/news/20757/nocoug-sql-challenge-entry-2/

Second International

NoCOUG SQL Challenge
BE IT KNOWN BY THESE PRESENTS that the great Wizard of Odds at Hogwash School of Es-Cue-El needs your
help in solving the riddle of the ancient manuscript found in the secret chamber of mystery. A great tournament has been
organized, and all practitioners of the ancient arts of Es-Cue-El have been invited to demonstrate their prowess.

Unsolvable Riddle
An ancient manuscript titled “Love Your Data” has been discovered in the secret chamber of mystery at Hogwash School of
Es-Cue-El. The manuscript was covered with mysterious words such as those shown below; the complete list has been pub-
lished in the Wizarding Journal of the great Oracles of Northern California. The great Wizard of Odds implores you to create
an Es-Cue-El spell that reveals the secret message.

Big Prizes
The August Order of the Wooden Pretzel will be conferred on the winner, in keeping with the celebrated pronouncement of
another great wizard that “some people can perform seeming miracles with straight Es-Cue-El, but the statements end up
looking like pretzels created by somebody who is experimenting with hallucinogens.” As if that singular honor were not
enough, a marvelous collection of Oracular tomes will be bestowed upon the champion. May the best wizard win!

RULES: The winner will receive a Kindle and his or her choice of six books from the Apress book catalog. Due to shipping costs and limitations
for certain parts of the world, electronic copies may be substituted. Prizes may be awarded to runners-up at the discretion of the organizers.
Submissions should be emailed to SQLchallenge@nocoug.org. Contestants may use any database technology at their disposal, but the
submitted solutions should be compatible with at least one of the following database technologies: Oracle 11g for Windows, SQL Server 2008,
DB2 9.5 for Windows, and MySQL 5.1 for Windows. The competition will be judged by Jonathan Gennick, Assistant Editorial Director at Apress,
and Iggy Fernandez, author of Beginning Oracle Database 11g Administration published by Apress. Judging criteria include correctness, originality,
efficiency, portability, and readability. The judges’ decisions are final. The competition will close at a time determined by the organizers. The judges
and organizers reserve the right to publish and comment on any of the submissions with due credit to the originators. More information about the
problem and additional rules can be found at http://www.nocoug.org.

Second International
NoCOUG SQL Challenge

BE IT KNOWN BY THESE PRESENTS that the great Wizard of Odds at Hogwash
School of Es-Cue-El needs your help in solving the riddle of the ancient manuscript found in the secret
chamber of mystery. A great tournament has been organized, and all practitioners of the ancient arts of
Es-Cue-El have been invited to demonstrate their prowess.

Unsolvable Riddle
An ancient manuscript has been discovered in the secret chamber of mystery at Hogwash School of Es-
Cue-El. The manuscript was covered with mysterious words such as those shown below; the complete
list has been published in the Wizarding Journal of the great Oracles of Northern California. The great
Wizard of Odds implores you to create an Es-Cue-El spell that reveals the secret message.

A
COMPREHENSION ABILITY OLD

ABOUT
ALWAYS

SCIENCE AND PHYSICS
ANY
AS

SO ASK ABILITY

Big Prizes

The August Order of the Wooden Pretzel will be conferred on the winner, in keeping with the celebrated
pronouncement of another great wizard that “some people can perform seeming miracles with straight
Es-Cue-El, but the statements end up looking like pretzels created by somebody who is experimenting
with hallucinogens.” As if that singular honor were not enough, a marvelous collection of Oracular
tomes will be bestowed upon the champion. May the best wizard win!

RULES: The winner will receive his or her choice of six books from the Apress book catalog. Due to
shipping costs and limitations for certain parts of the world, electronic copies may be substituted. Prizes
may be awarded to runners-up at the discretion of the organizers. Submissions should be emailed to
SQLchallenge@nocoug.org. Contestants may use any database technology at their disposal, but the
submitted solutions should be compatible with at least one of the following database technologies:
Oracle 11g for Windows, SQL Server 2008, DB2 9.5 for Windows, and MySQL 5.1 for Windows. The
competition will be judged by Jonathan Gennick, Assistant Editorial Director at Apress, and Iggy
Fernandez, author of Beginning Oracle Database 11g Administration, published by Apress. Judging
criteria include correctness, originality, efficiency, portability, and readability. The judges’ decisions are
final. The competition will close at a time determined by the organizers. The judges and organizers
reserve the right to publish and comment on any of the submissions with due credit to the originators.
More information about the problem and additional rules can be found at http://www.nocoug.org.

mailto:http://www.nocoug.org?subject=SQL%20Challenge%20Submission
http://www.nocoug.org

Love Your DataSecret Message

A
COMPREHENSION ABILITY OLD

ABOUT
ALWAYS

SCIENCE AND PHYSICS
ANY
AS

SO ASK ABILITY
BE

POSSIBLY BEEN MARILYN
GRAY BETWEEN EARS

BEYOND
BUT
CANNOT

SCIENTISTS CARE STRUCTURE
CHALLENGES

READING COMPREHENSION WRITING
WILL DICTIONARIES THESAURI
HUNDRED DISTINCT WORDS
WHAT DO YOU
THREE DONE

DONT
YOUR EARS SERIOUSLY
ASK ELBOW WANT

ELEVEN
EVEN ENCYCLOPEDIAS BUT

EVEN
FASHIONED

ELBOW FIVE DONE
FOUR
GOOD

THAT GRAY MATTER
GREASE

PREFERENCE HAS ALWAYS
RESULTS HEY LOOK

HUNDRED
IN I THOSE

IF
ONE IN IS
SINGLE IS TOUGH

LEFT
LETTERS
LOOK

WITH MANY LETTERS
BETWEEN MARILYN THIS
SOME MATH FIVE

MATTER
MAYBE

ELEVEN MORE LEFT
ENCYCLOPEDIAS MY HAS

REPEAT OF THEN
GOOD OLD FASHIONED
TO ONE DISTINCT
HEY ONLY MORE

OR
PARAGRAPH
PHYSICS

DICTIONARIES POSSIBLY MY
PREFERENCE
PROBABLY
READERS
READING
REALLY

CANNOT REPEAT ANY
REQUIRE
RESULTS
SCIENCE

GREASE SCIENTISTS DONT
SERIOUSLY

MANY SHOULD USED
A SINGLE PARAGRAPH
REQUIRE SKILLS BEYOND
AND SO DO
I SOME BEEN
ABOUT STRUCTURE THEY
CHALLENGES SUCH AS

THAT
THEM

THEM THEN PROBABLY
THESAURUSES THESAURI OR

THESAURUSES
THEY

SUCH THIS SKILLS
OF THOSE SHOULD
FOUR THREE TWO
TRYING TO TYPE
REALLY TOUGH IF

TRYING
TWO
TYPE

BE USED MAYBE
UTILIZE

CARE WANT ONLY
WHAT

READERS WILL UTILIZE
WITH
WORDS
WRITING
YOU
YOUR

25The NoCOUG Journal

INSERT INTO RIDDLE VALUES (NULL, ‘jumps’, NULL);
INSERT INTO RIDDLE VALUES (‘jumps’, ‘over’, NULL);
INSERT INTO RIDDLE VALUES (‘over’, ‘the’, ‘lazy’);
INSERT INTO RIDDLE VALUES (NULL, ‘lazy’, NULL);
INSERT INTO RIDDLE VALUES (‘the’, ‘dog’, NULL);

The sentence can be reconstructed by traversing the tree in
“inorder” fashion, which involves performing the following
opera tions recursively at each node, starting with the root node:
first traverse the left subtree (if any), then process the node it
self, and finally traverse the right subtree (if any.) Re cursion can
be achieved in SQL queries using “recursive common table ex

Figure 1.

Figure 2.

pressions” (recursive CTEs). However, recursive CTEs only per
mit “preorder” traversal (parent, left subtree, right subtree),
not “inorder” traversal. Van Wijk worked around the problem
by using a twophase approach. An ordering string is generated
for each node during the preorder traversal of the tree (Figure
2), and the results are then sorted using the ordering string.

On March 16, 2011, Chuhnakov submitted two solutions.
The first used the MODEL clause, which—in his words—works
“automagically.” Columns are classified into “dimension” and
“measure” arrays where the two terms have the same meaning as
for fact tables in data warehouses. The Word2 column is the
obvious dimension array, while Word1 and Word3 are measure
arrays. Chuhnakov creates another measure array called Text to

store messages contained in subtrees. Each Text value is recur
sively defined in terms of other Text values by concatenating the
left subtree with the current node and the right subtree. Note
that the CV function returns the current value of its argument.

SELECT MAX(text)
 KEEP (DENSE_RANK LAST ORDER BY length(text)) AS text
FROM
(
 SELECT * FROM riddle
 MODEL
 DIMENSION BY (word2)
 MEASURES
 (
 word1,
 word3,
 CAST(NULL AS VARCHAR2(4000)) AS text
)
 RULES AUTOMATIC ORDER
 (
 text [word2] = trim (text [word1 [CV (word2)]]
 || ‘ ‘ || CV (word2)
 || ‘ ‘ || text [word3 [CV (word2)]])
)
);

Chuhnakov’s second solution was similar to van Wijk’s solu
tion but used the CONNECT BY method.

WITH CTE AS
(
 SELECT
 r.word2,
 -- Compute the ordering string for this node
 replace(sys_connect_by_path(
 CASE
 WHEN r.word2 = PRIOR word1 THEN ‘0’
 WHEN r.word2 = PRIOR word3 THEN ‘2’
 END, ‘/’), ‘/’) || ‘1’ AS ordering
 FROM riddle r

 -- Identify the root of the binary tree
 START WITH NOT EXISTS (
 SELECT * FROM riddle r2
 WHERE r.word2 IN (r2.word1, r2.word3))

 -- Identify the left and right nodes if any
 CONNECT BY r.word2 IN (PRIOR r.word1, PRIOR r.word3)
)
-- Sort the words using the ordering string
SELECT word2 FROM CTE ORDER BY ordering;

Other solutions using techniques similar to the ones al
ready described were subsequently received. s

(continued from page 20)

26 May 2020

P I C T U R E
D I A R Y

NoCOUG Conference #133
Post-Conference Reception Sponsored by Quest

DATABASE MANAGEMENT SOLUTIONS
Develop | Manage | Optimize | Monitor | Replicate

Maximize your
Database Investments.

The SQL tuning boot camp by SQL goddess Maria Colgan (SQL Maria) and the RDS for Oracle boot camp may have had something
to do with the excellent attendance. There were cutesy Valentine’s Day doughnuts for breakfast. Gyan Bhatnagar won the ping pong
competition at the post-conference reception; Monica Snow won the pool competition.

https://www.quest.com/solutions/database-management/

Database HA in the Cloud
Proven Oracle RAC engine

AWS, Azure, GCP

HA clustering with 2+ nodes

Infrastructure-as-Code

24/7 support

Launch in 1 hour
in your cloud account!

www.flashgrid.io

http://www.flashgrid.io
http://aws.amazon.com/aurora

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

The No-Limits Database™

The cloud-native, operational database
built for speed and scale

SCALE
Build on a cloud-native

data platform designed for

today’s most demanding

applications and

analytical systems

SPEED
Accelerate time to insight

with a database built for

ultra fast ingest and

high performance query

SQL
Get the familiarity & ease

of integration of a traditional

RDBMS and SQL, but with

a groundbreaking,

modern architecture

Learn more at memsql.com © 2019 MemSQL Inc.

MemSQL_NoCOUG_R1.pdf 1 7/3/19 8:12 AM

The No-Limits Database™

The cloud-native, operational database
built for speed and scale

SCALE
Build on a cloud-native

data platform designed for

today’s most demanding

applications and

analytical systems

SPEED
Accelerate time to insight

with a database built for

ultra fast ingest and

high performance query

SQL
Get the familiarity & ease

of integration of a traditional

RDBMS and SQL, but with

a groundbreaking,

modern architecture

Learn more at memsql.com © 2019 MemSQL Inc.

MemSQL_NoCOUG_R1.pdf 1 7/3/19 8:12 AM

http://www.solarwinds.com/dpa-download
http://memsql.com

