
Knowledge Happens
Cloudera Impala
A book excerpt.
See page 9.

Bulletproof Disaster
Recovery
A product review.
See page 11.

Singing the
NoCOUG Blues
Tim Gorman advises us.
See page 4.

Vol. 28, No. 3 · AUGUST 2014	 $15

Much more inside . . .

3
The NoCOUG Journal

2014 NoCOUG Board
President
Hanan Hit

Vice President
Dharmendra “DK” Rai

Secretary
Naren Nagtode

Treasurer
Eric Hutchinson

Membership Director
Abbulu Dulapalli

Conference Director
Vacant Position

Vendor Coordinator
Omar Anwar

Training Director
Randy Samberg

Social Media Director
Vacant Position

Webmaster
Jimmy Brock

Journal Editor
Iggy Fernandez

Marketing Director
Ganesh Sankar Balabharathi

IOUG Liaison
Kyle Hailey

Members at Large
Linda Yang

Board Advisor
Tim Gorman

Book Reviewer
Brian Hitchcock

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer­
ence. Article submissions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other­
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Interview... 4

Book Excerpt... 9

Product Review... 11

SQL Corner...17

Unconventional Wisdom................................. 24

Treasurer’s Report.. 25

Conference Agenda.. 28

ADVERTISERS

HiT Software.. 2

Confio Software.. 9

Delphix... 9

Embarcadero Technologies............................. 9

Kaminario.. 9

Axxana.. 23

Database Specialists....................................... 27

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12-year period. The professional pictures on

the front cover are supplied by Photos.com.

Next, the Journal is professionally copyedited and proofread by veteran copy­

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Francisco-based Giraffex.

And, finally, Jo Dziubek at Andover Printing Services deftly brings the Journal

to life on an HP Indigo digital printer.

This is the 111th issue of the NoCOUG Journal. Enjoy! s

—NoCOUG Journal Editor

4
August 2014

You are old, father Gorman (as the young man said) and your
hair has become very white. You must have lots of stories. Tell us
a story!

Well, in the first place, it is not my hair that is white. In point
of fact, I’m as bald as a cue ball, and it is my skin that is pale from
a youth misspent in data centers and fluorescent-lit office cen­
ters.

It is a mistake to think of wisdom as something that simply
accumulates over time. Wisdom accumulates due to one’s pas­
sages through the world, and no wisdom accumulates if one re­
mains stationary. It has been said that experience is what one
receives soon after they need it, and experience includes both
success and failure. So wisdom accumulates with experience, but
it accumulates fastest as a result of failure.

About four years ago, or 26 years into my IT career, I dropped
an index on a 60 TB table with 24,000 hourly partitions; the
index was over 15 TB in size. It was the main table in that pro­
duction application, of course.

Over a quarter-century of industry experience as a developer,
production support, systems administrator, and database admin­
istrator: if that’s not enough time to have important lessons
pounded into one’s head, then how much time is needed?

My supervisor at the time was amazing. After the shock of
watching it all happen and still not quite believing it had hap­
pened, I called him at about 9:00 p.m. local time and told him
what occurred. I finished speaking and waited for the axe to
fall—for the entirely justified anger to crash down on my head.
He was silent for about 3 seconds, and then said calmly, “Well, I
guess we need to fix it.”

And that was it.
No anger, no recriminations, no humiliating micro-manage­

ment. We launched straight into planning what needed to hap­
pen to fix it.

He got to work notifying the organization about what had
happened, and I got started on the rebuild, which eventually took
almost 2 weeks to complete.

It truly happens to all of us. And anyone who pretends other­
wise simply hasn’t been doing anything important.

How did I come to drop this index? Well, I wasn’t trying to
drop it; it resulted from an accident. I was processing an ap­
proved change during an approved production outage. I was
trying to disable a unique constraint that was supported by the

index. I wanted to do this so that a system-maintenance package
I had written could perform partition exchange operations (which
were blocked by an enabled constraint) on the table. When I
tested the disabling of the constraint in the development envi­
ronment, I used the command ALTER TABLE . . . DISABLE
CONSTRAINT and it indeed disabled the unique constraint
without affecting the unique index. Then I tested the same op­
eration again in the QA/Test environment successfully. But when
it came time to do so in production, it dropped the index as well.

Surprise!
I later learned that the unique constraint and the supporting

unique index had been created out of line in the development
and QA/test environments. That is, first the table was created,
then the unique index was created, and finally the table was al­

I ntervie w

Singing the
NoCOUG Blues

with Tim Gorman
Tim Gorman

“You are old, Father William,” the young man said,
“And your hair has become very white;

And yet you incessantly stand on your head—
Do you think, at your age, it is right?”

“In my youth,” Father William replied to his son,
“I feared it might injure the brain;

But now that I’m perfectly sure I have none,
Why, I do it again and again.”

5
The NoCOUG Journal

tered to create the unique constraint on the already-existing
unique index.

But in production, the unique constraint and the supporting
unique index had been created in-line. When the table was cre­
ated, the CREATE TABLE statement had the unique constraint
within, along with the USING INDEX clause to create the unique
index.

So when I altered the table in production, disabling the con­
straint also caused the index to be dropped.

After the mishap, I found the additional syntax for KEEP
INDEX, which could have been added to the end of the ALTER
TABLE . . . DISABLE CONSTRAINT command because Oracle
recognized the difference in default behaviors.

But that was a discovery I experienced after I needed it.
As to why my supervisor was so calm and matter-of-fact

throughout this disaster, I was not surprised; he was always that
way, it seemed. What I learned over beers long after this incident
is that, in his early life, he learned the true meaning of the words
“emergency” and “catastrophe.” He was born in Afghanistan, and
he was a young child during the 1980s after the Soviets invaded.
His family decided to take refuge in Pakistan, so they sought the
help of professional smugglers, similar to what we call “coyotes”
on the Mexican-American border. These smugglers moved
through the mountains bordering Afghanistan and Pakistan at
night on foot, using camels to carry baggage and the very old, the
sick and injured, and the very young.

My supervisor was about 9 years old at the time, so the smug­
glers put him on a camel so he would not slow them down.
During the night, as they were crossing a ridge, they were spotted
by the Soviets, who opened fire on them using machine guns
with tracer bullets. Everyone in the caravan dove to the ground
to take cover. Unfortunately, they all forgot about the 9-year-old
boy on top of the 8-foot-high camel. My supervisor said he saw
the bright tracer bullets arching up toward him from down below
in the valley, passing over his head so close that he felt he could
just reach up and grab them. He wanted to jump down, but he
was so high off the ground he was terrified. Finally, someone
realized that he was exposed and they pulled him down off the
camel.

As he told this story, he laughed and commented that practi­
cally nothing he encountered in IT rose to the level of what he
defined as an emergency. The worst that could happen was no
more catastrophic than changing a tire on a car.

I’ve not yet been able to reach this level of serenity, but it is still
something to which I aspire.

We love stories! Tell us another story!

A little over 10 years ago, I was working in downtown L.A.
and arrived in the office early (5:00 a.m.) to start a batch job. I
had a key card that got me into the building and into the office
during the day, but I was unaware that at night they were locking
doors in the elevator lobby. I banged on the doors and tried call­
ing people, to no avail. Finally, after a half-hour, out of frustra­
tion, I grabbed one of the door handles and just yanked hard.

It popped open.
I looked at it in surprise, thought “sweet!”, walked in to the

cubicle farm, sat down, and started my batch job. All was good.
Around 7:00 a.m., the LAPD showed up. There were about a

dozen people in the office now, so the two officers began ques­
tioning folks nearest the door. From the opposite side of the

room, I stood up, called out “Over here,” and ’fessed up.
They told me that if I hadn’t called them over immediately,

they would have arrested me by the time they got to me. Have a
nice day, sir.

The NoCOUG Blues

NoCOUG membership and conference attendance have been
declining for years. Are user groups still relevant in the age of
Google? Do you see the same trends in other user groups? What
are we doing wrong? What can we do to reverse the dismal trend?
Give away free stuff like T-shirts and baseball caps? Bigger
raffles? Better food?

Yes, the same trends are occurring in other users groups. IT
organizations are lean and can’t spare people to go to training.
The IT industry is trending older as more and more entry-level
functions are sent offshore.

Users groups are about education. Education in general has
changed over the past 20 years as online searches, blogs, and
webinars have become readily available.

The key to users groups is the quality of educational content
that is offered during live events as opposed to online events or
written articles. Although online events are convenient, we all
know that we, as attendees, get less from them than we do from
face-to-face live events. They’re better than nothing, but com­
munities like NoCOUG have the ability to provide the face-to-
face live events that are so effective.

One of the difficulties users groups face is fatigue. It is diffi­
cult to organize events month after month, quarter after quarter,
year after year. There is a great deal of satisfaction in running
such an organization, especially one with the long and rich his­
tory enjoyed by NoCOUG. But it is exhausting. Current volun­

“You are old,” said the youth, “As I mentioned before,
And have grown most uncommonly fat;

Yet you turned a back-somersault in at the door—
Pray, what is the reason of that?”

“In my youth,” said the sage, as he shook his grey locks,
“I kept all my limbs very supple

By the use of this ointment—one shilling the box—
Allow me to sell you a couple?”

6
August 2014

teers have overriding work and life conflicts. New volunteers are
slow to come forward.

One thing to consider is reaching out to the larger national
and international Oracle users groups, such as ODTUG, IOUG,
OAUG, Quest, and OHUG. These groups have similar missions
and most have outreach programs. ODTUG and IOUG in par­
ticular organize live onsite events in some cities, and have webi­
nar programs as well. They have content, and NoCOUG has the
membership and audience. NoCOUG members should encour­
age the board to contact these larger Oracle users groups for
opportunities to partner locally.

Another growing trend is meet-ups, specifically through
Meetup.com. This is a resource that has been embraced by all
manner of tech-savvy people, from all points on the spectrum of
the IT industry. I strongly urge all NoCOUG members to join
Meetup.com, indicate your interests, and watch the flow of an­
nouncements visit your inbox. The meet-ups run the gamut
from Hadoop to Android to Oracle Exadata to In-Memory to Big
Data to Raspberry Pi to vintage Commodore. I think the future
of local technical education lies in the intersection of online or­
ganization of local face-to-face interaction facilitated by Meetup.
com.

Four conferences per year puts a huge burden on volunteers.
There have been suggestions from multiple quarters that we
organize just one big conference a year like some other user
groups. That would involve changing our model from an annual
membership fee of less than $100 for four single-day conferences
(quarterly) to more than $300 for a single multiple-day con-
ference (annual), but change is scary and success is not guar-
anteed. What are your thoughts on the quarterly vs. annual
models?

I disagree with the idea that changing the conference format
requires increasing annual dues. For example, RMOUG in
Colorado (http://rmoug.org/) has one large annual conference
with three smaller quarterly meetings, and annual dues are $75
and have been so for years. RMOUG uses the annual dues to pay
for the three smaller quarterly education workshops (a.k.a. quar­
terly meetings) and the quarterly newsletter; the single large
annual “Training Days” conference pays for itself with its own
separate registration fees, which of course are discounted for
members.

Think of a large annual event as a self-sufficient, self-sustain­
ing organization within the organization, open to the public with
a discount for dues-paying members.

Other Oracle users groups, such as UTOUG in Utah (http://
utoug.org/), hold two large conferences annually (in March and
November), and this is another way to distribute scarce volunteer
resources. This offers a chance for experimentation as well, by
hiring one conference-coordinator company to handle one event
and another to handle the other, so that not all eggs are in one
basket.

The primary goal of larger conferences is ongoing technical
education of course, but a secondary goal is to raise funds for the
continued existence of the users group and to help subsidize and
augment the website, the smaller events, and the newsletter, if
necessary.

It costs a fortune to produce and print the NoCOUG Journal,
but we take a lot of pride in our unbroken 28-year history, in our
tradition of original content, and in being one of the last printed
publications by Oracle user groups. Needless to say it also takes
a lot of effort. But is there enough value to show for the effort
and the cost? We’ve been called a dinosaur. Should we follow the
other dinosaurs into oblivion?

I don’t think so. There are all kinds of formats for publication,
from tweets to LinkedIn posts to blogs to magazines to books.
Magazines like the NoCOUG Journal are an important piece of
the educational ecosystem. I don’t think that any of the Oracle
users groups who no longer produce newsletters planned to end
up this way. They ceased publishing because the organization
could no longer sustain them.

I think today the hurdle is that newsletters can no longer be
confined within the users group. Both NoCOUG and RMOUG
have independently come to the realization that the newsletter
must be searchable and findable online by the world, which pro­
vides the incentive for authors to submit content. Today, if it
cannot be verified online, it isn’t real. If it isn’t real, then there is
little incentive for authors to publish.

So making the NoCOUG Journal available online has been key
to its own viability, and NoCOUG membership entitles one to a
real hard-copy issue, which is a rare and precious bonus in this
day and age.

Oracle Database 12c

Mogens Norgaard (the co-founder of the Oak Table Network)
claims that “since Oracle 7.3, that fantastic database has had
pretty much everything normal customers need,” but the rest
of us are not confirmed Luddites. What are the must-have fea-
tures of Oracle 12c that give customers the incentive to upgrade
from 11g to 12c? We’ve heard about pluggable databases and the
in-memory option, but they are extra-cost options aren’t they?

“You are old,” said the youth, “And your jaws are too weak
For anything tougher than suet;

Yet you finished the goose, with the bones and the beak—
Pray, how did you manage to do it?”

“In my youth,” said his father, “I took to the law,
And argued each case with my wife;

And the muscular strength which it gave to my jaw,
Has lasted the rest of my life.”

7
The NoCOUG Journal

Nothing hunts down Oracle
performance issues like

Over 50% of DBAs resolve a
performance problem on the �rst day.

Learn more at solarwinds.com/dpa-oracle-download

SolarWinds
Database Performance Analyzer

© 2011 Embarcadero Technologies, Inc.
All trademarks are the property of their respective owners.

Introducing DB PowerStudio for Oracle.
It provides proven, highly-visual tools
that save time and reduce errors by simpli-
fying and automating many of the complex
things you need to do to take care of your data, and your customers.

Whether you already use OEM or some other third-party tool, you’ll
find you can do many things faster with DB PowerStudio for Oracle.

Oracle Database Administration, Development,
and Performance Tuning...
Only Faster.
Taking care of your company’s
data is an important job.
Making it easier and faster is our’s.

Go Faster Now. >>> Get Free Trials and More at www.embarcadero.com

Don’t forget Data Modeling! Embarcadero ER/Studio®,
the industry’s best tool for collaborative data modeling.

DB PowerStudio
™

> Easier administration
with DBArtisan®

> Faster performance
with DB Optimizer™

> Faster development
with Rapid SQL™

> Simplified change management
with DB Change Manager™

8
August 2014

I know for a fact that the Automatic Data Optimization
(ADO) feature obsolesces about 3,000 lines of complex PL/SQL
code that I had written for Oracle 8i, 9i, 10g, and 11g databases.
The killer feature within ADO is the ability to move partitions
online, without interrupting query operations. Prior to Oracle
12c, accomplishing that alone consumed hundreds of hours of
code development, testing, debugging, and release management.
Combining ADO with existing features like OLTP compression
and HCC compression truly makes transparent “tiers” of storage
within an Oracle database feasible and practical. The ADO fea­
ture alone is worth the effort of upgrading to Oracle 12c for an
organization with longer data retention requirements for histori­
cal analytics or regulatory compliance.

What’s not to love about pluggable databases? How different is
the pluggable database architecture from the architecture of
SQL Server, DB2, and MySQL?

I think that first, in trying to explain Oracle pluggable data­
bases, most people make it seem more confusing than it should
be.

Stop thinking of an Oracle database as consisting of software,
a set of processes, and a set of database files.

Instead, think of a database server as consisting of an operat­
ing system (OS) and an Oracle 12c container database software;
a set of Oracle processes; and the basic control files, log files, and
a minimal set of data files. When “gold images” of Oracle data­
base servers are created, whether for jumpstart servers or for
virtual machines, the Oracle 12c CDB should be considered part
of that base operating system image.

Pluggable databases (PDBs) then are the data files installed
along with the application software they support. PDBs are just
tablespaces that plug into the working processes and infrastruc­
ture of the CDBs.

When PDBs are plugged in, all operational activities involving
data protection—such as backups or redundancy like Data
Guard replication—are performed at the higher CDB level.

Thus, all operational concerns are handled at the CDBs and
the operational infrastructure from the PDBs and the applica­
tions.

Once the discussion is shifted at that high level, then the
similarities are more visible between the Oracle 12c database and
other multitenant databases, such as SQL Server and MySQL. Of
course there will always be syntactic and formatting differences,
but functionally Oracle 12c has been heavily influenced by its
predecessors, such as SQL Server and MySQL.

Bonus Question

Do you have any career advice for the younger people reading
this interview so that they can be like you some day? Other than
actively participating in user groups!

This sounds corny and trite, but there is no such thing as a
useless experience, and while it may be frustrating, it presents the
opportunity to build. Understand that everyone starts at the bot­
tom, and enjoy the climb.

Understand that learning causes stress. Stress is stress and too
much can be unhealthy, but if it is a result of learning something
new, then recognize it for what it is, know it is temporary and
transitory, tough it out, and enjoy knowing the outcome when it
arrives.

Also, don’t voice a complaint unless you are prepared to pres­
ent at least one viable solution, if not several. Understand what
makes each solution truly viable and what makes it infeasible. If
you can’t present a solution to go with the complaint, then more
introspection is needed. The term “introspection” is used delib­
erately, as it implies looking within rather than around.

Help people. Make an impact. Can we go wrong in pursuing
either of those as goals? Sometimes I wish I had done more along
these lines. Never do I wish I had done less. s

Tim Gorman is a technical consultant for Delphix (http://www.
Delphix.com), who enable database and storage virtualization to
increase the agility of IT development and testing operations. He
has co-authored six books, tech-reviewed eight more, and written
articles for RMOUG SQL_Update and IOUG SELECT magazines.
He has been an Oracle ACE since 2007, an Oracle ACE Director
since 2012, a member of the Oak Table Network since 2002, and
has presented at Oracle OpenWorld, Collaborate, KScope, Hotsos,
and local Oracle users groups in a lot of wonderful places around
the world. Tim lives in Westminster, Colo., with his partner, Kellyn
Pot’Vin, and their children.

“You are old,” said the youth, “one would hardly suppose
That your eye was as steady as ever;

Yet you balanced an eel on the end of your nose—
What made you so awfully clever?”

“I have answered three questions, and that is enough,”
Said his father; “don’t give yourself airs!

Do you think I can listen all day to such stuff?
Be off, or I’ll kick you down stairs!”

9
The NoCOUG Journal

boo k
e x cerpt

Cloudera Impala
by John Russell

This is a short excerpt from Cloudera Impala by John Russell, re-
printed with permission. Cloudera Impala is an open-source rela-
tional query engine included in the Cloudera Hadoop distribution
on the Oracle Big Data Appliance. You can download the book at
http://goo.gl/xkVskl for free.

The Cloudera Impala project arrives in the Big Data
world at just the right moment. Data volume is grow­
ing fast, outstripping what can be realistically stored
or processed on a single server. Some of the original

practices for Big Data are evolving to open that field up to a
larger audience of users and developers.

Impala brings a high degree of flexibility to the familiar data­
base ETL process. You can query data that you already have in
various standard Apache Hadoop file formats. You can access the
same data with a combination of Impala, Apache Hive, and other
Hadoop components such as Apache Pig or Cloudera search,
without needing to duplicate or convert the data. When query
speed is critical, the new Parquet columnar file format makes it
simple to reorganize data for maximum performance of data
warehouse-style queries.

Traditionally, Big Data processing has been like batch jobs
from mainframe days, where unexpected or tough questions re­
quired running jobs overnight or all weekend. The goal of Im­
pala is to express even complicated queries directly with familiar
SQL syntax, running fast enough that you can get an answer to
an unexpected question while a meeting or phone call is in prog­
ress. (We refer to this degree of responsiveness as “interactive.”)

For users and business intelligence tools that speak SQL, Im­
pala brings a more effective development model than writing a
new Java program to handle each new kind of analysis. Although
the SQL language has a long history in the computer industry,
with the combination of Big Data and Impala, it is once again
cool. Now you can write sophisticated analysis queries using
natural expressive notation, the same way Perl mongers do with
text-processing scripts. You can traverse large data sets and data
structures interactively like a Pythonista inside the Python shell.
You can avoid memorizing verbose specialized APIs; SQL is like
a RISC instruction set that focuses on a standard set of powerful
commands. When you do need access to API libraries for capa­
bilities such as visualization and graphing, you can access Impala
data from programs written in languages such as Java and C++
through the standard JDBC and ODBC protocols.

Flexibility
Impala integrates with existing Hadoop components, security,

metadata, storage management, and file formats. You keep the
flexibility you already have with these Hadoop strong points and
add capabilities that make SQL queries much easier and faster
than before.

With SQL, you can turn complicated analysis programs into
simple, straightforward queries. To help answer questions and
solve problems, you can enlist a wide audience of analysts who
already know SQL or the standard business intelligence tools
built on top of SQL. They know how to use SQL or BI tools to
analyze large data sets and how to quickly get accurate answers
for many kinds of business questions and “what if ” scenarios.
They know how to design data structures and abstractions that
let you perform this kind of analysis both for common use cases
and unique, unplanned scenarios.

The filtering, calculating, sorting, and formatting capabilities of
SQL let you delegate those operations to the Impala query engine,
rather than generating a large volume of raw results and coding
client-side logic to organize the final results for presentation.

Impala embodies the Big Data philosophy that large data sets
should be just as easy and economical to work with as small ones.
Large volumes of data can be imported instantaneously, without
any changes to the underlying data files. You have the flexibility
to query data in its raw original form, or convert frequently que­
ried data to a more compact, optimized form. Either way, you do
not need to guess which data is worth saving; you preserve the
original values, rather than condensing the data and keeping
only the summarized form. There is no required step to reorga­
nize the data and impose structure and rules, such as you might
find in a traditional data warehouse environment.
Performance

The Impala architecture provides such a speed boost to SQL
queries on Hadoop data that it will change the way you work.
Whether you currently use MapReduce jobs or even other SQL-
on-Hadoop technologies such as Hive, the fast turnaround for
Impala queries opens up whole new categories of problems that
you can solve. Instead of treating Hadoop data analysis as a batch
process that requires extensive planning and scheduling, you can
get results any time you want them.

Instead of doing a mental context switch as you kick off a
batch query and later discover that it has finished, you can run a
query, evaluate the results immediately, and fine-tune the query

10
August 2014

if necessary. This fast iteration helps you zero in on the best solu­
tion without disrupting your workflow. Instead of trying to shrink
your data down to the most important or representative subset,
you can analyze everything you have, producing the most accu­
rate answers and discovering new trends.

Perhaps you have had the experience of using software or a
slow computer where after every command or operation, you
waited so long that you had to take a coffee break or switch to
another task. Then when you switched to faster software or up­
graded to a faster computer, the system became so responsive
that it lifted your mood, reengaged your intellect, and sparked
creative new ideas. That is the type of reaction Impala aims to
inspire in Hadoop users.

Coming to Impala from an RDBMS Background
When you come to Impala from a background with a tradi­

tional relational database product, you find the same familiar
SQL query language and DDL statements. Data warehouse ex­
perts will already be familiar with the notion of partitioning. If
you have only dealt with smaller OLTP-style databases, the em­
phasis on large data volumes will expand your horizons.

Standard SQL
The great thing about coming to Impala with relational data­

base experience is that the query language is completely familiar:
it’s just SQL! The SELECT syntax works like you are used to, with
joins, views, relational operators, aggregate functions, ORDER BY
and GROUP BY, casts, column aliases, built-in functions, and so
on.

Because Impala is focused on analytic workloads, it currently
doesn’t have OLTP-style operations such as DELETE, UPDATE,
or COMMIT / ROLLBACK. It also does not have indexes, con­
straints, or foreign keys; data warehousing experts traditionally
minimize their reliance on these relational features because they
involve performance overhead that can be too much when deal­
ing with large amounts of data.

The initial Impala release supports a set of core column data
types: STRING instead of VARCHAR or VARCHAR2; INT and
FLOAT instead of NUMBER; and no BLOB type.

The CREATE TABLE and INSERT statements incorporate
some of the format clauses that you might expect to be part of a
separate data-loading utility, because Impala is all about the
shortest path to ingest and analyze data.

The EXPLAIN statement provides a logical overview of state­
ment execution. Instead of showing how a query uses indexes,
the Impala EXPLAIN output illustrates how parts of the query
are distributed among the nodes in a cluster, and how intermedi­
ate results are combined at the end to produce the final result set.

Impala implements SQL-92 standard features with some en­
hancements from later SQL standards. It does not yet have does
not yet have the SQL-99 and SQL-2003 analytic functions, al­
though those items are on the product roadmap.

Storage, Storage, Storage
Several aspects of the Apache Hadoop workflow, with Impala

in particular, are very freeing to a longtime database user:
The data volumes are so big that you start out with a large

pool of storage to work with. This reality tends to reduce the
bureaucracy and other headaches associated with a large and
fast-growing database.

The flexibility of Impala schemas means there is less chance

of going back and reorganizing old data based on recent changes
to table structures.

The HDFS storage layer means that replication and backup
are handled at the level of an entire cluster rather than for each
individual database or table.

The key is to store the data in some form as quickly, conve­
niently, and scalably as possible through the flexible Hadoop
software stack and file formats. You can come back later and
define an Impala schema for existing data files. The data loading
process for Impala is very lightweight; you can even leave the
data files in their original locations and query them there.

Billions and Billions of Rows
Although Impala can work with data of any volume, its per­

formance and scalability shine when the data is large enough to
be impractical to produce, manipulate, and analyze on a single
server. Therefore, after you do your initial experiments to learn
how all the pieces fit together, you very quickly scale up to work­
ing with tables containing billions of rows and gigabytes, tera­
bytes, or larger of total volume. The toy problems you tinker with
might involve data sets bigger than you ever used before. You
might have to rethink your benchmarking techniques if you are
used to using smaller volumes—meaning millions of rows or a
few tens of gigabytes. You will start relying on the results of ana­
lytic queries because the scale will be bigger than you can grasp
through your intuition.

For problems that do not tax the capabilities of a single ma­
chine, many alternative techniques offer about the same perfor­
mance. After all, if all you want to do is sort or search through a
few files, you can do that plenty fast with Perl scripts or Unix
commands such as grep. The Big Data issues come into play when
the files are too large to fit on a single machine, or when you want
to run hundreds of such operations concurrently, or when an
operation that takes only a few seconds for megabytes of data
takes hours when the data volume is scaled up to gigabytes or
petabytes.

You can learn the basics of Impala SQL and confirm that all
the prerequisite software is configured correctly using tiny data
sets, as in the examples throughout this article. That’s what we
call a “canary test,” to make sure all the pieces of the system are
hooked up properly. To start exploring scenarios involving per­
formance testing, scalability, and multi-node cluster config­
urations, you typically use much, much larger data sets. Try
generating a billion rows of representative data, then once the
raw data is in Impala, experiment with different combinations of
file formats, compression codecs, and partitioning schemes.

Don’t put too much faith in performance results involving
only a few gigabytes of data. Only when you blow past the data
volume that a single server could reasonably handle or saturate
the I/O channels of your storage array can you fully appreciate
the performance speedup of Impala over competing solutions
and the effects of the various tuning techniques. To really be sure,
do trials using volumes of data similar to your real-world system.

If today your data volume is not at this level, next year it might
be. You should not wait until your storage is almost full (or even
half full) to set up a big pool of HDFS storage on cheap commod­
ity hardware.

Whether or not your organization has already adopted the
Apache Hadoop software stack, experimenting with Cloudera
Impala is a valuable exercise to future-proof your enterprise. s

11
The NoCOUG Journal

p r o d u c t
r e v i e w

Axxana’s newest member of the Phoenix System fam-
ily provides a “bulletproof ” disaster recovery solu-
tion for Oracle environments. This new solution
from Axxana ensures that in case of disaster, no

transaction data is lost and all applications and databases are
recovered with full consistency, guaranteeing the quickest recov-
ery time possible.

Phoenix System for Oracle increases critical application avail-
ability by delivering zero transaction loss and enabling up to zero
recovery time in a cost-effective DR solution.

Prior to implementing Axxana’s Phoenix System for Oracle,
an existing asynchronous replication topology should be in place
between the primary production site and a secondary DR site.
The two sites can leverage any type of storage as well as Exadata;
any type of network, such as SAN, InfiniBand, or IP-based; and
storage-based or Data Guard replication.

When using the asynchronous replication mode (e.g., Data
Guard in Max Performance mode), there is an inherent lag be-
tween the primary and DR sites. This lag creates a “delta” be-
tween the real-time committed transaction data at the primary
site and the remote database at the DR site. In case a disaster hits
the primary data center, the data that comprises this lag will be
lost. Applications and databases will lose consistency, which will

put the recovery efforts at a significant risk and slow down the
failover of the business to the remote site.

Phoenix System for Oracle by Axxana combines best-of-breed
technologies to provide cost-effective continuous data protection
for mission-critical applications with zero data and application
loss, and up to zero recovery time, ensuring application-level
consistency at restart.

This article describes Axxana’s solution to overcome these
challenges by using the Phoenix System for Oracle, ensuring
that no transaction data is ever lost, maintaining database consis-
tency and shortening recovery time.

Current Challenges in Database Disaster Recovery
When replicating asynchronously to a remote site, there is

always a lag between the main and the DR site. In case of a disas-
ter, this lag means the following:

➤	 Transaction data is lost: All recent transaction data that
constitutes the lag—the data that has not yet been repli-
cated to the DR site—is lost.

➤	 Recovered applications and databases will be inconsis-
tent: When multiple databases of different, dependent
applications are being replicated in an asynchronous man-

Bulletproof
Disaster Recovery

by Liat Malki

Figure 1. Inconsistency between critical applications following a disaster

Liat Malki

12
August 2014

ner, the replicated data of each database at the remote site
will be current to a different point in time. This means that
when there is data loss, there will be no consistency be-
tween the various databases and applications, in which
case, in the best scenario, an extensive manual labor pro-
cess will be involved in order to recover operation to one
consistent point in time, across all databases and applica-
tions. Figure 1 illustrates how, following a disaster, the
applications cease to operate at different points in time.

➤	 Performance degradation: When replicating in the Data
Guard Maximum Protection or Maximum Availability
modes, application performance becomes an issue. Maxi
mum Protection will slow down the application, which
then will not perform properly when replicating remotely.
The application and database will be affected by network
latency. Maximum Availability, when replicating across
long distances, will replicate asynchronously the majority
of the time, with the same inherent risk to the data and
applications.

How the Phoenix System Protects Oracle Databases
Axxana’s Phoenix System for Oracle provides a solution to the

above challenges, ensuring that in case of a disaster, no transac-
tion data is lost and all applications and databases are kept con-
sistent during recovery to the latest state of the business right
when the disaster hit. The result: zero transactions are lost, and
the recovery process is significantly shortened since there are no
consistency issues.

At the heart of the Phoenix System for Oracle is Axxana’s
Phoenix Black Box. Similar to aviation flight data recorders
(AKA airplane black boxes), the Axxana Black Box is a sturdy
data-protection storage system, designed to withstand a wide
variety of extreme conditions that may occur during a disaster.
The Axxana Black Box is built to survive various scenarios, in-
cluding fire; flood; natural disasters, such as earthquakes and
extreme weather; and strong mechanical forces resulting from
drops, shocks, heavy loads, and piercing.

The Phoenix Black Box is installed at the primary site, pro-
tecting the Oracle Redo and Archive log files. The Black Box has

built-in capabilities to enable it to automatically identify a disas-
ter, right when it happens. Post disaster, the Black Box will trans-
fer the delta data that it protects to the secondary data center, so
that this data can be used in the recovery process. The Oracle
database can thus be recovered to the exact state it was in when
the disaster hit the primary data center. All databases and appli-
cations are recovered to that exact same point in time, ensuring
a complete, lossless, and consistent state of the business across all
databases and applications.

Figure 2 shows an example of a successful recovery process
with Axxana. All databases and applications are recovered suc-
cessfully to the exact same point in time.

During its normal operation, the Oracle database creates
three types of files:

	 1.	 Data files: This is the database itself, replicated on a con-
tinuous basis to the DR site.

	 2.	 Redo Log files: These are buffer files between the Oracle
server and the database. The Oracle Log Writer (LGWR)
writes first to the Redo Log files and then to the database.
The Redo Log files contain, at any given moment, the
newest and most current transaction data that had oc-
curred; they are therefore extremely important for a com-
plete and full recovery in case of disaster.

	 3.	 Archived Log files: Archived Log files are old Redo Logs.
Archived Log files are accumulated on a continuous basis
and up to a certain capacity (or data age, such as 24 hours)
that is predetermined by the Oracle DBA. Once this ca-
pacity or data age is reached, the oldest Archive Log files
are deleted.

The missing information that constitutes the lag resides in the
Redo Log files and, if the lag is large, also in the Archive Log files.
Using the complete set of Redo logs and Archives, the Oracle
database knows how to reconstruct its data files up to the exact
point in time in which the disaster occurred, and with full con-
sistency between all applications and databases.

The Phoenix System for Oracle is built to maintain a synchro-
nized, protected copy of both the Redo Logs and the Archives.
When a disaster occurs and the primary storage is destroyed, the

Figure 2. Successful recovery process with Axxana

13
The NoCOUG Journal

Phoenix Black Box will transfer the Redo logs and Archives it
holds within—only the missing data lag—to the secondary site,
to allow for a quick and full recovery.

Axxana also supports recovery from a link failure between the
primary data center and the DR site in a synchronous replication
scenario. When the WAN connection between the two sites fails,
the Axxana solution enables the primary data center to continue
production and not come to a halt, while the Axxana Black Box
maintains a protected copy of all accumulated, unreplicated
transaction data.

Axxana leverages Oracle’s native multiplexing functionality—
an internal mechanism Oracle uses that allows it to write its logs
to two or more destinations in parallel, both to the primary stor-
age and to the Axxana protected storage, inside the Black Box.
The Axxana protected storage is defined as “out of data path,”
such that it does not affect production. Since Axxana leverages
the internal Oracle multiplexing mechanism, it does not matter
whether the organization uses an Oracle-based replication tool
(e.g., Data Guard), or any type of storage-based replication. The
Phoenix Black Box will receive and maintain a copy of the Redo
Logs and Archive Logs in both replication scenarios.

Figure 3 shows The Phoenix System for Oracle infrastructure.

Phoenix System Black Box
Installed at the primary site, the Black Box protects the trans-

actions data (delta of data) it holds within. Similar to aviation
flight data recorders (black boxes), the Axxana Black Box is a
sturdy data-protection storage system, designed to withstand a
wide variety of extreme conditions that may occur during a
disaster.

In addition to its sturdiness and survival features, the Black
Box has built-in capabilities to enable it to (a) automatically de-
tect a disaster, in most cases much earlier than an operator would
detect it, and (b) post disaster, transfer the data it protects to the
secondary data center, so that this data can be used in the recov-
ery process.

Most disaster scenarios will result in the loss of external
power supply. The Black Box is equipped with an internal bat-
tery, enabling it to continue operation for up to 36 hours post
disaster. This is needed to enable the Black Box to autonomous-
ly communicate with the secondary data center and transfer the

protected data.
Several built-in data communication mechanisms: In addi-

tion to the WAN connection that may be down as a result of the
disaster, the Black Box offers the following options for transfer-
ring the data post disaster:

➤	 Cellular: The Black Box features three protected cellular
antennas, enabling it to broadcast at 360 degrees. These
enable transferring the data over the cellular network—in
an encrypted and authenticated way—to the Recoverer
software located at the secondary site. The cellular net-
work is the most reliable network in case of disasters and
is the U.S. government’s communications network of
choice for emergency services, even during large-scale
disasters, because it is never physically destroyed. Axxana’s
automatic mechanisms for the early detection of the disas-
ter enable it to fully and quickly utilize the cellular net-
works, even before potential congestion occurs.

➤	 Laptop: The Black Box structure has a secure port that
enables connecting a laptop equipped with the Axxana
software and downloading the transaction data to that
laptop. Later, the laptop can be connected to the Internet
to securely transfer the encrypted data to the Recoverer
software at the remote site.

➤	 Disk Extraction: As a last resort, and if all other transfer
options are unavailable, it is possible to extract the solid
state disks from inside the box and transfer them to the
remote site, where they can be connected to the Recoverer
to continue the protected data-retrieval process.

Phoenix System Collector
Installed at the production site, the Phoenix System Collector

acts as a storage controller that receives transaction data from the
Oracle databases at the production site. It is a hardware unit that
connects directly to the Black Box as well as to the Oracle data-
base servers, over the SAN, or to an Exadata system.

The Collector performs the following tasks:

➤	 Provisions volumes on the Black Box Solid State Drives,
performs LUN masking, and exposes the volumes it cre-
ated to the local Oracle host.

Figure 3. The Phoenix System for Oracle

14
August 2014

➤	 Provides different interfaces to the hosts. The Collector
comes in one of the following three configurations, de­
pending on the type of network deployed by the customer:

	 1.	 Fibre Channel (SAN): The Collector connects to the FC
SAN switch, through which the Oracle servers access their
respective Axxana protected volumes.

	 2.	 InfiniBand: This configuration is used for Exadata. The
Collector then connects directly to the Exadata array.

	 3.	 IP Connectivity: The Collector can connect through
10-gigabit Ethernet to support IP-based NAS and SAN
networks that use the NFS or iSCSI file protocols.

The Collector also supports hybrid topologies for supporting,
for instance, both FC SAN and Exadata connectivity simultane­
ously.

Note: The Collector is external to the Black Box and does not
need to survive a disaster—the Collector’s role ends once a disas­
ter has occurred.

Phoenix System Recoverer
Installed at the remote site, the Phoenix System Recoverer

manages the transaction data recovery process. The Recoverer
maintains constant heartbeat connection with the Black Box via
both WAN and cellular connections. In case of disaster, the pro­
tected logs are transferred from the Black Box to the Recoverer,
where they await the Oracle DBA, who will use them for the
Oracle Recovery process. The Recoverer is connected to the
servers at the DR site via an Ethernet connection.

Axxana Phoenix System Installation and Protection Process
Adding the Phoenix System to the network is easy. It is per­

formed in a nonintrusive way, without stopping production,
having any effect on the production environment, or requiring
any changes done to it.

The installation is performed by adding the Axxana Collector
to the storage network, no matter what type of network is used
by the organization (SAN, NAS, or InfiniBand). Once the Collec­
tor is connected to the network, the next step is to begin the
Axxana Protection process.

The Axxana Protection process includes the following steps:

	 1.	 Perform sizing to find out the extent of the data lag, the
size of the Redo Log files, and the size of the Archive files.

	 2.	 Provision a Protection Volume of a specific size inside the
Black Box.

	 3.	 Execute LUN Masking to assign that volume to the spe­
cific Oracle database.

Once the above process is done, the Oracle server has a new

Axxana volume available.
Note: Axxana’s Phoenix System supports Oracle RAC. When

attaching to Oracle RAC, the Axxana Protection Volume needs
to be exposed to all nodes of the Oracle RAC.

The next stage in setting the Axxana Protection is performed
by the Oracle DBA, who needs to define multiplexing for his
Redo log files. This means adding a member to each Redo log
group, in order to perform multiplexing. Once this stage is com­
pleted, the Oracle database will write to both its primary Redo
logs and also to the secondary redo logs that are configured on
Axxana.

Should Axxana fail for any reason, production and replication
will not be affected. The Oracle database will continue to operate
when the redo logs, saved within Axxana, are accessible.

Oracle will perform a Drop Member step, and from that mo­
ment on, the database will continue to use and access only the
primary storage for writing Redo Log files. Once the connection
with Axxana is resolved, the Oracle system recognizes that auto­
matically and resumes multiplexing to the Axxana system.

Axxana also maintains a copy of the Archive Logs. This is
done through adding another destination to the Oracle database,
so that it writes the Archive logs to two directories—both to the
primary storage and to the Axxana system. The Axxana destina­
tion is defined as optional, so that if it is not available, the Oracle
server will ignore it and will not incur any performance degrada­
tion.

Archive Deletion Module
The Axxana volume is set, sizewise, to hold a specific number

of hours of logs data, according to what was determined during
the initial setup. As part of its ongoing operation, the Oracle
server is continuously adding Archive Logs (the Redo Logs are
cyclical and overlap themselves). In order to prevent a case in
which the Axxana storage capacity is fully consumed, Axxana
has a mechanism for deleting older Archive Logs while maxi­
mizing the use of protected storage, to maintain as many Archive
Logs as possible. For example, if the organization has decided to
keep 5 hours’ worth of data, then once the Axxana storage fills
up 5 hours of data, it will delete the oldest Archive Log to allow
for a new Archive Log to be written.

This feature is critical in a case of a rolling disaster, examples
of which are earthquakes, loss of power, and floods. A rolling
disaster is often characterized by first losing the WAN connec­
tion between the primary and DR data centers, while the pri­
mary data center continues to function for an additional period
of time, until it is also hit by the disaster and ceases production.

The challenge in such a rolling disaster scenario is that the
data lag between the primary and secondary data centers contin­
ues to grow significantly, due to losing the WAN connection.

Figure 4. The Phoenix System for Oracle—Black Box internal view

15
The NoCOUG Journal

Axxana provides a solution to this rolling disaster scenario by
keeping a protected copy of all the Redo Log files and Archived
Logs that have not been replicated to the secondary site—up to
the number of hours set in its setup process.

Phoenix System with Exadata and Data Guard
Phoenix System for Oracle has the ability to connect to

Oracle’s Exadata system through the InfiniBand and 10 GigE
connections. The Oracle DBA performs the identical installation
and setup procedures of the Phoenix System for Oracle, includ­
ing setting up LUNs on Axxana’s protected storage. The result is
the same: the Exadata sees the Axxana LUNs and uses multiplex­
ing to write the Redo Log files and Archive Logs to Axxana. This
is exactly the same process shown earlier in this article, but in
this case using InfiniBand connectivity, instead of Fibre Channel.

Exadata customers leverage Oracle’s Data Guard replication
software to replicate the transaction data to another Exadata
machine, located at the remote site. Data Guard replication is
done at the transaction level, as opposed to storage-based repli­
cation that replicates at the data level. Phoenix System for Oracle
complements Data Guard, ensuring that no transactions are ever
lost, including those that haven’t yet been replicated by Data
Guard.

Data Guard comes in three flavors:

➤	 Max Protection: Data Guard’s Synchronous mode of rep­
lication. This mode is usually not used for remote replica­
tion.

➤	 Max Performance: Data Guard’s Asynchronous replica­
tion mode.

➤	 Max Availability: a combination of the above two modes.
This mode begins with the Max Protection mode of
Synchronous replication, but when performance slows
down, it moves automatically to the Max Performance
Asynchronous mode.

Most Oracle customers use the Max Availability or Max Per­
formance modes, since Max Protection has a significant impact
on performance. These two modes have an inherent lag between
the production and secondary data centers, which means that
transaction data will always be lost, in a case of disaster.

Adding Axxana’s Phoenix System bridges this gap and pro­
vides the ultimate protection. Phoenix System enables customers
to use Max Availability in its Asynchronous mode and still get
full, Synchronous protection through the Axxana Black Box. In
essence, Data Guard’s Max Availability or Max Performance,
combined with Axxana’s Phoenix System, is as though the cus­
tomer uses Max Protection.

The Recovery Process
Phoenix System for Oracle improves recovery and increases

efficiency of an organization’s DR by shortening the overall re­
covery time and providing application consistency with an ag­
gressive zero data loss guarantee and a recovery time equal or
very close to zero.

Data extraction, which is the first step in the recovery process,
can be performed in two ways: automatic and manual. To short­
en the recovery process, the Phoenix System for Oracle uses a
unique, intelligent feature called Logical Transfer. The Axxana
Phoenix solution knows exactly what data has been replicated to

the disaster site and what hasn’t, and therefore knows to transfer
only the missing transactions and not the full log files.

The transaction data in the Phoenix Black Box that has al­
ready been replicated to the DR site will not be transferred again
post disaster.

The Axxana Black Box, built to survive a wide range of disas­
ters with the log files stored inside it, will survive the disaster
while the Collector that connects between the Black Box and the
Oracle database will be destroyed.

The Axxana Recoverer at the DR site keeps constant commu­
nication with the Black Box through heartbeats, both over WAN
and over cellular connections, to verify connectivity with the
primary site. When declaring disaster, an authenticated and en­
crypted data transfer is initiated from the Black Box, either
manually or automatically:

Manual Recovery
The Admin at the DR site initiates a manual Failover com­

mand from the Recoverer. The Recoverer waits for the next
heartbeat from the Black Box; once received, the Recoverer pig­
gybacks the Failover command on the heartbeat ACK via the
same communication method that was used to send the heart­
beat itself (WAN or cellular). When the Black Box receives the
Failover command, it moves from Normal mode to Failover
mode in a two-step process:

	 1.	 The Black Box enters a “Failover” state in which it stops
accepting writes from the Oracle LGWR.

	 2.	 The Recoverer at the DR site gets access to the log files
inside the Black Box. The Recoverer then asks the Black
Box to transfer these log files through whatever communi­
cation means are available. Phoenix System knows exactly
what data is missing at the DR site, so only the missing
data is transferred, in an encrypted and compressed way,
to shorten transfer time.

Automatic Data Extraction
Transfer of the missing logs is triggered by the Black Box

upon sensing the lack of power and/or communication to the
box (i.e., a potential disaster). The advantage is that this entire
process can be performed by the Phoenix System even before the
organization has digested the fact that a disaster has occurred
and before a high-level executive decision is made to failover
production to the DR site.

The actual failover and database recovery is not performed
without specific instruction and action of the DBA at the DR site.

This automatic process significantly shortens the recovery
time, as the lag will most likely be transferred to the DR site be­
fore the organization has initiated such failover process.

On the other hand, if a disaster is not declared, then the trans­
ferred files are ignored, with no effect on the Oracle environment.

The next major step is for the organization to reach a decision
to failover. Once such a decision is reached, the organization
performs a failover either at the Data Guard level or at the stor­
age level, turning the secondary environment in the DR site into
the primary environment.

The Oracle hosts at the secondary site see all the replicated
data: databases, data files, redo logs, archives, etc. The only ca­
veat is that the replicated data is not current to the exact point in
time of the disaster; it is from some previous point in time, de­

16
August 2014

pending on the extent of the lag when the disaster occurred. It is
impossible to know in real time how big the lag was and how
much information is missing. The missing data, the delta that is
equivalent to the lag, most likely already exists at the Axxana
Recoverer in the DR site.

The AxxRecovery Tool
For the next steps in the recovery process, Axxana provides

the Oracle DBA with a tool, called The AxxRecovery tool, that
automates the entire recovery process. The tool asks the DBA for
various acknowledgements during the process.

The AxxRecovery tool is used to retrieve the log files from the
Axxana Recoverer, via an FTP connection. The AxxRecovery
tool then places the specific log files for each database in the cor-
responding Oracle directory for that database at the local Oracle
host. Once AxxRecovery finishes its work, all the log files from
the Axxana Recoverer have been moved to the relevant directory
at the Oracle host, and the Oracle database can begin the Re
covery process.

The final step is for the Oracle DBA to start the Oracle data-
base and perform a Recovery process. This Recovery process is
performed from within the Oracle database, using the log files
that were protected by the Phoenix System and transmitted to the
DR location. Although the DBA can use standard Oracle tools to
complete the Recovery process, AxxRecovery helps the DBA to
perform this final task by semi-automating it—interactively ask-
ing for the DBA’s acknowledgment in various recovery steps.

This Oracle Recovery process retrieves the Oracle database to
the exact point in time where the production servers were when
the disaster struck. The result is no loss of transaction data and
achieving full consistency between all applications and databases
in a relatively short period (minimal RTO).

Monitoring and Troubleshooting
Phoenix System for Oracle comes with integrated monitoring

that supports the SNMP protocol and interfaces with various
control systems that the organization may use through that pro-
tocol. The monitoring system closely watches overall perfor-
mance of the Phoenix System and includes the following features
in case it recognizes a problem:

Figure 5. The Phoenix System for Exadata

➤	 Email Notifications: The user can define various events,
for which the system will generate an email notification.

➤	 Call Home: If a user allows this option during the initial
setup, Axxana Global Services will receive both an SNMP
alert and an email notification when the system identifies
a problem, so that an Axxana support team can immedi-
ately address the issue.

Summary
The Axxana Phoenix System for Oracle provides a complete

data-protection solution for Oracle environments. The system
augments existing Asynchronous replication products, whether
Storage based or Data Guard, and adds a layer of protection to
ensure that no transaction data is lost and all applications and
databases are recovered with full consistency, guaranteeing the
quickest possible recovery time.

The Axxana Black Box protects the inherent lag between the
primary and DR sites. This lag represents lost transactions in
case of disaster and, as a result of that, a very real and significant
risk of losing the consistency of—and between—the applications
running the business of the organization. Prolonged downtime,
permanent loss of transactions, and loss of reputation are only a
few of the risks incurred by the organization as result of replicat-
ing asynchronously.

Axxana’s Phoenix System for Oracle provides a solution to the
above challenges, ensuring that no transaction data is ever lost
and that all applications and databases are kept consistent during
recovery to the latest state of the business right when the disaster
hit. The result is that zero transactions are lost and the recovery
process is significantly shortened, since there are no consistency
issues.

The uniqueness of the Axxana solution for Oracle is that it is
effective across any geographical distance between primary and
secondary data centers; it works with any storage and any repli-
cation over any communication lines; and it can just as easily
protect Exadata environments. s

17
The NoCOUG Journal

S Q L COR N ER

Explaining the
EXPLAIN PLAN

by Iggy Fernandez
Iggy Fernandez

Excerpted from blog posts on ToadWorld. You can read the entire
series at http://goo.gl/PCBKoR.

A couple of years ago, I came across the following honest ad
mission on AskTom:

“After 15 years development, implementation and administra-
tion of Oracle Databases I’m going to be totally honest.
	 1.	 I have used Oracle 6-11g
	 2.	 I do understand the concepts of Oracle RDBMS databases
	 3.	 I do find PL/SQL ‘relatively easy’
	 4.	 I have been following Tom Kyte in web and print since the

mid 90s from his comp.databases.oracle days
	 5.	 I’ve always been a proponent of modular well written and

well documented code
	 6.	 I’ve always been a big believer in as simple and logical a

common sense approach as possible
BUT

	 1.	 I still find SQL very difficult
	 2.	 I still can’t easily think in sets
	 3.	 I still can’t really read an EXPLAIN PLAN with more than

a few lines of indentation
	 4.	 I think I have used ‘real’ analytics about 3 times – after

seeing it done in a specific example on this site
	 5.	 I would still bet that the majority of SQL writers out there

would have no idea about or concept of query execution
plans”

The above comment motivated me to start collecting notes for
a book on SQL that puts the query execution plan front and cen-
ter. My plan is now to turn my notes into a series of blog posts
with the goal of assembling them into a self-published book at
some future date. Hop along for the ride; you’ll soon be master
of the EXPLAIN PLAN.

A Long Time Ago
Why do we read EXPLAIN PLANs? A history lesson is called

for, because history connects us to our past and explains why we
are what we are and why we do what we do. Imagine, then, a
time before most of us were born, when magnetic spinning disks
were becoming mainstream and online databases first became a
reality. Prior to that time, data only existed on magnetic tapes.
Either you read a tape sequentially—making changes as you
went—or you read the entire contents of a tape into memory. It

wasn’t fun. Then magnetic spinning disks became mainstream
and a whole world of fun possibilities opened up.

Charles Bachman enters from the left. “People,” he says “Listen
up! The days of sequential tapes are gone. You can still retrieve
Employee records sequentially from an Oracle database if you
need to do so or want to do so but now you can also retrieve a
single Employee record by its primary key EMPLOYEE_ID or a
unique key such as EMAIL, or you can retrieve multiple records
using a non-unique key such as LAST_NAME. You can also re-
trieve a single Employee record by its ROWID if you know it.”

Mr. Bachman must have had a time machine if he could pre-
dict the future name of Larry Ellison’s company and the exact
table and column names in the HR sample schema.

Mr. Bachman continues: “But wait! There’s more! We can con-
nect records in chains. Each chain has an owner record and zero
or more member records linked together in a list. Every member
record has a pointer to the previous and next member records—
if any—and also a pointer to the owner record! For example, all
the Employee records corresponding to a single DEPARTMENT_
ID can be linked to the corrresponding Department record and
all the Employee records corresponding to a single JOB_ID can
be linked to the corresponding Job record.”

Mr. Bachman walks to the chalk board—white boards and
dry-erase markers had not yet been invented—and draws the
diagram in Figure 1. Notice especially that records can be mem-
bers of more than one chain; for example, the Employee record
with EMPLOYEE_ID = 1 is a member of the chain owned by the
Department record with DEPARTMENT_ID = 1 as well as the
chain owned by the Job record with JOB_ID = 1. Every Depart

Figure 1

18
August 2014

ment record would own a chain—possibly empty—of Employee
records. Similarly, every Job record would own a chain—possibly
empty—of Employee records. Every Employee record is there­
fore a member of two chains.

Mr. Bachman continues: “Therefore, in addition to the four
retrieval methods I have already enumerated—sequential access,
primary key access, non-unique key access, and ROWID access—
there are three more. Having navigated to any record, one can
navigate through all the records in a chain owned by that record,
one can also navigate to the previous or next record in a chain in
which the record participates, or one can navigate to the owner
record of one of those chains. The programmer is therefore a
navigator, navigating through a forest of records of different
types.”

The world cheered and Mr. Bachman received the ACM
Turing Award, the equivalent of the Nobel Prize in the world of
computers. His Turing Award lecture was titled “The Programmer
as Navigator.”

Suddenly, Dr. Edgar Codd enters from the right. “I object,” he
cries. “If you follow Mr. Bachman, you won’t be able to see the
forest for the trees! All you will see is individual records! Do you
realize that Mr. Bachman did not use the word ‘table’ even once?
He wants you to focus on individual records and the ways in
which these records are connected! I say unto you that you are
better off focusing on tables—that is, sets of records of the same
type! You shouldn’t have to remember what indexes exist and
how records are connected. Focus on the tables, people!”

Dr. Codd must have been really passionate about relational
theory if he used so many exclamation points.

The Impossible Dream
Dr. Codd was an academician, a scientist, a mathematician, a

theoretician, and, above all, an idealist. Charles Bachman on the
other hand was simply a manager of software development.
Bachman created the very first database management system for
his employer, General Electric (GE). Dr. Codd only created a
theory that would take many years to be put into practice and,
even today, has not yet been fully implemented. It seems that the
relational model is truly an impossible dream.

Dr. Codd saw two uses for this theory. The first was “deriv­
ability and consistency of relations stored in large data banks,”
which he used as the title of his 1969 paper, the first paper on
relational theory. Nobody understood what he meant, since—
being a mathematician by training—he was prone to using gob­
bledygook that English-speaking people don’t understand. He
then changed the title to “A Relational Model of Data for Large
Shared Data Banks” (1970) and focused on user convenience and
productivity instead. That paper was reprinted in the 100th issue
of the NoCOUG Journal; the NoCOUG volunteers lovingly re­
typed every word from photocopies, taking care even to repro­
duce typographical errors like the misspelling “Pheonix” in the
References section.

Dr. Codd pressed his point in “Normalized Data Base Struc­
ture: A Brief Tutorial” (1971), in which he said, “What is less
understandable is the trend toward more and more complexity in
the data structures with which application programmers and ter-
minal users directly interact. Surely, in the choice of logical data
structures that a system is to support, there is one consideration of
absolutely paramount importance – and that is the convenience of
the majority of users. [emphasis added] . . . To make formatted

data bases readily accessible to users (especially casual users) who
have little or no training in programming we must provide the
simplest possible data structures and almost natural language. . . .
What could be a simpler, more universally needed, and more uni-
versally understood data structure than a table?”

And in his acceptance speech for the 1981 ACM Turing
Award (the equivalent of the Nobel Prize in the field of comput­
ing), Dr Codd said: “It is well known that the growth in demands
from end users for new applications is outstripping the capability
of data processing departments to implement the corresponding
application programs. There are two complementary approaches
to attacking this problem (and both approaches are needed): one
is to put end users into direct touch with the information stored
in computers; the other is to increase the productivity of data
processing professionals in the development of application pro-
grams. It is less well known that a single technology, relational
database management, provides a practical foundation to both
approaches.”

Accordingly, the goals of the SQL language were user conve­
nience and productivity. As explained by the creators of SQL in
their 1974 paper “SEQUEL: A Structured English Query Lan­
guage,” there is “a large class of users who, while they are not
computer specialists, would be willing to learn to interact with a
computer in a reasonably high-level, non-procedural query lan-
guage. Examples of such users are accountants, engineers, archi-
tects, and urban planners [emphasis added]. It is for this class of
users that SEQUEL is intended. For this reason, SEQUEL empha-
sizes simple data structures and operations.”

Historical note: The acronym SEQUEL was shortened to SQL
because—as recounted by Chamberlin in “The 1995 SQL Re­
union: People, Projects, and Politics”—SEQUEL was a trade­
marked name. This means that the correct pronunciation of SQL
is “sequel” not the more popular “es-que-el.”

And that’s precisely why we need EXPLAIN PLAN. Pre-
relational database management systems did not need an equiva­
lent of EXPLAIN PLAN, because they used procedural languages:
the programmer decided what the database management system
should do and the database management system diligently fol­
lowed suit. On the other hand, the SQL language used by rela­
tional database management systems is a non-procedural
language. A SQL query specifies what data is needed but does
not specify how to obtain it. The “query optimizer” then auto­
magically constructs a query execution plan for us: the recipe,
if you will. EXPLAIN PLAN is a listing of that recipe.

Secret Sauce
Dr. Codd’s theories were an immediate sensation even though

relational database management systems were still years away. It
would be ten years before Larry Ellison created Oracle Database,
and the first version did not even support transactions. That
would take another five years—until 1983 to be precise. As IBM
researcher Donald Chamberlin recalled later: “[Codd] gave a
seminar and a lot of us went to listen to him. This was as I say a
revelation for me because Codd had a bunch of queries that were
fairly complicated queries and since I’d been studying CODASYL, I
could imagine how those queries would have been represented in
CODASYL by programs that were five pages long that would navi-
gate through this labyrinth of pointers and stuff. Codd would sort
of write them down as one-liners. These would be queries like,
‘Find the employees who earn more than their managers.’ He just

19
The NoCOUG Journal

whacked them out and you could sort of read them, and they
weren’t complicated at all, and I said, ‘Wow.’ This was kind of a
conversion experience for me, that I understood what the relational
thing was about after that” (The 1995 SQL Reunion: People, Pro­
jects, and Politics).

The secret sauce of relational database management systems
is composed of what the inventor of the relational model, Dr.
Edgar Codd, referred to as “relational calculus” and “relational
algebra.” Once again, we have to forgive him for using complex-
sounding mathematical terms that normal folk don’t use around
the water cooler. Relational calculus has nothing to do with the
calculus you encountered in high school and college. A relational
calculus expression is an English-like non-procedural specifica­
tion of the user’s query requirements: for example, “employees
who have worked in all accounting job classifications.” Relational
algebra, on the other hand, is a step-by-step procedural recipe
that details how to meet the user’s requirements.

More precisely, relational algebra is a collection of operations
that could be used to combine tables. Just as you can combine
numbers using the operations of addition, subtraction, multipli­
cation, and division, you can combine tables using operations
like join, semi-join, anti-join, minus, intersection, and so on.

In fact, we can define a relational database as “a database in
which the data is perceived by the user as tables (and nothing but
tables), and the operators available to the user for (for example)
retrieval are operators that derive “new” tables from “old” ones”
(An Introduction to Database Systems, by Chris Date)

And, the whole reason that you and I are so interested in
EXPLAIN PLAN is because it documents the sequence of rela­
tional algebra operations that Oracle Database used at run-time

to execute any particular query; that is, it documents the query
execution plan used by Oracle Database.

Relational Algebra and Relational Calculus
Just as you can combine numbers using the operations of ad­

dition, subtraction, multiplication, and division, you can com­
bine tables using operations like “Selection,” “Projection,”
“Union,” “Difference,” and “Join.” Refer to Table 1 for the defini­
tions.

We need an example. Let’s use the HR sample schema that
comes with Oracle Database. Let’s use the above five operations
to answer the question: Which employees have worked in all ac­
counting job classifications, that is, those for which the job_id
starts with the characters AC? The current job of each employee
is stored in the job_id column of the employees table. Any previ­
ous jobs are held in the job_history table. Here is one of the ways
in which this requirement can be expressed in SQL:

SELECT employee_id FROM employees
MINUS
SELECT employee_id
FROM
 (SELECT employees.employee_id,
 jobs.job_id
 FROM employees
 CROSS JOIN jobs
 WHERE jobs.job_id LIKE 'AC%'
 MINUS
 (SELECT employee_id, job_id FROM job_history
 UNION
 SELECT employee_id, job_id FROM employees
)
)

Table 1. Five relational algebra operations

Operation	 Definition	 SQL Implementation

Selection	 Form another table by extracting a subset of the rows of the table
of interest using some criteria.

Projection	 Form another table by extracting a subset of the columns of the
table of interest. Any duplicate rows that are formed as a result of
the projection operation are eliminated. This requires the use of the
DISTINCT clause if the column list does not include columns that
uniquely identify each row. A strict theoretical approach requires that
SELECT DISTINCT always be used in place of SELECT but this would
cause older versions of Oracle Database to perform unnecessary
sorting so it was advisable to use the DISTINCT clause only when
absolutely necessary. Newer versions of Oracle Database make an
effort to avoid unnecessary sorting but the old advice still stands.

Union	 Form another table by selecting all rows from two tables of interest.
If the first table has M1 rows and the second table has M2 rows,
then the resulting table will have at most M1 + M2 rows. Duplicates
are eliminated from the result.

Difference	 Form another table by extracting only those rows from one table
of interest that do not occur in a second table.

Join (Cartesian)	 Form another table by concatenating records from two tables of
interest. If the first table has M1 rows and the second table has M2
rows, then the resulting table will have M1 * M2 rows, and, if the
first table has N1 columns and the second table has N2 columns,
then the resulting table will have N1 + N2 columns.

SELECT *
FROM [table]
WHERE [criteria]

SELECT DISTINCT [column list]
FROM [table]

SELECT *
FROM [first table]
UNION
SELECT *
FROM [second table]

SELECT *
FROM [first table]
MINUS
SELECT *
FROM [second table]

SELECT *
FROM [first table]
CROSS JOIN [second table]

20
August 2014

It’s not very obvious. but the above SQL statement specifies a
total of 11 relational algebra operations: one Selection operation,
six Projection operations, one Union operation, two Difference
operations, and one Join operation. This is clear in the following
version, which uses “common table expressions” to express the
requirement. Note that we do not need to use the DISTINCT
clause in any of the projection operations.

WITH
 -- Step 1: Projection
 all_employees_1 AS
 (SELECT employee_id FROM employees
),
 -- Step 2: Projection
 all_employees_2 AS
 (SELECT employee_id FROM employees
),
 -- Step 3: Projection
 all_jobs AS
 (SELECT job_id FROM jobs
),
 -- Step 4: Selection
 selected_jobs AS
 (SELECT * FROM all_jobs WHERE job_id LIKE 'AC%'
),
 -- Step 5: Join
 selected_pairings AS
 (SELECT * FROM all_employees_2 CROSS JOIN selected_jobs
),
 -- Step 6: Projection
 current_job_titles AS
 (SELECT employee_id, job_id FROM employees
),
 -- Step 7: Projection
 previous_job_titles AS
 (SELECT employee_id, job_id FROM job_history
),
 -- Step 8: Union
 complete_job_history AS
 (SELECT * FROM current_job_titles
 UNION
 SELECT * FROM previous_job_titles
),
 -- Step 9: Difference
 nonexistent_pairings AS
 (SELECT * FROM selected_pairings
 MINUS
 SELECT * FROM complete_job_history
),
 -- Step 10: Projection
 ineligible_employees AS
 (SELECT employee_id FROM nonexistent_pairings
)
-- Step 11: Difference
SELECT * FROM all_employees_1
MINUS
SELECT * FROM ineligible_employees

The sequence of subqueries in the above SQL statement hope-
fully doesn’t need much explanation. An employee_id that oc-
curs in a nonexistent pairing of an employee_id with a job_id is
an ineligible employee. Eliminating all such ineligible employees
from the list of all employees, therefore, yields the desired result:
employees who have worked in all accounting job classifications.

The five relational operations in Table 1 are not only suffi-
cient—as proved by Dr. Codd—to implement any requirement
expressed in relational calculus but they are also “primitive,”
meaning that none of them can be eliminated without compro-
mising sufficiency. In other words, none of them is a combina-
tion of the others. Composite relational operations can be
devised by combining these five operations; examples include
inner join, intersection, outer join, semi-join, anti-join, and divi-
sion. Inner join is obviously a combination of Cartesian join and

selection. Intersection can also be constructed using the opera-
tions in Table 1 as follows: A INTERSECTION B = A MINUS (A
MINUS B). The Venn diagram in Figure 2 below makes it clear.
I leave the rest as a research exercise for you.

When writing SQL, we don’t pay attention to relational alge-
bra, and that’s by design. Codd was of the opinion that “[r]equest-
ing data by its properties is far more natural than devising a
particular algorithm or sequence of operations for its retrieval.
Thus, a calculus-oriented language provides a good target lan-
guage for a more user-oriented source language” (“Relational
Completeness of Data Base Sublanguages”). With the exception
of the union operation, the original version of SQL was based on
relational calculus, though; over time, other elements of rela-
tional algebra such as difference (minus), intersection, and outer
join crept in. The following SQL statement is the more tradi-
tional way of stating the previous query. Note the use of the
EXISTS keyword, which is the hallmark of relational calculus.
This version can be paraphrased as “find employees such that
there does not exist an accounting job classification which these
employees have not held.”

SELECT employee_id
FROM employees e
WHERE NOT EXISTS
 (SELECT job_id
 FROM jobs j
 WHERE job_id LIKE 'AC%'
 AND NOT EXISTS
 (SELECT *
 FROM
 (SELECT employee_id, job_id FROM job_history
 UNION
 SELECT employee_id, job_id FROM employees
)
 WHERE employee_id = e.employee_id
 AND job_id = j.job_id
)
)

Trees Rule
An Oracle EXPLAIN PLAN is a “tree” structure correspond-

ing to a relational algebra expression. It is printed in “pre-order”
sequence (visit the root of the tree, then traverse each subtree—if
any—in pre-order sequence) but should be read in “post-order”
sequence (first traverse each subtree—if any—in post-order se-
quence; only then visit the root of the tree).

Note the recursive nature of the pre-order and post-order
procedures: the phrase “pre-order” is used in the definition of the
pre-order procedure and the phrase “post-order” is used in the

Figure 2

21
The NoCOUG Journal

definition of the post-order procedure. In other words, the pro-
cedures are defined in terms of themselves.

Figure 3 shows an example of a tree structure.
The root of the above tree is labeled P. It has two subtrees

whose roots are labeled B and O respectively. The subtree whose
root is labeled B has a subtree whose root is labeled A. And so on.
Read and re-read the definition of post-order traversal and con-
vince yourself that the nodes should be visited in alphabetical
order; the node labeled A should be visited first, the node labeled
B should be visited next, and so on. The root note should be
visited last.

Now look at the tree in Figure 4. The single-character labels
have been replaced with the names of tables and operations, but
this does not affect the order in which the nodes should be vis-
ited. The red-colored terminal nodes (“leaf nodes”) represent
data, while the blue-colored non-terminal nodes (non-leaf
nodes) represent operations. Non-terminal nodes with just one
subtree represent “unary” operations such as Selection and Pro
jection, while those with left and right subtrees represent “bina-
ry” operations like Union, Difference, and Join. The fact that the
subtrees are trees in their own right means that operations can be
nested. In other words, a query execution plan corresponds to a
nested relational algebra expression.

The tree in Figure 4 is a hypothetical query execution plan for
the common table expression (CTE) solution to our teaching
example, “Which employees have worked in all accounting job
classifications: those for which the job_id starts with the charac-
ters AC.” Count the blue-colored non-terminal nodes in the
above tree; you should find exactly eleven of them. That’s be-
cause there are exactly eleven steps in the CTE solution. Figure 5
illustrates how the desired result is produced. Note especially
that each blue-colored terminal node represents an intermediate
table. In fact, we can define a relational database as “a database in
which: the data is perceived by the user as tables (and nothing
but tables) and the operators available to the user for (for exam-
ple) retrieval are operators that derive ‘new’ tables from ‘old’
ones” (An Introduction to Database Systems, by Chris Date).

Every query execution plan corresponds to a nested relational
algebra expression, because relational algebra operations are the
basic procedures used by Oracle Database after all. The following
expression corresponds to the trees shown in Figures 2 and 3.
The uppercase abbreviations S, P, U, D, and J correspond to the
operations Selection, Projection, Union, Difference, and Join re-
spectively, while the lowercase abbreviations e, j, and jh corre-
spond to the tables employees, jobs, and job_history respectively.
The outermost operation in the expression corresponds to the
root of the tree.

D (P (e) , P (D (J (P (e) , S (P (j))) , U (P (e) , P (jh)))))

The relational algebra expression corresponding to the trees
shown in Figures 4 and 5 can also be written as follows, though
the correspondence with the trees gets obfuscated. As used here,

Figure 3 Figure 4

Figure 5

22
August 2014

the symbols “-”, “*”, and “U” represent the Difference, Join, and
Union operations respectively.

P (e) - P (P (e) * S (P (j)) - (P (e) U P (jh))

Summary
This article is excerpted from blog posts on ToadWorld. You

can read the entire series at http://goo.gl/PCBKoR.

➤	 A relational database is “a database in which: the data is
perceived by the user as tables (and nothing but tables) and
the operators available to the user for (for example) re-
trieval are operators that derive ‘new’ tables from ‘old’ ones”
(An Introduction to Database Systems by Chris Date).

➤	 SQL is a non-procedural language: a SQL query specifies
what data is needed but does not specify how to obtain it.
The “query optimizer” automagically constructs a query
execution plan for us.

➤	 The query execution plan can and does change when the
inputs (values of bind variables, data distribution statistics,
etc.) change. This comes as a great surprise to almost
everybody, but that’s how it was always intended to work.

➤	 A huge problem with relational databases is that semanti­
cally equivalent statements do not result in the same run-
time query execution plan. That’s not how it was ever in­
tended to work.

➤	 The EXPLAIN PLAN documents the query execution
plan used by Oracle Database; that is, it documents the
sequence of relational algebra operations that Oracle
Database uses at run time to execute any particular SQL
query.

➤	 An EXPLAIN PLAN is a “tree” structure corresponding to
a relational algebra expression. It is printed in “pre-order”
sequence (visit the root of the tree, then traverse each sub­
tree—if any—in pre-order sequence), but it should be read
in “post-order” sequence (first traverse each subtree—if
any—in post-order sequence, and only then visit the root
of the tree). s

The statements and opinions expressed here are the author’s and do
not necessarily represent those of Oracle Corporation.

Copyright © 2014, Iggy Fernandez

SQL Mini-Challenge

T
he inventor of the relational model, Dr. Edgar Codd,
was of the opinion that “[r]equesting data by its prop-
erties is far more natural than devising a particular
algorithm or sequence of operations for its retrieval.

Thus, a calculus-oriented language provides a good target
language for a more user-oriented source language” (Rela
tional Completeness of Data Base Sublanguages). Therefore,
with the exception of the Union operation, the original version
of SQL was based on relational calculus, although, over time,
other elements of relational algebra like difference (minus),
intersection, and outer join crept in.

Testing of existence in a set using subqueries is the hall-
mark of relational calculus. The following example has nested
subqueries. It lists the locations containing a department that
either contains an employee named Steven King or an em-
ployee who holds the title of President or or employee who has
previously held the title of President.

SELECT l.location_id, l.city
FROM locations l
WHERE EXISTS (
 SELECT * FROM departments d, employees e, jobs j
 WHERE d.location_id = l.location_id
 AND e.department_id = d.department_id
 AND j.job_id = e.job_id
 AND (
 (e.first_name = 'Steven' AND e.last_name = 'King')
 OR j.job_title = 'President'
 OR EXISTS (
 SELECT * FROM job_history jh, jobs j2
 WHERE jh.employee_id = e.employee_id
 AND j2.job_id = jh.job_id
 AND j2.job_title = 'President'
)
)
);

The challenge is to rewrite the above query without subque-
ries and in the most efficient way possible, as measured by the
number of consistent gets; that is, the Buffers column in the
query execution plan. Answers must be posted on the NoCOUG
blog http://nocoug.wordpress.com. Answers must be tested
in the HR sample schema to prove that they actually work and
must be accompanied by a query execution plan showing the
number of consistent gets used by the rewritten query. The
winner will receive a $75 Amazon gift certificate or a prize of
equal value. The contest will close when a sufficient number of
entries have been received. NoCOUG’s decisions are final. s

YesSQL!

At Oracle OpenWorld 2014, Oracle Technology Network
will host a special event titled “YesSQL! A Celebration
of SQL and PL/SQL.” Co-hosted by Tom Kyte and Steven

Feuerstein, YesSQL! celebrates SQL, PL/SQL, and both the
people who make the technology and those who use it. At
YesSQL!, special guests Andy Mendelsohn, Maria Colgan, An-
drew Holdsworth, Graham Wood, and others will share their
stories of how SQL affected their lives and invite you to share
yours. s

COMPLETE!

info@axxana.com • www.axxana.com

DATABASE RECOVERY HAS NEVER BEEN SO

Axxana’s award winning Phoenix System offering
unprecedented Data Protection, Cross-application
consistency, Storage and Replication agnostic.

COMPLETE!

24
August 2014

(continued on page 26)

UNCONVENTIONAL
WISDOM

This article is about the importance of appropriately
simplistic architectures. I frequently get involved with
the creation of full-stack architectures—in particular
the architecture of the database platform. There are

some golden rules when designing such systems, but one of the
most important ones is to keep the design as simple as possible.
This isn’t a performance enhancement; this is an availability en­
hancement. Complexity, after all, is the enemy of availability.

Despite it being a sensible goal, it is incredibly common to
come up against quite stubborn resistance to simplicity. Fre­
quently, the objections will be based upon the principles of the
complex solution being a “better way” to do things. I have two
closely linked examples of this in action.

Case 1: Real Application Cluster Interconnects
A cluster interconnect is an incredibly important component

of the architecture. The cluster exists, after all, as an availability
feature (and possibly a scalability feature), and so the founda­
tions of the cluster must be robust in order for it to deliver that
availability. The cluster interconnect is the lifeblood of the clus­
ter. And yet, it has such a very simple set of requirements:

➤	 Point-to-point communication between all nodes of the
cluster

➤	 Low latency
➤	 n+1 availability of network paths
➤	 Multicast support between the nodes
➤	 (optionally) Jumbo frames support
It explicitly does not need any of the more “fancy” networking

features, such as:
➤	 Routing of any kind
➤	 Spanning tree support
➤	 VLANs
➤	 Access to any other networks
It just needs a dedicated pair (or more) of discrete layer-2 net­

works. They don’t need to be bonded; the networks do not even
need to be aware of each other—they are completely independent
(at least, that is certainly the case since the HAIP functionality of
Oracle 11g Release 2). They do need real switches, though—cross­
over cables fail ungracefully in the event of a peer host losing
power. But they don’t need anything high end—just something
better than crossover cables and with enough bandwidth for the
required traffic rates. The latency difference between the majority
of switches is barely a consideration. The switches don’t really
even need redundant power supplies, though it’s not a terrible

idea to insulate yourself from this type of failure, and it brings no
detriment apart from a marginal cost increase.

So, something like a pair of unmanaged layer-2 GbE Ethernet
switches are the perfect solution. Something like a Netgear
JGS516 would probably do the job, from a brief scan of the
specification. They are about $166 (£100) each, net cost of $332
(£200) for a nice, robust solution. Or if you wanted to really push
the boat out, something like a fully managed L2 switch with re­
dundant power such as the HP E2810-24G will set you back all
of $1160 (£700) each. Cisco shops might spend a bit more and go
for something like a 3750 G for about $4650 (£2800) each.

But . . . somebody will always push back on this. They will
plumb the cluster nodes into the full core/edge corporate dream
stack topology with fully active failover between a pair of core
switches. Surely, at a cost of more than four orders of magnitude
more than the bargain basement Netgear solution, this must be
better, right? Wrong.

There are numerous aspects that are incorrect in this assump­
tion:

a.	 Higher cost means better.
b.	 There will be an increase in availability.
c.	 Every networking requirement is the same as every other

one.
First of all, these network topologies are not designed for

cluster interconnects. They are designed for corporate networks,
connecting thousands of ports into a flexible and secure net­
work. RAC interconnects are tiny closed networks and need
none of that functionality. More precisely, they need none of that
complexity. Corporate networks also have a different level of
failure sensitivity to cluster interconnects; if a user’s PC goes of­
fline for a couple of minutes, or even half an hour, the recovery
from that failure is instant once the fault is rectified—the user is
immediately back in action. Cluster interconnects are not so
forgiving; if a cluster’s networks go AWOL for a few minutes, the
best you can hope for is a single node of the cluster still standing
when the fault is rectified. That is how clusters are designed to
operate: if the network disappears, the cluster must assume it is
unsafe to allow multiple nodes to access the shared storage. The
net result of this failure behavior is that a relatively short network
outage can result in a potentially lengthy full (and manual) re­
start of the whole cluster, restart of the application, balancing of
services, warming of caches, and so on. It would not be an exag­
geration for this to be a one-hour or greater outage. Not terrific
for a highly available cluster.

Simplicity Is Good!
by James Morle

James Morle

25
The NoCOUG Journal

SPONSORSHIP
APPRECIATION

Thank you!
Gold Vendors:

➤ Axxana

➤ Confio

➤ Database Specialists

➤ Delphix

➤ Embarcadero Technologies

➤ Kaminario

 For information about our Gold
Vendor Program, contact the
NoCOUG vendor coordinator via
email at:
vendor_coordinator@nocoug.org.

Chevron

Oracle Corp.

Long-term event sponsorship:

 Eric Hutchinson, Treasurer

Beginning Balance
January 1, 2013 $ 56,473.82

Revenue

Membership Dues 42,707.70

Training Day Receipts 23,254.36

Vendor Receipts 22,558.73

Conference Sponsorships 3,000.00

Interest 7.72

Total Revenue $ 91,528.51

Expenses

Administration 7,371.73

Regional Meeting/Conferences 34,487.55

Board Meeting 4,050.02

Journal 15,600.65

Membership 3,875.29

Training Day Expenses 18,693.49

Insurance 507.00

Vendor Expenses 3,488.18

Servers/Software Hosting 3,011.69

Total Expenses	 $ 91,085.60

Ending Balance
December 31, 2013 $ 56,916.73

T R E A S U R E R ’ S   R E P O R T$

Many Thanks to Our Sponsors

N
oCOUG would like to acknowledge and thank our generous sponsors for their contributions.

Without this sponsorship, it would not be possible to present regular events while offering low-

cost memberships. If your company is able to offer sponsorship at any level, please contact

NoCOUG’s president, Hanan Hit. 

26
August 2014

(continued from page 24)
But hang on a minute—this über-expensive networking tech­

nology never goes down, right? Not true. What exactly is this
active/active core switch topology? Think about it. It’s a kind of
cluster itself, with each switch running complex software to de­
termine the health of its peer and managing a ton of state infor­
mation between them. The magic word in that sentence was the
word “software”— anything that is running software has a great
deal of failure potential. Not only that, but clustered software has
a great deal of potential to fail on all nodes concurrently. This is a
unique attribute of distributed software and one that does not
exist in discrete hardware designs. In discrete hardware designs
it is incredibly unlikely that more than one component will fail
concurrently. Software is great at catastrophic failure, most par­
ticularly when it is combined with some element of human error
during upgrades, reconfiguration, or just plain tinkering. Not
even humans can make two independent hardware switches fail
concurrently, unless they are being creative with power supply.

Just to highlight this point, I should state here that I have
personally witnessed failures of entire core/edge switch topolo­
gies on three occasions in the last five years. It does not matter
that the cluster nodes are connected to the same edge switches
when this kind of failure occurs, because every component
in the network is a logical contributor to the larger entity and
will become unavailable as part of a larger meltdown. If you are
a Blackberry user, you have experienced one yourself recently.
The Blackberry issue proves the potential, but in their case the
topology was at least appropriate—they have a requirement to
interconnect thousands of devices. In our clusters, we have no
such requirement, and we should not be implementing overly
complex and thus unreliable network topologies accordingly.

Case 2: The Great SAN Splurge
Now let’s think about Storage Area Networking. And let’s not

restrict this thought to Fibre Channel, because the same princi­
ples apply to an Ethernet-based SAN. In fact, let me just clear off
the Ethernet SAN piece first: Don’t use your corporate network
for storage connectivity. It’s the wrong thing to do for all the
reasons stated in the first case on this page.

So, now we can focus on Fibre Channel SANs. Fibre Channel
has become the backbone of the data center, allowing storage
devices to be located in sensible locations, perhaps in different
rooms to the servers, and for everything to be able to be con­
nected to everything else with optimized structured cabling. The
zoning of the fabric then determines which devices are allowed
to see other devices. All very well and good, but how is this im­
plemented? Unsurprisingly, it is implemented using an exactly
analogous solution to the core/edge Ethernet network design in
the previous case. Two active core switches lie at the heart of a
multi-tier network and provide failover capability for each other.
A cluster. This cluster can (and does) fail for exactly the same
reasons given in the former case, and yes, I have also seen this
occur in real life—twice in the last five years.

The failure implications for a SAN meltdown can be even
more serious than a cluster meltdown. All I/O will stop and, if the
outage goes on long enough, all databases in the data center will
crash and need to be restarted.

There are a few other implications with this topology in large
data centers. Notably, it is common for the storage arrays to be con­
nected via different physical switches than the servers, implying

that there are a number of Inter-Switch Links (ISLs) to go through.
These ISLs can become congested and cause severe bottlenecks in
throughput that can be extremely tricky to track down. In extreme
cases, ISLs can be the cause of multi-minute I/O response times,
which will also cause clusters and databases to crash.

So that preamble paints the SAN picture and sets the stage for
the following questions:

Why are all devices in the SAN connected to all other devices?
Why are the handful of nodes that make up your critical database
part of a SAN of thousands of other devices? Why are they not
just connected via simple switches to the storage array?

There is only one reason and that is data-center cabling. But
it doesn’t really follow: If your database servers are in a rack, or
a few racks next to each other, put a pair of physically and logi­
cally discrete switches into the top of the rack, attach all the
nodes, and then connect the storage array using the same num­
ber ports that you would have connected to the switches if they
had been edge switches. The destination of those cables would be
the storage array rather than the core switches, but the number
of cable runs is pretty much the same and results in a more ro­
bust solution. There is no exposure to catastrophic loss of service
in the SAN, because there are two completely discrete SANs
between the servers and the storage.

Fibre Channel networks are vertical in nature: server nodes
do not communicate with other server nodes over the SAN; they
only communicate with the storage array. Server nodes do not
need to be connected to thousands of storage arrays, either. The
connectivity requirement for a given platform is actually rather
simple.

Note: I am writing from the viewpoint of a typical RDBMS
implementation, not from the viewpoint of massively parallel
HPC or big data systems. Clearly, if there truly are thousands of
devices that do need to be connected, this argument does not
apply.

Conclusion
The common theme between these two cases is this: Don’t

connect things that don’t need to be connected. Yes, it is easier to
cable up, and arguably easier to manage, but it has a knock-on
effect of dictating an implementation that does not suit the re­
quirement. It results in a less reliable, more complex solution,
with the cart very much before the horse. Don’t trade off admin­
istrative simplicity against architectural simplicity: it will sneak
up and bite you.

As Albert Einstein said, “Make things as simple as possible, but
not simpler.” Wise words indeed. s

James Morle is a specialist large-scale Oracle-based systems consul-
tant with over 20 years experience in IT consulting. His success is
based on two key factors: deep domain expertise in the full Oracle
stack (he speaks every language) together with huge credibility with
senior IT and business leaders. James is one of the co-founders of the
OakTable Network and an Oracle ACE Director. He is also the foun
der of Scale Abilities Ltd., based in the UK and serving clients across
the world. Scale Abilities solves implementation, storage, and perfor
mance problems with large, complex Oracle-based systems. Inter
national companies rely on its extensive full-stack expertise, which
successfully solves the wide range of cross-boundary problems that
single-discipline consultancies and experts struggle to handle. Scale
Abilities consultants will tell you what others are afraid to share,
and they understand how to unpick politics from performance.

• Cost-effective and flexible extension of your

IT team

• Proactive database maintenance and quick

resolution of problems by Oracle experts

• Increased database uptime

• Improved database performance

• Constant database monitoring with

Database Rx

• Onsite and offsite flexibility

• Reliable support from a stable team of DBAs

familiar with your databases

Keeping your Oracle database systems highly available takes knowledge, skill, and experience. It also takes knowing that

each environment is different. From large companies that need additional DBA support and specialized expertise to small

companies that don’t require a full-time onsite DBA, flexibility is the key. That’s why Database Specialists offers a flexible

service called DBA Pro. With DBA Pro, we work with you to configure a program that best suits your needs and helps you

deal with any Oracle issues that arise. You receive cost-effective basic services for development systems and more com-

prehensive plans for production and mission-critical Oracle systems.

DBA Pro’s mix and match service components

Access to experienced senior Oracle expertise when you need it

We work as an extension of your team to set up and manage your Oracle databases to maintain reliability, scalability,

and peak performance. When you become a DBA Pro client, you are assigned a primary and secondary Database

Specialists DBA. They’ll become intimately familiar with your systems. When you need us, just call our toll-free number

or send email for assistance from an experienced DBA during regular business hours. If you need a fuller range of

coverage with guaranteed response times, you may choose our 24 x 7 option.

24 x 7 availability with guaranteed response time

For managing mission-critical systems, no service is more valuable than being able to call on a team of experts to solve

a database problem quickly and efficiently. You may call in an emergency request for help at any time, knowing your call

will be answered by a Database Specialists DBA within a guaranteed response time.

Daily review and recommendations for database care

A Database Specialists DBA will perform a daily review of activity and alerts on your Oracle database. This aids in a proac-

tive approach to managing your database systems. After each review, you receive personalized recommendations, com-

ments, and action items via email. This information is stored in the Database Rx Performance Portal for future reference.

Monthly review and report

Looking at trends and focusing on performance, availability, and stability are critical over time. Each month, a Database

Specialists DBA will review activity and alerts on your Oracle database and prepare a comprehensive report for you.

Proactive maintenance

When you want Database Specialists to handle ongoing proactive maintenance, we can automatically access your data-

base remotely and address issues directly — if the maintenance procedure is one you have pre-authorized us to perform.

You can rest assured knowing your Oracle systems are in good hands.

Onsite and offsite flexibility

You may choose to have Database Specialists consultants work onsite so they can work closely with your own DBA staff,

or you may bring us onsite only for specific projects. Or you may choose to save money on travel time and infrastructure

setup by having work done remotely. With DBA Pro we provide the most appropriate service program for you.

CUSTOMIZABLE SERVICE PLANS FOR ORACLE SYSTEMSD B A P R O B E N E F I T S

C A L L 1 - 8 8 8 - 6 4 8 - 0 5 0 0 T O D I S C U S S A S E R V I C E P L A N

Database Specialists: DBA Pro Service

© 2001, Database Specialists, Inc.
Database Rx is a trademark of Database Specialists,
Oracle is a registered trademark of Oracle Corporation.
All rights reserved.

All DBA Pro services include Database Rx, our

automated database monitoring and alert

notification service. Database Rx monitors

these and other key areas:

Instance configuration parameters

Messages in the alert log

I/O and free space

Tablespace sizing and configuration

Redo log configuration

Rollback segment configuration and contention

Temporary tablespace configuration

User configuration

Session statistics

Wait events and locks

Latch statistics and contention

Shared pool statistics

SQL statement execution and performance

Object sizing and storage

Index definitions and usability

Database jobs

Customer-defined metrics and alerts

“Database Specialists offers a
well-rounded set of experts who can
assist companies in a wide range of
database-related activities. It is clear
that they are an asset to any team.”

Wm. Brad Gallien

Vice President

NetForce, Inc.

TRUST DATABASE SPECIALISTS FOR ONGOING DATABASE SUPPORTI N C L U D E D W I T H D ATA B A S E R X

O R A C L E A P P L I C A T I O N S | B A C K U P A N D R E C O V E R Y S T R A T E G I E S | M I G R A T I O N S A N D U P G R A D E S | D A T A B A S E M O N I T O R I N G

S Y S T E M A R C H I T E C T U R E | D A T A B A S E D E S I G N | P R O D U C T I O N S U P P O R T | P E R F O R M A N C E T U N I N G | D A T A B A S E D E V E L O P M E N T

Our Oracle Certified Professionals have an average of eight years of experience, specifically with Oracle technology.

We have been providing Oracle systems consulting since 1995. Our consultants know how to assess the situation, plan

solutions in a timely manner, tackle system issues with efficiency and accuracy, and transfer critical knowledge to your

in-house personnel. After all, there’s no substitute for experience.

Database Rx: automated system monitoring included with all DBA Pro services

All DBA Pro plans include the use of Database Rx, our automated web-based Oracle database monitoring and alert

notification service. Depending on the service plan you choose, you can designate whether your in-house staff or the

DBA Pro team receives ongoing database alerts. You’ll also have an accurate record of your service history. All database

activity and performance history, calls and requests to Database Specialists, recommendations by Database Specialists

DBAs, and monthly reports are easily accessible at the Database Rx Performance Portal 24 x 7 via HTTPS.

Database access and security

Except for pre-authorized maintenance services, there is no need to provide Database Specialists with constant access

to your database or full DBA privileges. You may choose to provide read-only or DBA-privileged access in specific instances

in order to perform a specific task, but Database Specialists DBAs won’t be logging in to your database unless you want

us to. Database Rx uses a unique push technology that allows us to effectively monitor your databases and give you

detailed recommendations without logging in to your database remotely.

Full database administration outsourcing

By configuring a DBA Pro service plan with all available components, you get a full DBA outsourcing solution for

mission-critical systems — including proactive monitoring, 24 x 7 availability, full database maintenance, and

special projects.

Special projects

As we work together with you as part of your database support team, you may find you need additional assistance

in areas such as performance tuning, backup and recovery planning, database migrations or upgrades, mentoring, and

special projects. These can be performed onsite or offsite, depending on the task. And, we’ll have the benefit of our

ongoing familiarity with your system developed through our DBA Pro services.

Database Specialists, Inc.

388 Market Street, Suite 400, San Francisco, CA 94111

Tel: 415-344-0500 | Fax: 415-344-0509 | Toll-Free: 888-648-0500

www.dbspecialists.com

Database Specialists: DBA Pro Service

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP required at http://www.nocoug.org

8:00–9:00 a.m.	 Registration and Continental Breakfast—Refreshments served

9:00–9:30	 Welcome: Hanan Hit, NoCOUG president

9:30–10:30	 Keynote: The Internet of Things—Shyam Varan Nath, General Electric

10:30–11:00	 Break

11:00–12:00	 Parallel Sessions #1

	 Room 1220: Oracle Clusterware Deep Drive—Amit Das, PayPal

	 Room 1240: OMG! Identifying and Refactoring Common SQL Performance Anti-patterns—Jeffrey Jacobs

	 Room 1150: Surviving Data Corruption—Lorrie Yang, Bank of America

12:00–1:00 p.m.	 Lunch

1:00–2:00	 Parallel Sessions #2

	 Room 1220: Unit of Work Time Based Analysis—Craig Shallahamer, OraPub

	 Room 1240: Introduction to Vertica Column Store for Data Warehouse Developers—Dave Abercrombie, Tapjoy

	 Room 1150: MapReduce by Example – Hands-on Lab—Arijit Das, Naval Postgraduate School

2:00–2:30	 Break and Refreshments

2:30–3:30	 Parallel Sessions #3

	 Room 1220: Creative Oracle Database 12c Redo Maneuvers—Craig Shallahamer, OraPub

	 Room 1240: Twelve Things About SQL Every Oracle Professional Should Know – Part I—Iggy Fernandez

	 Room 1150: MapReduce by Example – Hands-on Lab—Arijit Das, Naval Postgraduate School

3:30–4:00	 Raffle

4:00–5:00	 Parallel Sessions #4

	 Room 1240: Twelve Things About SQL Every Oracle Professional Should Know – Part II—Iggy Fernandez

4:00–	 NoCOUG Networking and No-Host Happy Hour at Hopyard American Alehouse & Grill, San Ramon

NoCOUG Summer Conference Schedule
Thursday, August 21, 2014—Chevron, 6101 Bollinger Canyon Road, San Ramon, CA

Please visit http://www.nocoug.org for updates and directions, and to submit your RSVP.
Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Fr
on

t c
ov

er
 p

ho
to

: R
os

e
at

 tw
ili

gh
t b

y
Da

ve
 A

be
rc

ro
m

bi
e.

	cvr-fyi
	NoCOUG_201408_InnerFYI4

