
Knowledge Happens

CREATE ASSERTION
Neither impossible nor a
dream.
See page 15.

Advice for an
Oracle Beginner
Heartfelt advice from Tom Kyte.
See page 26.

NoSQL Distilled
A book review by Brian
Hitchcock.
See page 4.

Vol. 27, No. 4 · November 2013	 $15

Much more inside . . .

FREE PAPER:
 “Tips for Real-time Data and Reporting”
 http://info.hitsw.com/nocoug8

Real-time Data Replication and Change Data Capture for the toughest data replication jobs

Do Your Reports Have Stale Data?

Copyright © 2013 HiT Software, Inc., A BackOffice Associates, LLC Company. All rights reserved. HiT Software®, HiT Software logo, and DBMoto® are either trademarks or registered trademarks of
HiT Software and BackOffice Associates, LLC in the United States and other countries. All other trademarks are the property of their respective owners.

T +1.408.345.4001 | www.hitsw.com | info@hitsw.com

DBMoto® Data Replication and Change Data Capture
• Need fast data updates?

• Have multiple databases or analytic systems?

• Don’t have time for complicated applications?

• FREE Advice for Real-time Data FAST, EASY,AFFORDABLE

FREE PAPER:
“Tips for Real-time Data and Reporting”
 http://info.hitsw.com/nocoug8

3
The NoCOUG Journal

2013 NoCOUG Board

President
Naren Nagtode

Vice President
Hanan Hit

Secretary/Treasurer
Dharmendra (DK) Rai

Membership Director
Abbulu Dulapalli

Conference Director
Gwen Shapira

Vendor Coordinator
Omar Anwar

Training Director
Randy Samberg

Meetup Coordinator
Gwen Shapira

Webmaster
Eric Hutchinson

Jimmy Brock

Journal Editor
Iggy Fernandez

Marketing Director
Ganesh Sankar Balabharathi

IOUG Liaison
Kyle Hailey

Book Reviewer
Brian Hitchcock

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer­
ence. Article submissions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other­
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Book Review.. 4

SQL Corner.. 9

Special Feature.. 15

Performance Corner.. 22

President’s Message....................................... 24

Ask the Oracles... 26

Conference Agenda.. 28

ADVERTISERS

HiT Software.. 2

Kaminario...14

WHIPTAIL Storage..21

Confio Software.. 25

Delphix... 25

Embarcadero Technologies........................... 25

Quilogy Services.. 25

Database Specialists....................................... 27

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12-year period. The professional pictures on

the front cover are supplied by Photos.com.

Next, the Journal is professionally copyedited and proofread by veteran copy­

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Francisco-based Giraffex.

And, finally, Jo Dziubek at Andover Printing Services deftly brings the Journal

to life on an HP Indigo digital printer.

This is the 108th issue of the NoCOUG Journal. Enjoy! s

—NoCOUG Journal Editor

journal@nocoug.org
mailto:journal@nocoug.org
Photos.com

4
November 2013

Details
Author: Pramod J. Sadalage and Martin
Fowler
ISBN: 978-0-321-82662-6
Pages: 192
Year of Publication: 2012
Edition: 1
List Price: $39.99
Publisher: Addison-Wesley
Overall Review: Excellent; a fantastic introduction to a new
world of databases.
Target Audience: Anyone involved with databases and the appli­
cations that depend on them.
Would you recommend this book to others: Yes, without ques­
tion.
Who will get the most from this book? Those that are famil­
iar with RDBMS products.
Is this book platform specific: No.
Why did I obtain this book? NoCOUG asked me to review this
book, and they procured a copy of it for me.

Overall Review
I have worked with relational database management systems

(RDBMSs) for a long time. This means I’m completely in the
“YesSQL” world. Therefore, I could be among the most resistant
to change. This book is wonderful in that it doesn’t talk down to
me about the “old ways.” It simply explains in very clear terms
exactly what NoSQL is and what it isn’t. Most importantly, this
book doesn’t pretend that RDBMSs are going away or that they
aren’t still the best solution for many situations. Moreover, this
book doesn’t waste your time. It has information to communi­
cate and it does so quickly, with clear examples. This is what
technical writing should be: just long enough to make the points
and get it done.

Preface
The authors start off explaining that the term “NoSQL” is ill-

defined but usually refers to a number of nonrelational databas­
es. The term also refers to schemaless data and systems where
gains in performance are traded against other things like consis­
tency. Thankfully, they are quick to point out that relational sys­
tems are still very good at many tasks. They then introduce the
term “polyglot persistence,” which is a world in which relational
is not the only way to store and manage data.

A good explanation of why the reader should care about
NoSQL databases is next. The authors quickly introduce the two

main reasons: first, application development productivity and
second, large-scale data. Along the way the fact that large data­
sets are usually run on clusters of servers is also brought up.
These core concepts will be explained in detail as the book
progresses.

After this we have a description of what is in the book, and I
would recommend that you read these two pages whether or not
you read the rest of the book, although I very much recommend
reading all of it. We also see the usual description of who should
read this book and a list of the specific NoSQL databases that are
discussed in the book. I like the way the book is divided into two
main sections. The first, “Understand,” discusses what you need
to understand about NoSQL and how it is different (and, in my
opinion, how it is not different) from the RDBMS world. The
second, “Implement,” presents some details of how the various
products operate, including some code snippets.

Chapter 1—Why NoSQL?
This chapter starts with a review of where we are and how

RDBMSs came to run the world. In passing they mention object
databases. Funny, I remember when object databases were going
to take over, but it never happened. Strange how some “new
things” come and go and others come and conquer. The section
titled “The Value of Relational Databases” lays out the reasons
that RDBMSs are so prevalent. This provides a straightforward
context for the comparisons to come with NoSQL.

Next we learn about the “impedance mismatch,” which is de­
fined as the difference between the relational model and various
in-memory data structures. I hadn’t thought about it this way
before; this illustrates the value of reading about new stuff. The
best way to better understand your existing RDBMS is to learn
about NoSQL systems. The mismatch is between how data is
stored in the relational database as opposed to how it is used by
the applications that build in-memory data structures.

We are told that there is a growing divide between application
developers and database administrators. I thought it was a divide
between DBAs and everyone else. No matter. My advice is simple
and effective: Whatever side of this perceived divide you are on,
offer to buy lunch for those on the other side(s). You will find the
divide becomes vanishingly small.

There are several very good sections, including “Application
and Integration Databases” and “Attack of the Clusters” (“Do not
run—we are your Friends!”). The emergence of NoSQL is an­
other good section. I think everyone should read this. At the end
of each chapter we find “Key Points” that are well worth review­
ing.

Chapter 2—Aggregate Data Models
This is where it starts to get real. This is where I had to start

really thinking about what I was reading. I like this line: “A data

B O O K
R E V I E W

NoSQL Distilled
A Book Review by Brian Hitchcock

5
The NoCOUG Journal

model is the model through which we perceive and manipulate
our data.” This leads to relational tables being the default data
model. Each of the NoSQL solutions has a different data model.
I’m getting ahead of myself here, but I immediately wonder how
we will support all these different data models in one organiza­
tion.

First we have a discussion of aggregates and an example com­
paring data stored in a relational system and a NoSQL system
that uses the aggregate data model. The point is that data is
stored in groups (the aggregate) instead of in normalized tables.
Everything about one customer could be stored in one aggregate
instead of spread out among many relational tables.

Next are the key-value and document data models. Now this
NoSQL thing is starting to get complicated. I’m liking the aggre­
gate data model and now two more arrive to confuse me. The
key-value has a unique key that is associated with a (wait for it)
“blob.” I kid you not. The precise definition of this blob is as fol­
lows: “some big blob of mostly meaningless bits.” Wow!

Then we have the document database, which I assumed
(wrongly) was a database of documents. Well, sort of. Turns out
a “document” can be any set of data, perhaps an XML file.

Then we have column-family stores, which look to me like
groups of aggregates with a key value. The Key Points at the end
of the chapter are great.

As we learn about more and different NoSQL data models, we
find that some have indexes and some don’t, and some have
query languages and some don’t. NoSQL is not a specific product
or technique. It is a different way of looking at your data. Not all
of your data has to be in a single data model. Again, I wonder
about the support issues.

Chapter 3—More Details on Data Models
We learned about aggregates in the previous chapter. Now we

look at how to deal with relationships between aggregates. If you
have all the information for a customer in one aggregate record
and all the orders for that customer in another aggregate, how
would you find related pieces of data? Here we find that docu­
ment databases offer some unique query features. We also see
that the different data models have various issues with standard
data manipulations such as updates. It really is getting more
complicated as we move along. Which NoSQL data model is best
for you and yours? As always, it depends. I like the summary of
what happens when you need to have many relationships be­
tween multiple aggregates: “Things quickly get very hairy.” In­
deed, and back to that support issue someone keeps mumbling
about.

For relationships, graph databases are very good. Anyone that
has ever had a product recommended to them based on what
they just saw on a website has been working with a graph data­
base. The way relationships can be one way (I’ve always really
liked her but she doesn’t even know I exist) amused me. The
potential for parody is huge.

Next we look at schemaless databases. With a relational data­
base you must define a schema before you can store any data. For
NoSQL database, and I’m quoting here, “storing data is much
more casual.” For me, the core of NoSQL is right here. Things
that have been absolutely unthinkable before (do I really care if
this write completes?) are now much more casual. Sometimes
you want commitment; sometimes you don’t. In the NoSQL
world of tomorrow, you will have those that prefer the rigidity of

relational (and you know who you are!) and those that are more
“casual.” It is explained however, that no matter how casual you
want to be, there is an implicit schema in the data. Even if your
database doesn’t require a schema, your application still has to
make some sense of the data.

This chapter also covers materialized views in the NoSQL
world and discusses modeling data from a data access point of
view.

Chapter 4—Distribution Models
Here we learn about distributing data across multiple nodes

in a cluster. While this may seem like a strange idea at first, it is
very similar to partitioning a relational table, except that each
partition lives on a separate server. Strange, but not as different
as it first appears. This is one of the main drivers of NoSQL, i.e.,
managing huge datasets on clusters of relatively small (cheap?)
computers. Insert the usual cluster marketing presentation
here. You can add nodes, nodes are cheap, etc. The dark side is
presented right away, as we are told that running over a cluster
adds complexity and is not to be done without a very good
reason.

There are two data distribution models: replication and
sharding. Replication copies the same data to multiple nodes,
while sharding puts different data on different nodes. I like the
description of replication and sharding as “orthogonal,” which
reminds me of vector calculus and simply means that you can
use either or both.

This chapter then moves on to discuss the various forms of
distribution starting with single-server followed by master-slave
replication, sharding, and then peer-to-peer replication. I was
pleased to read that the authors recommend that you start with
the simplest distribution option, which is no distribution at all.
NoSQL provides many new things, but don’t use them unless
you have a good reason. It is also noted that no distribution is
easier for “operations people” to manage. I think I’m in that
group. We like easy. We don’t see it nearly as often as we would
like.

Also, note that using NoSQL on a single server appears coun­
terintuitive, since we hear so much about clusters of servers. The
needs of your application and your business should always be
more important than any new (or old) dogma. I’ve heard about
sharding for a long time, and in this chapter I got the first clear
explanation I’ve seen. The diagrams are simple, succinct, and
even pretty. Successfully communicating complicated ideas in
words and a few diagrams is an art form—an art form that is very
successfully executed here. There is much more to learn from
this chapter, culminating in a discussion of combining sharding
and replication.

Chapter 5—Consistency
This is a new idea for me. I’m used to my world revolving

around the production relational database, which is the system of
record. I had to read carefully to keep up. While relational sys­
tems provide strong consistency, NoSQL systems bring up the
terms “CAP theorem” and “eventual consistency.” Even the defi­
nition of consistency requires discussions covering update and
read consistency. When you run with your data spread across
multiple nodes, you have issues because data that should be the
same on multiple nodes may not be. Or, may not be for some
amount of time.

6
November 2013

I think this is one of the central ideas of NoSQL. Strip away all
the product specifics and you have a new world where the result
of your query may vary over time, and that is okay. The details
come thick and fast as we see pessimistic and optimistic concur­
rency, conditional updates, and more. We are challenged to jus­
tify our conditioning, which tells us that we must avoid conflicts
caused by anything less than total consistency.

The diagrams in this chapter are very good and really help
explain what is going on. Even if you aren’t swayed by the NoSQL
story, the explanation of all the consistency issues is worth read­
ing; it’s very clear and concise.

We can all agree that consistency is a good thing, but rather
than assuming that we must have it, we need to discuss how
much we need and why. There are benefits to what is described
as relaxing consistency. It is pointed out that even with transac­
tions in a relational system, you have a choice of isolation levels,
which are a form of relaxed consistency. More real-world good­
ness comes when we read that many systems need to give up
some consistency because full-on transactions simply cost too
much in terms of performance.

The CAP theorem is something I’ve never heard of before.
While I’m not a theorem person, this is the only one in the whole
book and it is well worth thinking about. It tells us that, out of the
three properties consistency, availability, and partition tolerance
(CAP), you can only get two. You need to read this chapter to
appreciate what it all means. I’m struck by how complex the
whole NoSQL “thing” is. It is way more involved than saying no
to SQL.

Chapter 6—Version Stamps
This chapter opens with an interesting observation. NoSQL is

criticized for not having transactions, but, if all the data you need
is in a single aggregate, data manipulation on an aggregate is
pretty close to a transaction. It is also observed that even with
transactions, there are business processes that would take much
longer than any real system can wait. Version stamps are a way to
deal with this. If data has a version stamp, you can detect any
consistency issues by comparing the version stamps. To me this
is the same, or at least very similar to, timestamps. As long as
your version stamps are increasing over time, you can tell in what
order various data changes happened. This actually opens up
some new possibilities. If you can, in theory, re-create any past
state of your data, you can go back in time and look at different
things.

When discussing the issues around business transactions that
take too long for a single transaction, the authors refer to choos­
ing a bottle of Talisker as a likely example. I had to Google this.
Talisker is the only whisky distillery based on the Scottish island
of Skye. Perhaps this fascination with whisky explains their “flex­
ibility” with all things relational? Or, perhaps you have to travel
to an island in Scotland to get far enough away from the rela­
tional empire to see that there are other possibilities?

We move on to discuss how to handle version stamps on mul­
tiple nodes. I’ve said it many times, but NoSQL is a lot more
complicated than it appears. When you have a single server that
controls the generation of the version stamps, things are pretty
clear. Multiple nodes lead us to vector stamps, which are sets of
counters, one for each node. The nodes then synchronize their
vector stamps as needed. This allows determination of who did
what, where, and when.

Chapter 7—Map-Reduce
So far we have seen that NoSQL databases store data differ­

ently from relational systems through sharding and replication.
Along with this change in the way data is stored, the way pro­
cessing is done changes as well. With a cluster of servers, you
have many nodes across which to distribute the work. At the
same time, you need to reduce the amount of data that needs to
be shipped between nodes as the processing is done. The more
you have to move data between nodes, the more you reduce the
performance improvements due to parallel processing on mul­
tiple nodes. Ideally, you would process all the data on the node
where the data is located. Map-reduce is a way to use multiple
servers and keep the processing and the data needed by the pro­
cessing together on the same machine. Again, the explanation
and the diagrams presented are great. Although this is a small
book, its graphics are much better than most of the other techni­
cal books I’ve read. The example given has aggregates for cus­
tomers and orders. When you need to answer questions about
total revenue for a given product, you need to look at a lot of
aggregates. The first step is to map, which is a function that ex­
amines a single order aggregate and outputs a set of key-value
pairs in which each pair is a line item from the order. Since the
order aggregates are sharded across multiple servers, this map
processing of each order can be done on each server on the or­
ders stored there. This means that all the map processing is lo­
calized to a single server, which enables parallelization.

The reduce function takes multiple map outputs that have the
same key and combines the values from those key-value pairs.
The output of the reduce operation gathers all the map outputs
to generate the query results. Further refinements to the basic
map-reduce processing include partitioning and combining,
which further increases parallelism and reduces how much data
must be moved between nodes.

Chapter 8—Key-Value Databases
The previous chapters dealt with understanding the con­

cepts behind NoSQL. Now we learn about some of the issues
involved in actually building NoSQL systems. Since I am not
about to implement NoSQL, I didn’t get as much from these
chapters. This is not a criticism in any way. These chapters
move fast, which is good, and a lot of code snippets are pre­
sented. I am not a developer, so I can’t comment much on code
in any form. I do think many readers will get a lot from the code
that is discussed.

This chapter discusses details of a key-value store. Specific
examples are Riak, Redis, and Berkeley DB. I have heard about
Berkeley DB for many years but I never realized that it was
NoSQL. I personally look forward to the time when I will be sup­
porting HamsterDB. If nothing else, the names of all the NoSQL
products are so much more interesting than in the relational
world. The features of key-value stores that are covered include
consistency, transactions, query features, data structures, and
scaling. In a key-value store you can only query on the key. For
anything else you have to handle the query in the application
code. This aspect seems pretty limiting to me. It seems like a
point solution that is very specific to solving one sort of problem.
This is not useful for general-purpose database processing. The
design of the key is discussed. I had never heard of “curl,” which
is a command-line tool for transferring data with URL syntax.
There is a lot to learn about the NoSQL world.

7
The NoCOUG Journal

The chapter ends with a list of suitable user cases and a sec­
tion titled, “When not to use.” For someone like me who is new
to the subject, these sections are great.

Chapter 9—Document Databases
Here we learn that the documents stored in document data­

bases can be XML, JSON, BSON, and other self-describing struc­
tures. Each document stored is the value part of a key-value pair.
Unlike key-value stores we have seen previously, the documents
(the “values”) can be examined. A table compares the terminol­
ogy used by Oracle and a document database called MongoDB.
A document in a document database is compared to a row in a
relational table. You can add new attributes to a document with­
out the need to make changes to any of the other documents.
This is very different from the relational world, in which all the
rows of a table must have all the same attributes, even if many of
them are NULL. In passing, the authors tell us that Lotus Notes
is “reviled.” So much I have to learn! Coverage of the features of
document databases includes consistency, transactions, avail­
ability, query features, scaling, and—again—suitable use cases
and when not to use a document database. In these sections I
learned that MongoDB has a query language that supports
“where” and “order by” clauses as well as “explain,” which shows
the execution plan. NoSQL is not no SQL! I was glad to see
sharding compared to partitioning in the relational world. I
didn’t realize that NoSQL databases dynamically move data be­
tween nodes as part of sharding to maintain balance. One of the
suitable use cases is event logging. This is the first time that an
example of NoSQL has really made sense to me, because I look
at a lot of log files for the multiple components of Fusion
Middleware. They are all different in layout and size. Having one
place where all these log files could be stored would be great.

Chapter 10—Column-Family Stores
This chapter covers the specifics of Cassandra, Hbase, and

Amazon SimpleDB. A comparison is made between Oracle and
the terms used to describe the components of the Cassandra
database. Diagrams are presented to illustrate the data model
used. In the section on consistency we see that stale data is han­
dled by “read repair,” and that it is okay if some writes are lost.
This just sounds wrong. I know it’s correct in the context of
NoSQL, but the training in the “old ways” is hard to overcome.
Further, we are told that the system designers will need to “tune
the consistency” as the application requirements change. This
sounds like a big support cost that comes with NoSQL. Perhaps
I just don’t see the equivalent issue in the relational world. In the
transactions section I learn that a commit log is used to apply
changes if a node is lost, just like the redo log in Oracle. Funny
how many RDBMS features are popping up in the NoSQL world!
You can use external transaction libraries, such as ZooKeeper.
Where do we keep our transactions? In the zoo of course! On the
weekend we can take the kids to the zoo to see the transactions
in their “habitats.” The query language section tells us that
Cassandra has a query language that supports SQL-like com­
mands. Yet again, NoSQL doesn’t mean not using SQL. One of
the suitable use cases presented is for expiring usage, where you
make use of expiring columns that are automatically deleted after
a given time. This is useful for data that is being used for a cus­
tomer demo or for banner ads on websites.

The chapter ends with an example of when not to use a col­

umn-family store. Specifically, Cassandra is not good for proto­
types in which the column family design is changing rapidly.
This slows down developer productivity.

Chapter 11—Graph Databases
Graph databases are, in my opinion, the one kind of NoSQL

database that is the furthest from my relational experience and
therefore the most interesting. The description that opens this
chapter is great. Graph databases store entities and the relation­
ships between them. The entities are also called “nodes” and have
properties. Another way to look at this is that each node is an
object in your application. The relationships between these ob­
jects are the “edges” of the graph and these edges have properties.
One of these properties is “directional significance.” Once you
have all these relationships in the database, you can search for
patterns. This is obviously useful for social networks and recom­
mending products based on previous sales, etc. Querying the
graph database is called “traversing the graph.” It is explained
that a relational database can store a relationship such as the
canonical employee–manager relationship. However, trying to
add a second relationship would require significant schema
changes.

The section covering scaling provided a fascinating insight. It
turns out that for graph databases, sharding is difficult. Hang on
a minute, I thought sharding was one of the central ideas of
NoSQL databases. As we have seen before, NoSQL is a diverse set
of new ideas and products. It is difficult to say exactly what
NoSQL is and what it isn’t. There are special challenges to scaling
graph databases that I found interesting.

Graph databases are the obvious choice for social networks,
location-based services, and recommendations. At the same
time, it is very difficult to update all the nodes, so they aren’t a
good choice for applications in which the properties of a large
number of the application objects are changing often.

Chapter 12—Schema Migrations
Part of the hype around NoSQL databases is that they are

“schemaless.” Setting aside, for the moment, what exactly that
means, it is true that NoSQL databases are much more flexible
when it comes to making changes to the structure of the data. At
the same time, the process of making changes can be expensive.
This chapter reviews how a relational database requires a schema
to be defined before any data can be stored. Changes to the
schema require many changes to tables and other database ob­
jects. In general, a relational database must be changed before an
application can be changed. NoSQL databases try to avoid this by
offering more flexibility with respect to schema changes. As we
examine this topic, it becomes more complicated. The important
point is made that even if you accept that NoSQL databases re­
ally are schemaless, someone has to make sense of the applica­
tion data, and this requires some form of a schema. This may all
be handled by the application code, but it is still handled some­
where. I’m glad the authors refer to the use of the term “schema­
less” as misleading. The application has to read the data from the
database and make sense of it. That process is a schema, even if
we say that the database itself does not impose a schema on the
data stored inside.

Further, while it is true that a NoSQL database does not im­
pose schema requirements the way a relational system does, it is
also true that any change to data structure does require a change

8
November 2013

to the application code. The application has to be able to make
sense of the data that has and has not changed. NoSQL databases
don’t eliminate the impact of schema changes, they move them
out of the database.

The impacts of schema changes to graph databases and ag­
gregate structure are discussed.

Chapter 13—Polyglot Persistence
This chapter presents a very good idea that needs to be heard

much more widely. As we have seen, the various NoSQL data­
bases are designed to solve very different, very specific problems.
Any real-world business system is going to need different NoSQL
databases to support different aspects of the business. For ex­
ample, the same business may need one NoSQL database for its
shopping cart and another for its social networking. Trying to get
both from any single database, NoSQL or relational, is not going
to be optimal. A great point is made that this isn’t unique to the
NoSQL world. In the relational world, OLTP and OLAP process­
ing are often forced to coexist in a single database.

The idea here is that what we need isn’t relational or NoSQL,
but a combination of whatever persistence is best for the specific
problem we need to solve. The term “polyglot persistence” is
cumbersome but very powerful. We need to stop looking for a
single database that will do all things for everyone.

This concept is then extended to web services. We look at the
world as if each application has to have its own dedicated data­
base. As we see that different databases are best for different
kinds of data storage and processing, we should move to a world
where we have multiple data stores that applications use to get
the storage and processing they need.

This chapter really helped me understand why web services
are a big deal. My working experience has always been one ap­
plication talking to one database. As more data is available
through web services, we need to change our outlook. Further,
this shift will have a big impact on our organizations. Who is
responsible to the users of our applications when they depend on
multiple data stores? How will we support this polyglot persis­
tence? How will a business find the resources needed to support
all the different databases that we will need?

Chapter 14—Beyond NoSQL
Now that we have seen a lot of information about NoSQL

databases, it is interesting to drop back and look around at how
much NoSQL stuff we already have in our organizations. I had
never thought of a file system as a database, but it is. The com­
parison is fascinating. File systems don’t impose any structure on
the data that is stored in any given file. There is a key-value rela­
tionship to each file. There is little control over concurrency be­
yond file locking. This is very similar to NoSQL, with locking
only at the aggregate level. File systems are cheap; everyone has
one and they hold huge amounts of data on multiple nodes.

Next up is “event sourcing.” I had never heard of this. The idea
is that you keep all the changes that were ever made to the data.
I found this very interesting. If you can create any state of any
data at any time in the past, you don’t have to worry so much
about storing the current state of the application.

Other ideas discussed include memory image, where the ap­
plication state is only maintained in memory. This has obvious
performance benefits. It also simplifies application program­
ming, because there is no need to translate data structures from

memory to a persistent store (disk). This is followed by version
control, XML databases, and object databases.

This chapter is very interesting and closes with what I think
may be the single best thing I got from this book: As we all get
more comfortable with the idea of polyglot persistence, we need
to look around for anything that helps us solve problems, wheth­
er it is being marketed as NoSQL or not.

Chapter 15—Choosing Your Database
A lot of material has been presented about NoSQL databases.

Now is the time to put it all into practice. How exactly do you
decide which database to use? The two main benefits of using
NoSQL databases are presented as programmer productivity and
performance. Each is discussed in detail. Highlights include the
statement that all NoSQL systems are better for nonuniform
data, and that there is no way to really measure programmer
productivity. If we can’t quantify one of the two main benefits of
using NoSQL databases, how do we sell them to our organiza­
tions? Similarly, there are difficulties when trying to quantify the
specific performance benefits of one NoSQL database over an­
other.

This leads to a very important paragraph in which we are
reminded that, in the majority of cases, relational is still the best
option. I wasn’t expecting this to be stated so clearly in a book
about NoSQL, but I’m glad it was. I’m not opposed to NoSQL,
but I am opposed to organizations moving to the “next big thing”
just because they want to look cool. I agree with the authors that
you need to be able to show a real advantage to using NoSQL
before you move away from relational.

In closing, we are told that most people won’t be moving to
NoSQL anytime soon. I think this is very true. NoSQL has some
definite advantages, but they come with a set of tradeoffs. Time
will tell which aspects of NoSQL demonstrate real value in the
real world.

Conclusion
This book is well worth your time. Many new ideas are

clearly explained. This book is what all technical books should
be: clear, precise, and short. I enjoyed reading this book, and I
think everyone who works with relational databases needs to be
aware of the ideas presented. If you are really pressed for time,
here is the minimalist way to get the most out of this book in the
least amount of time: First, read the Preface. Second, read the
Key Points at the end of each chapter. You will have seen enough
insights to keep you awake through that interminable weekly
staff meeting. s

Brian Hitchcock worked for Sun Microsystems for 15 years sup-
porting Oracle databases and Oracle Applications. Since Oracle
acquired Sun, he has been with Oracle supporting the On Demand
refresh group and, most recently, the Federal On Demand DBA
group. All of his book reviews and presentations—and his contact
information—are available at www.brianhitchcock.net. The
statements and opinions expressed here are the author’s and do not
necessarily represent those of Oracle Corporation.

Copyright © 2013, Brian Hitchcock

file:///Users/kennethlockerbie/Documents/VARIOUS%20JOBS/4=GFX/NoCOUG%20Journal/November%202013/Page%2004%20Book%20Review/www.brianhitchcock.net

9
The NoCOUG Journal

S Q L C orner

The False Premise
of NoSQL

by Iggy Fernandez
Iggy Fernandez

In the August 2013 issue of the NoCOUG Journal, relation­
al theoreticians C.J. Date and Hugh Darwen were asked
for their opinions on the NoSQL phenomenon. In my
opinion, their comments were right on the mark, even

though Date openly admits that he knows almost nothing about
NoSQL products.

In discussing Amazon Dynamo—the forerunner of the
NoSQL movement—and the products that followed it, Date and
Darwen made these astute observations:

 “Developers tend to be more concerned with convenience in
database definition and updating than with the ease of deriving
useful and reliable information from the database.”—Darwen

“If there’s a suggestion that Amazon’s various disaster scenarios,
regarding tornados and the rest, are somehow more of a problem
for relational systems than they are for nonrelational ones, then of
course I reject that suggestion 100 percent.”—Date

 “Those who disparage relational are almost invariably very far
from being properly informed and almost invariably equate ‘rela-
tional’ with [current implementations].”—Darwen

Dynamo Assumptions and Requirements
Date and Darwen’s remarks are spot on. Here is the Dynamo

use case from the 2007 ACM paper by Amazon: “Customers
should be able to view and add items to their shopping cart even if
disks are failing, network routes are flapping, or data centers are
being destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers. . . . There are many services on
Amazon’s platform that only need primary-key access to a data
store. For many services, such as those that provide best seller lists,
shopping carts, customer preferences, session management, sales
rank, and product catalog, the common pattern of using a rela-
tional database would lead to inefficiencies and limit scale and
availability. Dynamo provides a simple primary-key only inter-
face to meet the requirements of these applications. . . . Experience
at Amazon has shown that data stores that provide ACID guaran-
tees tend to have poor availability. . . . Dynamo targets applications
that operate with weaker consistency (the “C” in ACID) if this re-
sults in high availability.”

To paraphrase, Amazon’s goals were extreme performance,
extreme scalability, and extreme availability, and it concluded
that the only way to achieve its ends was to discard the relational
model.

Functional Segmentation
Amazon started off on the right track. Its first innovation was

to break up the traditional monolithic, enterprise-wide database
service into simpler component services such as the best-seller
list service, the shopping cart service, the customer preferences
service, the sales rank service, and the product catalog service.
This avoids a single point of failure.

Amazon’s first DBA, Jeremiah Wilton, explained Amazon’s
approach in his answer to the question “Is 24x7 a myth?” in an
interview published in the NoCOUG Journal in November 2007.
He said “The best availability in the industry comes from applica-
tion software that is predicated upon a surprising assumption: The
databases upon which the software relies will inevitably fail. The
better the software’s ability to continue operating in such a situa-
tion, the higher the overall service’s availability will be. But isn’t
Oracle unbreakable? At the database level, regardless of the mea-
sures taken to improve availability, outages will occur from time to
time. An outage may be from a required upgrade or a bug. Knowing
this, if you engineer application software to handle this eventuali-
ty, then a database outage will have less or no impact on end users.
In summary, there are many ways to improve a single database’s
availability. But the highest availability comes from thoughtful
engineering of the entire application architecture.”

As an example, the shopping cart service should not be af­
fected if the checkout service is having hiccups.

Functional segmentation can result in temporary inconsisten­
cies if, for example, the shopping cart data is not in the same
database as the product catalog and occasional inconsistencies
result. Occasionally, an item that is present in a shopping cart
may go out of stock. Occasionally, an item that is present in a
shopping cart may be repriced. The problems can be resolved
when the customer decides to check out, if not earlier. As an
Amazon customer, I occasionally leave items in my shopping
cart but don’t complete a purchase. When I resume shopping, I
sometimes get a notification that an item in my shopping chart
is no longer in stock or has been repriced. This technique is
called “eventual consistency.” We will return to this subject later
in this article and argue that “eventual consistency” is not in
conflict with the relational model.

Sharding
Amazon’s solution for extreme scalability was “sharding” or

horizontal partitioning of all the tables in a hierarchical schema
among shared-nothing database servers. The simple hierarchical

10
November 2013

schemas that resulted from compartmentation were very shard­
able.

Here is a simple hierarchical schema from Dr. Codd’s 1970
paper that introduced relational theory to the world1:

employee' (employee#, name, birthdate)
jobhistory' (employee#, jobdate, title)
salaryhistory' (employee#, jobdate, salarydate, salary)
children' (employee#, childname, birthyear)

Note that the jobhistory, salaryhistory, and children tables
have composite keys. In each case, the leading column of the
composite key is the employee#. Therefore, all four tables can be
partitioned using the employee#.

There’s no conflict with the relational model here either.

Replication
Amazon then saw that one of the keys to extreme availability

was data replication. Multiple copies of the shopping cart are al­
lowed to exist and, if one of the replicas becomes unresponsive,
the data can be served by one of the other replicas. The technique
used by Dynamo has a close parallel in the well-known tech­
nique of “multimaster replication.” However, because of network

1	“A Relational Model of Data for Large Shared Data Banks.” Reprinted with
permission in the 100th issue of the NoCOUG Journal. (http://www.nocoug.
org/Journal/NoCOUG_Journal_201111.pdf)

2	“Using primary and foreign keys can impact performance. Avoid using
them when possible.” (http://docs.oracle.com/cd/E17904_01/core.1111/
e10108/adapters.htm#BABCCCIH)

3	“For performance reasons, the Oracle BPEL Process Manager, Oracle
Mediator, human workflow, Oracle B2B, SOA Infrastructure, and Oracle
BPM Suite schemas have no foreign key constraints to enforce integrity.”
(http://docs.oracle.com/cd/E23943_01/admin.1111/e10226/soaadmin_
partition.htm#CJHCJIJI)

4	“For database independence, applications typically do not store the pri­
mary key-foreign key relationships in the database itself; rather, the rela­
tionships are enforced in the application.” (http://docs.oracle.com/cd/
E25178_01/fusionapps.1111/e14496/securing.htm#CHDDGFHH)

5	“The ETL process commonly verifies that certain constraints are true. For
example, it can validate all of the foreign keys in the data coming into the
fact table. This means that you can trust it to provide clean data, instead of
implementing constraints in the data warehouse.” (http://docs.oracle.
com/cd/E24693_01/server.11203/e16579/constra.htm#i1006300)

“Developers tend to be more
concerned with convenience in

database definition and updating
than with the ease of deriving useful

and reliable information from the
database. . . . Those who disparage

relational are almost invariably
very far from being properly

informed and almost invariably
equate ‘relational’ with [current

implementations].”

latencies, the copies may occasionally get out of sync and the
customer may occasionally encounter a stale version of the shop­
ping cart. Once again, this can be handled appropriately by the
application tier; the node that falls behind can catch up eventu­
ally or inconsistencies can be detected and resolved at an oppor­
tune time, such as at checkout. This is eventual consistency in
action.

The inventor of relational theory, Dr. Codd, was acutely aware
of the potential overhead of consistency checking. In his 1970
paper, he said:

“There are, of course, several possible ways in which a system
can detect inconsistencies and respond to them. In one approach
the system checks for possible inconsistency whenever an insertion,
deletion, or key update occurs. Naturally, such checking will slow
these operations down. [emphasis added] If an inconsistency has
been generated, details are logged internally, and if it is not reme-
died within some reasonable time interval, either the user or some-
one responsible for the security and integrity of the data is notified.
Another approach is to conduct consistency checking as a batch
operation once a day or less frequently.”

In other words, the inventor of relational theory would not
have found a conflict between his relational model and the
“eventual consistency” that is one of the hallmarks of the
NoSQL products of today. However, Amazon imagined a con­
flict because it quite understandably conflated the relational
model with the ACID guarantees of database management
systems. However, ACID has nothing to do with the relational
model per se (although relational theory does come in very
handy in defining consistency constraints); pre-relational
database management systems such as IMS provided ACID
guarantees and so did post-relational object-oriented database
management systems.

The tradeoff between consistency and performance is as im­
portant in the wired world of today as it was in Dr. Codd’s world.
We cannot cast stones at Dynamo for the infraction of not
guaranteeing the synchronization of replicated data or allowing
temporary inconsistencies between functional segments, be­
cause violations of the consistency requirement are equally
commonplace in the relational camp. The replication technique
used by Dynamo is known in the relational camp as “multimas­
ter replication.” Application developers in the relational camp
are warned about the negative impact of integrity constraints.2,3,4,5

And, most importantly, no DBMS that aspires to the relational
moniker current ly implements the SQL-92 “CREATE
ASSERTION” feature that is necessary to provide the consis­
tency guarantee. For a detailed analysis of this anomaly, refer
to Toon Koppelaars’s article “CREATE ASSERTION: The Im­
possible Dream?” in the August 2013 issue of the NoCOUG
Journal.

The False Premise of NoSQL
The final hurdle was extreme performance, and that’s where

Amazon went astray. Amazon believed that the relational model
makes data retrieval and updates inefficient and therefore chose
to store data as BLOBs. Amazon’s objection to the relational
model is colorfully summarized by the following statement at­
tributed to Esther Dyson, the editor of the Release 1.0 newslet­
ter, “Using tables to store objects is like driving your car home and
then disassembling it to put it in the garage. It can be assembled
again in the morning, but one eventually asks whether this is the

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://docs.oracle.com/cd/E17904_01/core.1111/e10108/adapters.htm#BABCCCIH
http://docs.oracle.com/cd/E17904_01/core.1111/e10108/adapters.htm#BABCCCIH
http://docs.oracle.com/cd/E23943_01/admin.1111/e10226/soaadmin_partition.htm#CJHCJIJI
http://docs.oracle.com/cd/E23943_01/admin.1111/e10226/soaadmin_partition.htm#CJHCJIJI
http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e14496/securing.htm#CHDDGFHH
http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e14496/securing.htm#CHDDGFHH
http://docs.oracle.com/cd/E24693_01/server.11203/e16579/constra.htm#i1006300
http://docs.oracle.com/cd/E24693_01/server.11203/e16579/constra.htm#i1006300

11
The NoCOUG Journal

most efficient way to park a car.” The statement dates back to
1988 and was much quoted when object-oriented databases
were in vogue.6

Since the shopping cart is an object, doesn’t disassembling it
for storage make data retrieval and updates inefficient? The be­
lief stems from an unfounded assumption that has found its way
into every relational implementation to date—that every table
should map to physical storage. In reality, the relational model is
a logical model and, therefore, it does not concern itself with
storage details at all. It would be perfectly legitimate to store the
shopping cart in a physical form that resembled a shopping cart
while still offering a relational model of the data complete with
SQL. In other words, the physical representation could be opti­
mized for the most important use case—retrieving the entire
shopping-cart object using its key—without affecting the rela­
tional model of the data. It would also be perfectly legitimate to
provide a nonrelational API for the important use cases. Dr.
Codd himself gave conditional blessing to such nonrelational
APIs in his 1985 Computerworld article, “Is Your DBMS Really
Relational?,” in which he says, “If a relational system has a low-
level (single-record-at-a-time) language, that low level [should not]
be used to subvert or bypass the integrity rules and constraints
expressed in the higher level relational language (multiple-records-
at-a-time).”

Have I mentioned that Dr. Codd invented relational theory?

Zeroth Normal Form
In fact, the key-blob or “key-value” approach used by Dynamo

and the products that followed it is exactly equivalent to “zeroth”
normal form in relational terminology.7 In his 1970 paper, Dr.
Codd says: “Nonatomic values can be discussed within the rela-
tional framework. Thus, some domains may have relations as ele-
ments. These relations may, in turn, be defined on nonsimple
domains, and so on. For example, one of the domains on which the
relation employee is defined might be salary history. An element
of the salary history domain is a binary relation defined on the
domain date and the domain salary. The salary history domain is
the set of all such binary relations. At any instant of time there are
as many instances of the salary history relation in the data bank as
there are employees. In contrast, there is only one instance of the
employee relation.” In common parlance, a relation with non-
simple domains is said to be in “zeroth” normal form or un­
normalized. Dr. Codd suggested that unnormalized relations
should be normalized for ease of use. Here is the unnormalized
employee relation from Dr. Codd’s paper:

employee (
 employee#,

“In one approach the system checks for possible inconsistency whenever an
insertion, deletion, or key update occurs. Naturally, such checking will slow
these operations down. If an inconsistency has been generated, details are

logged internally, and if it is not remedied within some reasonable time
interval, either the user or someone responsible for the security and

integrity of the data is notified. Another approach is to conduct consistency
checking as a batch operation once a day or less frequently.”

 name,
 birthdate,
 jobhistory (jobdate, title, salaryhistory (salarydate, salary)),
 children (childname, birthyear)
)

The above unnormalized relation can be decomposed into
four normalized relations as follows.

employee' (employee#, name, birthdate)
jobhistory' (employee#, jobdate, title)
salaryhistory' (employee#, jobdate, salarydate, salary)
children' (employee#, childname, birthyear)

However, this is not to suggest that these normalized relations
must necessarily be mapped to individual buckets of physical
storage. Dr. Codd differentiated between the stored set, the named
set, and the expressible set. In the above example, we have five
relations but, if we preferred it, the unnormalized employee rela­
tion could be the only member of the stored set. Alternatively, if
we preferred it, all five relations could be part of the stored set;
that is, we could legitimately store redundant representations of
the data. However, the common belief blessed by current prac­
tice is that the normalized relations should be the only members
of the stored set.

Even if the stored set contains only normalized relations, they
need not map to different buckets of physical storage. Oracle is
unique among database management systems that aspire to the
relational moniker in providing a convenient construct called the
“table cluster” that is suitable for hierarchical schemas. In Dr.
Codd’s example, employee# would be the cluster key, and rows
corresponding to the same cluster key from all four tables could
be stored in the same physical block on disk. If the cluster was a
“hash cluster,” no indexes would be required to retrieve records
corresponding to the same cluster key from all four tables.

Table Clusters in Oracle Database
Here’s a demonstration of using Oracle table clusters to store

records from four tables in the same block and retrieving all the

6	I’ve been unable to find the statement in the Release 1.0 archives at http://
www.sbw.org/release1.0/ so I don’t really know the true source or author
of the statement. However, the statement is popularly attributed to Esther
Dyson and claimed to have been published in the Release 1.0 newsletter.
I found a claim that the statement is found in the September 1988 issue,
but that didn’t pan out.

7	Chris Date is a strong proponent of “relation-valued attributes” (RVAs)
and argues that relations with RVAs are as “normal” as those without. See
“What First Normal Form Really Means” in Date on Database: Writings
2000–2006 (Apress, 2006).

http://www.sbw.org/release1.0/
http://www.sbw.org/release1.0/

12
November 2013

components of the “employee cart” without using indexes. First
we create four normalized tables and prove that all the records of
a single employee including job history, salary history, and chil­
dren are stored in a single database block so that there is never
any join penalty when assembling employee data. Then we create
an object-relational view that assembles employee information
into a single unnormalized structure and show how to insert into
this view using an “INSTEAD OF” trigger.

The following demonstration was performed using Oracle
Database 11.2.0.2 running on a prebuilt developer VM for Oracle
VM VirtualBox. First, we create a table cluster and add four
tables to the cluster.

CREATE CLUSTER employees (employee# INTEGER) hashkeys 1000;

CREATE TABLE employees
(
 employee# INTEGER NOT NULL,
 name VARCHAR2(16),
 birth_date DATE,
 CONSTRAINT employees_pk
 PRIMARY KEY (employee#)
)
CLUSTER employees (employee#);

CREATE TABLE job_history
(
 employee# INTEGER NOT NULL,
 job_date DATE NOT NULL,
 title VARCHAR2(16),
 CONSTRAINT job_history_pk
 PRIMARY KEY (employee#, job_date),
 CONSTRAINT job_history_fk1
 FOREIGN KEY (employee#)
 REFERENCES employees
)
CLUSTER employees (employee#);

CREATE TABLE salary_history
(
 employee# INTEGER NOT NULL,
 job_date DATE NOT NULL,
 salary_date DATE NOT NULL,
 salary NUMBER,
 CONSTRAINT salary_history_pk
 PRIMARY KEY (employee#, job_date, salary_date),
 CONSTRAINT salary_history_fk1
 FOREIGN KEY (employee#)
 REFERENCES employees,
 CONSTRAINT salary_history_fk2
 FOREIGN KEY (employee#, job_date)
 REFERENCES job_history
)
CLUSTER employees (employee#);

CREATE TABLE children
(
 employee# INTEGER NOT NULL,
 child_name VARCHAR2(16) NOT NULL,
 birth_date DATE,
 CONSTRAINT children_pk
 PRIMARY KEY (employee#, child_name),
 CONSTRAINT children_fk1
 FOREIGN KEY (employee#) REFERENCES employees

)
CLUSTER employees (employee#);

Then we insert data into all four tables. We can use DBMS_
ROWID.BLOCKNUMBER to confirm that all the new records
have been stored in a single database block, even though they
belong to different tables. Therefore the join penalty has been
eliminated.

INSERT INTO employees
 VALUES (1, 'IGNATIUS', '01-JAN-1970');

INSERT INTO children
 VALUES (1, 'INIGA', '01-JAN-2001');
INSERT INTO children
 VALUES (1, 'INIGO', '01-JAN-2002');

INSERT INTO job_history
 VALUES (1, '01-JAN-1991', 'PROGRAMMER');
INSERT INTO job_history
 VALUES (1, '01-JAN-1992', 'DATABASE ADMIN');

INSERT INTO salary_history
 VALUES (1, '01-JAN-1991', '1-FEB-1991', 1000);
INSERT INTO salary_history
 VALUES (1, '01-JAN-1991', '1-MAR-1991', 1000);
INSERT INTO salary_history
 VALUES (1, '01-JAN-1992', '1-FEB-1992', 2000);
INSERT INTO salary_history
 VALUES (1, '01-JAN-1992', '1-MAR-1992', 2000);

SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
 FROM employees WHERE employee# = 1;
SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
 FROM children WHERE employee# = 1;
SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
 FROM job_history WHERE employee# = 1;
SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
 FROM salary_history WHERE employee# = 1;

Next we create an object-relational view that presents each
employee as an object.

CREATE OR REPLACE TYPE children_rec AS
OBJECT
(
 child_name VARCHAR2(16),
 birth_date DATE
)
/

CREATE OR REPLACE TYPE children_tab AS
TABLE OF children_rec
/

CREATE OR REPLACE TYPE salary_history_rec AS
OBJECT
(
 salary_date DATE,
 salary NUMBER
)

“Using primary and foreign keys can impact performance. Avoid using
them when possible. . . . For performance reasons, the Oracle BPEL

Process Manager, Oracle Mediator, human workflow, Oracle B2B, SOA
Infrastructure, and Oracle BPM Suite schemas have no foreign

key constraints to enforce integrity.”

DBMS_ROWID.BLOCKNUMBER
DBMS_ROWID.BLOCKNUMBER

13
The NoCOUG Journal

/

CREATE OR REPLACE TYPE salary_history_tab AS
TABLE OF salary_history_rec
/

CREATE OR REPLACE TYPE job_history_rec AS
OBJECT
(
 job_date DATE,
 title VARCHAR2(16),
 salary_history SALARY_HISTORY_TAB
)
/

CREATE OR REPLACE TYPE job_history_tab AS
TABLE of job_history_rec
/

CREATE OR REPLACE TYPE employee_rec AS
OBJECT
(
 employee# INTEGER,
 name VARCHAR2(16),
 birth_date DATE,
 children CHILDREN_TAB,
 job_history JOB_HISTORY_TAB
)
/

create or replace view employees_view as
SELECT
 employee#,
 name,
 birth_date,
 CAST
 (
 MULTISET
 (
 SELECT
 child_name,
 birth_date
 FROM children
 WHERE employee#=e.employee#
)
 AS children_tab
) children,
 CAST
 (
 MULTISET
 (
 SELECT
 job_date,
 title,

 CAST
 (
 MULTISET
 (
 SELECT salary_date, salary
 FROM salary_history
 WHERE employee#=e.employee#
 AND job_date=jh.job_date
)
 AS salary_history_tab
) salary_history
 FROM job_history jh
 WHERE employee#=e.employee#
)
 AS job_history_tab
) job_history
FROM employees e;

Let’s retrieve one employee object and look at the query exe­
cution plan. No indexes are used in retrieving records from each
of the four tables. The cost of the plan is just 1. This is the mini­
mum achievable cost, indicating that there is no join penalty. The
results are shown in Figure 1, below.

SELECT * FROM employees_view WHERE employee# = 1;

Next, let’s create an “INSTEAD OF” trigger so that we insert
into the view directly; that is, we use a single insert statement
instead of multiple insert statements. The trigger will do all the
heavy lifting for us.

CREATE OR REPLACE TRIGGER employees_view_insert
INSTEAD OF INSERT ON employees_view
REFERENCING NEW AS n
FOR EACH ROW
DECLARE
 i NUMBER;
BEGIN
 INSERT INTO employees
 VALUES
 (
 :n.employee#,
 :n.name,
 :n.birth_date
);

 FOR i IN :n.children.FIRST .. :n.children.LAST
 LOOP
 INSERT INTO children

select * from employees_view where employee#=1;

 EMPLOYEE# NAME BIRTH_DATE CHILDREN JOB HISTORY
---------- ---------- ---------- -- --
 1 IGNATIUS 01-JAN-70 CHILDREN_TAB(CHILDREN_REC('INIGA', '01-JAN-01' JOB_HISTORY_TAB(JOB_HISTORY_REC('01-JAN-91', '
), CHILDREN_REC('INIGO', '01-JAN-02')) PROGRAMMER', SALARY_HISTORY_TAB(SALARY_HISTORY
 _REC('01-FEB-91', 1000), SALARY_HISTORY_REC('0
 1-MAR-91', 1000))), JOB_HISTORY_REC('01-JAN-92
 ', 'DATABASE ADMIN', SALARY_HISTORY_TAB(SALARY
 _HISTORY_REC('01-FEB-92', 2000), SALARY_HISTOR
 Y_REC('01-MAR-92', 2000))))

--
| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |
--
0	SELECT STATEMENT		1			1 (100)		1	00:00:00.01	1
* 1	TABLE ACCESS HASH	CHILDREN	1	2	34	1 (0)	00:00:01	2	00:00:00.01	1
* 2	TABLE ACCESS HASH	SALARY_HISTORY	2	2	44	1 (0)	00:00:01	4	00:00:00.01	3
* 3	TABLE ACCESS HASH	JOB_HISTORY	1	2	48	1 (0)	00:00:01	2	00:00:00.01	1
* 4	TABLE ACCESS HASH	EMPLOYEES	1	1	20	1 (0)	00:00:01	1	00:00:00.01	1
--

Figure 1

e.employee
e.employee
jh.job
e.employee
n.employee
n.name
n.birth
n.children.FIRST
n.children.LAST

14
November 2013

 VALUES
 (
 :n.employee#,
 :n.children(i).child_name,
 :n.children(i).birth_date
);
 END LOOP;

 FOR i IN :n.job_history.FIRST .. :n.job_history.LAST
 LOOP
 INSERT INTO job_history VALUES
 (
 :n.employee#,
 :n.job_history(i).job_date,
 :n.job_history(i).title
);
 FOR j IN :n.job_history(i).salary_history.FIRST .. :n.job_history(i).salary_
history.LAST
 LOOP
 INSERT INTO salary_history
 VALUES
 (
 :n.employee#,
 :n.job_history(i).job_date,
 :n.job_history(i).salary_history(j).salary_date,
 :n.job_history(i).salary_history(j).salary
);
 END LOOP;
 END LOOP;
END;
/

Finally, let’s insert an employee object directly into the view.

INSERT INTO employees_view
VALUES
(

 2,
 'YGNACIO',
 '01-JAN-70',
 CHILDREN_TAB
 (
 CHILDREN_REC('INIGA', '01-JAN-01'),
 CHILDREN_REC('INIGO', '01-JAN-02')
),
 JOB_HISTORY_TAB
 (
 JOB_HISTORY_REC
 (
 '01-JAN-91',
 'PROGRAMMER',
 SALARY_HISTORY_TAB
 (
 SALARY_HISTORY_REC('01-FEB-91', 1000),
 SALARY_HISTORY_REC('01-MAR-91', 1000)
)
),
 JOB_HISTORY_REC
 (
 '01-JAN-92',
 'DATABASE ADMIN',
 SALARY_HISTORY_TAB
 (
 SALARY_HISTORY_REC('01-FEB-92', 2000),
 SALARY_HISTORY_REC('01-MAR-92', 2000)
)
)
)
);

Amazon vs. eBay
The eBay e-commerce platform is as large as that of Amazon,

and eBay had the same goals as Amazon: extreme performance,
extreme scalability, and extreme availability. To achieve these
goals, eBay also used functional segmentation, sharding, and
replication. However, eBay did not see the need to abandon the
relational model in the local instances and continued to use
Oracle and SQL in these instances. This proves that it is possible
to build a modern e-commerce platform without abandoning the
relational model.

Conclusion
NoSQL is based on the false premise that the relational model

creates a join penalty. Three of the four pillars of the NoSQL
approach—functional segmentation, sharding, and replication—
are compatible with the relational model. Amazon had an op­
portunity to take the relational model to the next level but did
not rise to the occasion. Amazon could have eaten its cake (ex­
treme performance, extreme scalability, and extreme availability
for important use cases such as shopping carts) and had it too
(the relational model with all its wonderful declarative power).
As Hugh Darwen said in his NoCOUG Journal interview:
“Developers tend to be more concerned with convenience in data-
base definition and updating than with the ease of deriving useful
and reliable information from the database. . . . Those who dispar-
age relational are almost invariably very far from being properly
informed and almost invariably equate ‘relational’ with [current
implementations].” I’ll leave you with that thought. s

The statements and opinions expressed here are the author’s and
do not necessarily represent those of Oracle Corporation.

Copyright © 2013, Iggy Fernandez

n.employee
n.children
n.children
n.job_history.FIRST
n.job_history.LAST
n.employee
n.job
n.job
n.job
salary_history.FIRST
n.job
salary_history.LAST
salary_history.LAST
n.employee
n.job
n.job
n.job

15
The NoCOUG Journal

S P E C I A L
F E AT U R E

It must be that enforcement of business rules is hot again.
Toon Koppelaars had an article on CREATE ASSERTION
in the August 2013 edition of the NoCOUG Journal, asking
if it is an “impossible dream.” Iggy Fernandez mentioned

the subject in the May 2013 edition. And I see the topic pop up
every now and then in numerous other places and discussion
forums.

The general narrative is usually along the lines of “no vendor
offers support for CREATE ASSERTION [or even cross-row
CHECK constraints, for that matter], so the best we can do is
write our own triggers.” Now sit tight. Bold claim ahead: This is
simply not true. We can do better, because the “problem” of sup­
porting assertions has been solved . . . and implemented. You can
try it out within the hour if you want. But first, perhaps, you’ll
finish reading this article.

Before substantiating my claim, I’ll comment a bit more on
constraint-related matters, especially about the problems of con­
straint enforcement that programmers still face, even when
they’re using triggers and, possibly, generator tools.

First, as far as I know, computing which tables to add triggers
to is still left to the user. Ceri/Widom already demonstrated this
information to be automatically computable in their award-
winning 1990 paper.1 And it’s not a trivial computation to make.
Journal articles typically limit themselves to simple examples,
and for these, the computation is indeed easy enough for hu­
mans to do it “on sight.” But I invite anyone familiar with Toon
Koppelaars’ famous Applied Mathematics for Database Profession
als (AM4DP) book2 to do the exercise for the pièce de résistance
case: You are allowed to teach a certain course only if: (1) you
have been employed for at least one year, or (2) you have at­
tended that course first and the trainer of that course offering
attends your first teach as participant. Try to figure out all the
triggers you’d need to define in order to enforce this rule cor­
rectly and completely. Hint: If your result doesn’t include
DELETE from Course Session Subscriptions plus DELETE
from Course Sessions, then you still have it wrong (and there
are yet a few more that aren’t so intuitively clear).

Second, specifying which queries to fire for each individual
trigger identified in the foregoing step is even more of a night­
mare. Getting it completely right will be outright impossible for
most normal humans. Once again, try getting it right from the
get-go for the given example of training sessions, for the case of
DELETE from course subscriptions. Now you might argue, isn’t
the analysis work involved here exactly the same as when the

CREATE ASSERTION:
Neither Impossible

nor a Dream
by Erwin Smout Erwin Smout

business rule is to be enforced through application logic? Well,
you’re right: indeed it is. But what does that imply exactly? That
I’m wrong in claiming that it’s impossible to do right, because in
practice we are already doing it perfectly, or that I’m still right in
pointing out the difficulties, and that you only need to observe
practice to see that this is, indeed, one area in which we are fail­
ing, and rather abysmally at that? Have you never yet been inves­
tigating how “inconsistent” data managed to make its way to the
database, and when you found the reason, slapped yourself, say­
ing something like, “Oops, how did we come to overlook that
possibility in our analysis”? I’m rather inclined to rest my case
and stand by my claim that the task is so complex, it is impossible
to get it perfectly right.

Third, there are additional dimensions to the problem that
(a) are mentioned only cursorily or, worse, not at all, even in
highly respectable treatments such as Toon Koppelaars’ AM4DP
book, and (b) further complicate the foregoing problems by
orders of magnitude. One such dimension is deferred constraint
checking. You probably know when that is needed/inevitable:
whenever a rule is such that satisfying it inevitably requires si­
multaneous updates to different tables or requires simultaneous
updates of different types (insert/delete) to the same table, for
the same reason. With deferred constraint checking, the con­
straints are checked at commit time. Achieving the same effect
with triggers would require something like before-commit trig­
gers, and even if those were supported, what you would then be
doing is essentially (a) update tables; (b) check everything; (c) if
anything is not okay, undo updates to tables. However, the pre­
ferred approach for updating is (a) check everything before
doing the updates, and proceed with the updates only if every­
thing is okay.

The first point makes the job of achieving complete business
rules checking using triggers real tough; the second point makes
it nigh impossible; and the third point makes it unclear whether
that ultimate goal is even achievable at all (using triggers, and
with the desideratum of “as efficiently as possible” also implying
“no shoddy trial-and-error approaches”).

1	Stefano Ceri and Jennifer Widom, 1990. “Deriving Production Rules for
Constraint Maintenance,” VLDB proc., pp. 566–577.

2	Lex de Haan and Toon Koppelaars, Applied Mathematics for Database
Professionals, Apress, ISBN 978-1-59059-745-3.

16
November 2013

Showtime
But as I claimed: the good news is that the problem has been

solved. The material I’ll be using to substantiate this claim is
based on my DBMS project, SIRA_PRISE3 (but please also see
the final footnote). You can find more information on the web­
site; for the purpose of this article I’ll briefly list the most impor­
tant characteristics here:

➤	It’s a relational DBMS, based on the ideas from The Third
Manifesto.4

➤	As such, it is a “No to SQL” system, and it doesn’t speak or
understand SQL.

➤	It supports an extensive set of operators of the relational
algebra, including transitive closure, summarizeby, di­
videby, and group/ungroup. In other words, in terms of
relational data manipulation, it’s aimed toward the ability
to answer any query that an SQL system can answer.

➤	It supports multiple assignment, i.e., one DML statement
can update multiple distinct tables/relvars (or do multiple
distinct types of update operations on the same table/rel­
var).

➤	Database constraints that constitute a key on a virtual
relvar (Third Manifesto-speak for “view”) can be defined
as such (i.e., it supports the equivalent of a hypothetical
“CREATE VIEW . . . KEY . . .” in SQL).

➤	It offers support for database integrity using declarative
database constraints. This essentially means that it sup­
ports CREATE ASSERTION.

The main page on the SIRA_PRISE website has a comparison
between what the enforcement of a given constraint looks like in
SQL and what it looks like in SIRA_PRISE, and this can be con­
sidered equivalent to what it would look like in an SQL system
that supports ASSERTIONs. The constraint I’ll use to illustrate
my point is inspired by the example in the AM4DP book and
implements the business rule, “Employees cannot earn more
than their manager.” This is a single-table constraint on the EMP
table from the AM4DP example. The assumed table structure is
as in the book, modulo things such as attribute naming that I’ve
altered to match one preferred naming style of mine. One last
disclaimer: These code snippets have never been intended for
anything more than illustration of concepts and ideas, so this
code has deliberately never been proofed on a real operational
system.

Let’s start with dissecting the “SQL triggers” approach. First,
there is some facility, housekeeping stuff that must be put in
order. In particular, we need this thing called a “transition effect
table”:

create global temporary table EMP_TE
(
 DML char(1) not null check (DML in ('I' ,'U', 'D')),
 ROW_ID rowid,
 nr_emp ...,
 nm_job ...,

 dt_hired ...,
 cd_sgrade ...,
 am_sal ...,
 nr_dept ...,
 nr_emp_mgr ...,
 check(DML<>'I' or row_id is not null),
 check(DML<>'U' or row_id is not null),
 check(DML<>'D' or row_id is null)
)
on commit delete rows;

Points arising:

➤	The structure of this table must be kept in sync with the
structure of the EMP table itself; that is, any structural
changes applied later to the EMP table must also be ap­
plied to this TE table.

➤	If an existing row is affected (Delete or Update), it appears
in this table in the form of its column values. If a new row
is involved (Insert or Update), it appears in this table in
the form of the rowid pointing to the row itself in the
“base” table (EMP).

➤	All columns in this table except DML must be nullable
(see the trigger below for why).

➤	The check constraints are not strictly necessary (as long as
the only updaters to this table are the triggers below), but
they could also be extended to enforce that nullability of
the nr_emp, . . . columns is exactly as in the EMP table
itself, in the cases where DML IN ('U','D').

Next, there’s some housekeeping to do in order to get the
proper content into this TE table:

create trigger EMP_BIUD_TE
before insert or update or delete on EMP
begin
 -- reset before every DML
 delete from EMP_TE;
end;

create trigger EMP_AIUDR_TE
after insert or delete or update on EMP for each row
begin
 -- register statement tuple
 if INSERTING then
 -- only store 'pointer' to inserted row
 insert into EMP_TE (DML,ROW_ID) values ('I', :new.rowid);
 elseif UPDATING then
 -- snapshot of old row plus pointer to replacing row
 insert into EMP_TE
 (
 DML,
 row_id,
 nr_emp,
 nm_job,
 dt_hired,
 cd_sgrade,
 am_sal,
 nr_dept,
 nr_emp_mgr
)
 values
 (
 'U',
 :new.rowid,
 :old.nr_emp,
 ...,
 :old.nr_dept,
 :old.nr_emp_mgr
);
 elseif DELETING

3	SIRA_PRISE, http://shark.armchair.mb.ca/~erwin.
4	Chris Date and Hugh Darwen, Databases, Types and the Relational Model,

Addison-Wesley, ISBN 0-321-39942-0, http://www.thethirdmanifesto.
com.

new.rowid
new.rowid
old.nr
old.nr
old.nr
http://shark.armchair.mb.ca/~erwin
http://www.thethirdmanifesto.com
http://www.thethirdmanifesto.com

17
The NoCOUG Journal

 --snapshot of old row
 insert into EMP_TE
 (
 DML,
 row_id,
 nr_emp,
 nm_job,
 dt_hired,
 cd_sgrade,
 am_sal,
 nr_dept,
 nr_emp_mgr
)
 values
 (
 'D',
 null,
 :old.nr_emp,
 ...,
 :old.nr_dept,
 :old.nr_emp_mgr
);
 end if;
 --
end;

The first trigger empties our TE table before any update; the
second copies over values from the EMP table to the TE table.

Points arising:

➤	The updates are already tentatively being applied to the
EMP table, after which we are going to set up our TE table
to verify whether the update is acceptable or not (and if it’s
not, to undo the already applied update).

Next, for ease of reference, we define some views that
allow us to distinguish the current inserts, deletes, and updates
from one another.

create view V_EMP_ITE as
select e.*
from EMP_TE te, EMP e
where DML='I' and te.row_id = e.rowid;

create view V_EMP_UTE as
select
 e.nr_emp as n_nr_emp,
 e.nm_job as n_nm_job,
 ...,
 e.nr_dept as n_nr_dept,
 e.nr_emp_mgr as n_nr_emp_mgr,
 te.nr_emp as o_nr_emp,
 te.nm_job as o_nm_job,
 ...,
 te.nr_dept as o_nr_dept,
 te.nr_emp_mgr as o_nr_emp_mgr
from emp_te te, emp e
where DML = 'U' and te.ROW_ID = e.rowid;

create view V_EMP_DTE as
select
 nr_emp,
 nm_job,
 ...,
 nr_dept,
 nr_emp_mgr
from emp_te
where DML='D';

Points arising:

➤	These three views are the constructs that are actually in­
teresting and that we will be using in the piece of code to
enforce our business rule.

➤	Note that these three views make for three additional
places where a table is defined whose heading is supposed
to be kept perfectly in sync with that of our EMP table. We
definitely don’t want to be forced into doing this by hand,
and I personally don’t even want to be forced into putting
myself in front of a generator tool to push that “sync” but­
ton manually. This sort of stuff must be internalized into
the DBMS and made available automatically.

At this point I’d like to skip over to SIRA_PRISE for a mo­
ment. “Internalizing that sort of stuff into the DBMS” is exactly
what has been done in that project. Each SIRA_PRISE relvar
(“table”) is automatically associated with two constructs that
c an b e invoke d as INSERT S(<re lvar name>) and
DELETES(<relvarname>). These constructs can legitimately be
invoked in any expression in which the context of execution is an
update DML statement, and they yield exactly the relations
(“tables”) from that ITE and DTE view. Points arising:

➤	You are now, of course, bound to ask, “What about the
updates view UTE?” I’ll come to that later.

➤	As far as the enforcement of database constraints is con­
cerned, these constructs must actually not even be known
by the user for the system to work properly. The reasons
for exposing these two constructs to the SIRA_PRISE user
has nothing to do with database constraints.

This latter point is evidenced by the fact that there is no trace
of INSERTS() and/or DELETES() invocations in the equivalent
SIRA_PRISE code that I will show you shortly.

Back to SQL and triggers. We have now arrived at the point
where we can finally write down the code that will enforce our
business rule:

create trigger EMP_AIS_R47 after insert on EMP
declare pl_dummy varchar(40);
begin
 -- Inserting an employee. Check salary < manager's salary
 for r in (select distinct nr_emp, am_sal, nr_emp_mgr from V_EMP_ITE i)
 loop
 begin
 -- acquire serialization lock
 p_request_lock('R47'||to_char(r.nr_emp));
 --
 select 'Constraint R47 is satisfied' into pl_dummy
 from DUAL
 where exists (
 select 'manager with higher salary'
 from EMP e
 where e.nr_emp = r.nr_emp_mgr and e.am_sal <= r.am_sal
);
 --
 exception when no_data_found then
 raise_application_error (
 -20999,
 'Constraint R47 is violated for employee'||to_char(r.nr_emp)
);
 --
 end;
 end loop;
end;

Points arising:

➤	The issue with the serialization lock is explained in depth
in AM4DP. It is for the most part Oracle-specific, and if it
could be eliminated, then we could perhaps also replace
that explicit FOR loop by a simple natural join. This is

old.nr
old.nr
old.nr
te.row
e.rowid
e.nr
e.nm
e.nr
e.nr
te.nr
te.nm
te.nr
te.nr
te.ROW
e.rowid
r.nr
e.nr
r.nr
e.am
r.am
r.nr

18
November 2013

something that Codd would definitely have preferred over
this particular version.

➤	Anyway, for each row in our ITE view (rows that have
been inserted into EMP), we execute a query to check a
certain condition.

➤	But exactly which query is to be executed here is for the
database designer to craft by hand. I’ve claimed before that
this can be even more of a nightmare. Another observa­
tion I made, that typical journal articles limit themselves
to very simple examples—and this typically makes things
seem relatively simple—also applies. What needs to be
done here is to bring two rows together (an employee and
his manager) and do a comparison on them. How difficult
can that be? Well, you can try it out. I’ve deliberately put a
mistake in the foregoing code. Can you spot it? And even
if the answer to that is “yes,” I’m confident that you’ll still
appreciate the difficulty of crafting this sort of query by
hand if the business rule involves 7 or 12 or whatever
number of tables, all tied together with any number of
JOINs, EXCEPTs, UNIONs, and the like.

➤	Also far from obvious: there is also presumably a foreign
key from nr_emp_mgr to nr_emp. What will happen in
this trigger if that FK is violated? Does the order of execu­
tion of the triggers affect the nature of the error message
we get in case of violations? This is yet another thorny
issue, and from practical experience, I can tell that it’s rela­
tively easy to write these constraint-enforcing queries (or
the constraints themselves) in such a way that they some­
times cause extremely unintuitive failure messages.

➤	We are only doing this check for the inserts into EMP. But
clearly, updates could violate our business rule as well. We
need to define a second similar trigger for the update case:

create trigger EMP_AUS_R47
after update on EMP
declare pl_dummy varchar(80)
begin
 -- changing a manager or salary requires checking against new manager's
salary
 for r in (
 select
 n_nr_emp as nr_emp,
 n_am_sal as am_sal,
 n_nr_emp_mgr as nr_emp_mgr
 from V_EMP_UTE e
 where e.o_nr_emp=e.n_nr_emp
 and (e.n_am_sal > e.o_am_sal || e.n_nr_emp_mgr <> e.o_nr_emp_mgr)
)
 loop
 begin
 -- acquire serialization lock
 p_request_lock('R47' || to_char(r.nr_emp));
 select 'Constraint R47 is satisfied' into pl_dummy
 from DUAL
 where exists (
 select 'manager with higher salary'
 from EMP e
 where e.nr_emp = r.nr_emp_mgr and e.am_sal >= r.am_sal);
 --
 exception when no_data_found then
 --
 raise_application_error(-20999, 'Constraint R47 is violated for employee'
|| to_char(r.nr_emp));
 --
 end;
 end loop;
--
end;

Points arising:

➤	With this one, there is considerable danger of making
certain logical mistakes as a consequence of (let’s not kid
ourselves) the ever-pressing desire to “optimize as much
as possible.” For example, we could perfectly add that
predicate “WHERE N_AM_SAL > O_AM_SAL” in that
SELECT that drives the for loop, can’t we? We don’t need
to actually do this query if someone’s salary has decreased,
right? If someone’s salary has decreased, then it certainly
cannot have gone above that of his manager, right? Wrong!
It still can if at the same time the poor employee-with-
decreased-salary also gets another manager!

➤	So we extend the predicate (that’s what the example given
here shows) to also do the check for employees who
changed managers. Is the trigger now correct? Will it now
correctly detect all possible violations of the business rule?
Hint: What if a manager’s salary is decreased below that of
one of his employees? Where is that detected?

➤	Conclusion: Our update trigger as given here still needs
further extending to cater to the case of a manager’s salary
being decreased. So once again I think this shows how
even an extremely simple business rule leads to a signifi­
cant number of intricate possibilities that are all too easily
overlooked (ultimately leading to the business rule not
actually being enforced in all circumstances). We don’t
want this stuff left in the hands of humans. It’s just too
complicated for us, and all the more so if we are operating
under time pressure. We need this stuff computed by the
machine.

And that’s where SIRA_PRISE steps in. Enforcing the very
same business rule “Employees cannot earn more than their
manager” is just a matter of declaring the following constraint:

assert databaseconstraint, databaseconstraint (
 tuple (
 constraintlabel(R47 - Employees cannot earn more than the employee
they report to.)
 errorcode(115147)
 sp_expression (
 restrict (
 join (
 emp,
 project (
 rename (
 emp,
 (nr_emp_mgr, mgrmgr, nr_emp, nr_emp_mgr, am_sal_mthly,
am_sal_mthly_mgr)
),
 (nr_emp_mgr, am_sal_mthly_mgr)
)
),
 gt(am_sal_mthly, am_sal_mthly_mgr)
)
)
)
)

This is probably more like gibberish than like DDL to the
seasoned SQL/Oracle guy, so let’s dissect this stuff a little bit.

➤	The assert DATABASECONSTRAINT portion means
t h a t w e a r e d e c l a r i n g a d a t a b a s e c o n s t r a i n t .
“DATABASECONSTRAINT” is just the name of a catalog
relvar, and “assert” means that we are about to INSERT
into it, roughly speaking.

r.nr
e.nr
r.nr
e.am
r.am
r.nr

19
The NoCOUG Journal

➤	The databaseconstraint(...) construct denotes essentially
a relation (“table”) value that matches the type of the con­
cerned database relvar (“table”)—something roughly simi­
lar to VALUES(...) in SQL.

➤	The tuple(...) construct corresponds roughly to an SQL
ROW(...) construct.

➤	The foregoing is thus roughly equivalent to INSERT INTO
DATABASECONSTRAINT (constraintlabel, errorcode,
sp_expression) VALUES(...).

➤	The constraintlabel (a “column” in the databaseconstraint
“table”) is recorded in the catalog for purposes of docu­
mentation.

➤	The errorcode is the identifying key for any constraint in
the system.

➤	The sp_expression is a column of type String (the equiva­
lent of SQL VARCHAR) holding the defining expression
for the constraint. In reality, character escaping using
backslashes has to be applied to this command, but that
escaping has been left out here for reasons of readability.

It’s this latter expression that defines the nature of the con­
straint, so let’s take a closer look at that expression itself, from the
outside in.

➤	The outermost portion ‘RESTRICT(... , GT(...))’ is a
RESTRICT on some join, with the restrict condition:
am_sal_mthly > am_sal_mthly_mgr.

➤	That restrict is applied to the natural join denoted by JOIN
(EMP , ...), which serves to join each employee to his
manager, so to speak.

➤	The second argument is a projection of a rename (equiva­
lent to SELECT NR_EMP AS NR_EMP_MGR, AM_SAL_
MTHLY AS AM_SAL_MTHLY_MGR) of EMP.

Hence this entire expression is the equivalent of

SELECT * FROM (
 SELECT * FROM EMP
 NATURAL JOIN
 SELECT
 NR_EMP AS NR_EMP_MGR,
 AM_SAL_MTHLY AS AM_SAL_MTHLY_MGR
 FROM EMP
)
WHERE AM_SAL_MTHLY > AM_SAL_MTHLY_MGR;

This is the query that would identify all the employees who
earn more than their manager or, in other words, all the employ­
ees who are in violation of the constraint! SIRA_PRISE calls this
the “faults expression” for that reason. It’s also the query that you
would have to provide if you had “CREATE ASSERTION em­
ployee_paid_too_much CHECK NOT EXISTS (...)”. And the
query you would be using to enforce the constraint through the
materialized view trick is, of course, also very closely related to
this one.

In addition to being checked for general validity as a database
query, the following three extra steps are also undertaken by
SIRA_PRISE as a consequence of this expression being declared
as defining a database constraint:

➤	All involved relvars (“tables”) are identified (just EMP in
this case).

➤	For all involved relvars, it is computed which update
operation types could possibly affect the outcome of the
database constraint (just INSERT in this case; UPDATE is
always regarded as being both an INSERT and a DELETE,
so finding “sensitivity” to INSERT covers UPDATE as
well).

➤	For the constraint overall, an expression is computed that
determines, for any given database update, whether it will
make the faults expression nonempty. If it does, then that
particular database update is unacceptable because of the
implied constraint violation. These expressions tend to get
horrendously lengthy when spelled out, but the good
thing is that no one ever has to actually take a closer look
at them! This is, of course, the very heart of the constraint
enforcement engine, and it has the following desirable
properties:

➤	For each database update, there is exactly one check per
potentially affected constraint to see if there is a violation of
that constraint or not. (Contrast this with the triggers-
based approach in which there are potentially lots of que­
ries, one per individual row.)

➤	For each database update, compliance to all the declared
constraints can effectively be determined prior to actually
writing out the updates to the database (contrast this with
applying the updates and then using the triggers to see if
there is now a violation).

If you are looking for a downside, it has to do with that so-
called “optimization” in the update triggers. I know currently of
no way to decide reliably that optimizations such as “if the salary
has decreased then there’s no need to check” can safely be ap­
plied. So they aren’t. But as I’ve shown, it’s easy enough to apply
such optimizations prematurely, and wrongly. They’re danger­
ous. And the upside to counter it is that the machinery will not
miss possibilities such as “What if the manager’s salary has de­
creased” because there’s a simple mechanical computation un­
derneath.

As a second example, let’s actually set up (but please also see
the final footnote) and explore a simple case of “complex con­
straint” enforcement (this time without looking at the SQL ver­
sion). You all know bill-of-material structures. Parents have
children, children can themselves be parents of their own chil­
dren, etc., etc. And no person in the structure can ever be among
his own ancestry, at whatever level/generation. Or parts can,
themselves, be an assembly of other parts, and no part can ever
be contained within itself. Two tables are required for this type
of problem, one for defining the “existence” of individuals (parts,
persons ...) and another one for defining the “containment rela­
tionship” between the individuals. The second one typically
contains just the two identifiers (parentid and childid) of the
“related” individuals, and it’s the only one we need as far as the
constraint that we’re interested in is concerned.

define the business elements

add attribute, attribute (
 tuple (

20
November 2013

 attributename(parentid)
 typename(long)
)
 tuple (
 attributename(childid)
 typename(long)
)
)

define the logical structure

add relvar, relvar (
 tuple (
 relvarname(nocoug)
 relvarpredicate(§parentid§ is the parent of §childid§)
)
)

add relvarattribute, relvarattribute (
 tuple (
 relvarname(nocoug)
 attributename(parentid)
)
 tuple (
 relvarname(nocoug)
 attributename(childid)
)
)

add key, key (
 tuple (
 relvarname(nocoug)
 errorcode(777777)
)
)

add keyattribute, keyattribute (
 tuple (
 attributename(childid)
 errorcode(777777)
)
)

define the storage resources
the cmd() wrappers have the effect of chaining together all the individual
assignments into a single multi-update.

cmd (
 add dbmsfile, dbmsfile (
 tuple (
 filename(NOCOUG.SPDB)
 pagesize(32768)
)
)
)
cmd (
 add storagespace, storagespace (
 tuple (
 filename(NOCOUG.SPDB)
 storagespaceid(1)
 pagecount(32768)
 extentscount(7)
)
)
)
cmd (
 add hashedrecordspace, hashedrecordspace (
 tuple (
 filename(NOCOUG.SPDB)
 storagespaceid(1)
 gapcompressionthreshold(4)
 maximumgaps(9)
)
)
)

define the physical design

add recordtype, recordtype (
 tuple (

 relvarname(nocoug)
 recordtypename(R1_nocoug)
 maximumlength(80)
 filename(nocoug.spdb)
 storagespaceid(1)
)
 tuple (
 relvarname(nocoug)
 recordtypename(R2_nocoug)
 maximumlength(80)
 filename(nocoug.spdb)
 storagespaceid(1)
)
)

add recordattribute, recordattribute (
 tuple (
 relvarname(nocoug)
 recordtypename(R1_nocoug)
 ordinal(5)
 attributename(childid)
)
 tuple (
 relvarname(nocoug)
 recordtypename(R1_nocoug)
 ordinal(15)
 attributename(parentid)
)
 tuple (
 relvarname(nocoug)
 recordtypename(R2_nocoug)
 ordinal(5)
 attributename(childid)
)
 tuple (
 relvarname(nocoug)
 recordtypename(R2_nocoug)
 ordinal(15)
 attributename(parentid)
)
)

add indexattribute, indexattribute (
 tuple (
 relvarname(nocoug)
 recordtypename(R1_nocoug)
 ordinal(7)
 attributename(childid)
)
 tuple (
 relvarname(nocoug)
 recordtypename(R2_nocoug)
 ordinal(7)
 attributename(parentid)
)
)

The faults expression to use in the needed database constraint
on the relvar is

RESTRICT(TCLOSE(nocoug, (parentid, childid)), EQ(parentid, childid))

Once again we’ll take a brief look at the anatomy of the for­
mulation of this faults expression:

➤	The TCLOSE expression produces the (parentid, childid)
pairs of individuals such that parentid denotes an indi­
vidual that is an ancestor of the individual denoted by
childid, at any level. (In SQL, achieving this would involve
a WITH RECURSIVE ... expression.)

➤	The RESTRICT on that, then, obviously yields only those
pairs that denote an ancestry relationship between an in­
dividual and itself, and such a scenario is clearly at fault.

NOCOUG.SPDB
NOCOUG.SPDB
NOCOUG.SPDB
nocoug.spdb
nocoug.spdb

21
The NoCOUG Journal

 (As already indicated, this is a declaration, an algebraic ex­
pression, of the rule. This does NOT imply that this query as
such is executed upon each database update. If it did, I’d be re­
ally quite stupid to even be submitting this article. The queries
that are executed for actually verifying the constraint in the face
of a given update are derived from this one, and are aimed at
maximal efficiency.)

Our relvar is still empty; now let’s try to get some unaccept­
able data in. The command tries to insert three tuples corre­
sponding to the pairs (1,3), (3,7), and (7,1), which clearly form a
cycle, which constitutes a violation of the constraint.

add nocoug, nocoug (
 tuple(parentid(1) childid(3))
 tuple(parentid(3) childid(7))
 tuple(parentid(7) childid(1))
)

Constraint violation(777778)
Constraint 777778 violated. Violating tuple attribute values are :
CHILDID=1, PARENTID=1

Okay, so that fails appropriately.
Now let’s see if we can manage to get the same invalid data in,

in multiple update steps. First we add two of the three foregoing
tuples, which should be acceptable:

add nocoug, nocoug (
 tuple(parentid(1) childid(3))
 tuple(parentid(3) childid(7))
)

That works, as it should.
Now we try to add the third tuple, which would bring the

database into a state of constraint violation because of the two
tuples that are already in the database:

add nocoug, nocoug (
 tuple(parentid(7) childid(1))
)

Constraint violation(777778)
Constraint 777778 violated. Violating tuple attribute values are :
CHILDID=1, PARENTID=1

That fails, as it should.
Let’s also illustrate a case of simultaneous delete/insert. The

following update simultaneously removes one of the two existing
tuples while adding the same one that was formerly rejected. The
overall effect of this update will not bring the database into a
state of constraint violation, because after all the specified up­
dates are done, the relvar will still hold no cycles, and thus the
update should be accepted. Note that, in the language of SIRA_
PRISE, the cmd() wrappers have the effect of chaining together
all the individual assignments into a single multi-update:

cmd (
 add nocoug, nocoug (
 tuple(parentid(7) childid(1))

5	For practical reasons, some parts of the syntax of the examples presented
here are for version 1.5. This version is still under development, however,
and hence these examples, as given, will not all work on the version that is
currently publicly available. For trying these examples out for real, some
retro-engineering will have to be done to get them running on the current
1.4 version, especially in the area of physical design (storage spaces and
record types).

)
)
cmd (
 delete nocoug, nocoug (
 tuple(parentid(3) childid(7))
)
)

That works, as it should.
There are many more cases and examples to show; for exam­

ple, constraints on aggregated data or addressing that question
you undoubtedly have itching by now (“And how does all this
behave in the face of bigger volumes?”), but time and space don’t
allow me to address all that right here right now. However, the
bottom line should be clear: all of this works (efficiently insofar
as logically possible) without a single programmer having to
write a single byte of procedural code for the constraint/business
rule to be enforced. I’ve presented some examples here for
TCLOSE; rest assured that the analysis has been done for the
other operators of the relational algebra too, and it works equally
well for any of them. CREATE ASSERTION is neither impossible
nor a dream.5 s

Erwin Smout is an expert in data management from Antwerp,
Belgium and the creator of SIRA_PRISE. More information about
SIRA_PRISE can be found on the SIRA_PRISE website http://
shark.armchair.mb.ca/~erwin/.

Copyright © 2013, Erwin Smout

http://shark.armchair.mb.ca/~erwin/
http://shark.armchair.mb.ca/~erwin/

22
November 2013

performance
corner

Flashback: A
Misleading Name

by Chris Lawson Chris Lawson

Despite its appealing name, a “flashback” query can
run very slowly. On a large production system, a
flashback query going back a few hours can easily
take ten hours. What—how can that be?

This happens because Oracle must reconstruct an object as it
existed at a certain time. This is the same idea as read-consisten­
cy. This reconstruction happens one block at a time, going back­
wards in time, undoing each transaction.1

Starting the Undo
There are other issues with a flashback query that make the

process run even more slowly. Of course, Oracle does indeed
save the undo information—we can certainly find it, and a flash­
back query really does work. Here’s the problem: The structure
of undo segments is heavily biased toward quickly saving trans-
action information—not quickly reversing transactions.

Before Oracle can reconstruct an object, it has to identify what
needs to be undone. One would think this is a trivial step, but
that’s not so. This can be very time consuming—especially when
the database has undergone lots of recent transactions.

Transaction Table
In each undo segment header there lies a critical structure

known as the transaction table. It’s not a “table” as we normally
think of one. Maybe a “list” would have been a better name. The
transaction table identifies the undo information held in that
undo segment. For example, any given entry points to where to
find the actual undo block.

That sounds excellent, but the entire transaction table only
has information for 34 transactions. (Yes, that sounds small to
me, too.) Each entry is called a transaction slot. As more transac­
tions are housed in a given undo segment, transaction slots,
being so few, are very often overwritten. The information is not
lost, of course, but to find it, several extra steps are required. On
a very busy system, it could take thousands of extra reads just to
find where to start. (That’s why I observed that Oracle seems
very biased toward going forward with the undo and not actu­
ally applying it.)

Remember—all this effort is before Oracle even starts the
“real” work of rebuilding the object of interest to the time de­
sired. Of course, that final step will add even more time. The
point is, the delay of determining where to start can be vastly
more than the work required to actually do the reconstructing of
the object.

Troubleshooting
Troubleshooting a flashback query delay is not so easy. On a

busy system, I have seen flashback queries require millions of
extra reads to flashback a small table with only 20,000 transac­
tions that needed to be undone. If you query the active session
history for the session of interest, it will show that it is perform­
ing sequential reads from an undo tablespace. One could easily
be fooled into thinking (as I did) that there must have been a
huge number of transactions on the table of interest. We know
better now—the reads were actually Oracle synthesizing the
undo information in the transaction table and not actually apply­
ing it to the object of interest.

Recycling Undo?
When a transaction table slot is reused, what happens to the

valuable information that used to be kept in that slot? Well,
there’s one logical place for it to go—somewhere in undo-land. In
fact, Oracle stores the old slot information right at the beginning
of the new undo block that used that slot. In this way, the infor­
mation is linked together. Therefore, when we perform a flash­
back query, we can discover what the transaction table looked
like at some prior state.

Undoing the Undo?
Hey, wait a minute—all this almost sounds like “undoing the

undo!” You’re right, and Oracle calls it “Transaction Table
Rollback.” You can also get a summary in the AWR report, in the
Instance Activity section:

Statistic Total per Second per Trans
transaction tables consistent read rollbacks 1,869 0.10 0.00
transaction tables consistent reads -
undo records applied 9,577,664 531.95 3.91

Measuring Undo of the Undo?
You can also quantify this event in real time, to get a feel for

how often this is happening. On a busy system, it is likely to be
happening all the time. Let’s see how we do this on a busy RAC
system. Here is one way to see this occurring in the current con­
nected sessions. This would be helpful to know if someone is
doing a flashback query that seems to be running far longer than
expected.

In this script, I look for large values of transaction table undo
and list the sessions. I also ignore the background processes
(that’s why I exclude programs like ‘oracle’):1	Thanks especially to Jonathan Lewis, who has tested this interesting feature

in Oracle Core: Essential Internals for DBAs and Developers, Apress, 2011.

23
The NoCOUG Journal

Col Module Format A22
Col Sid Format 99999
Col Program Format A20
Col Inst Format 9999
Col Trundo Format 9999999

Select
 One.Inst_Id INST,
 One.Sid,
 Substr(Program,1,20) PROG,
 Substr(Module,1,20) Mod,
 Value TRUNDO
From
 Gv$Sesstat One,
 V$Statname Two,
 Gv$Session Three
Where One.Statistic# = Two.Statistic#
And One.Inst_Id = Three.Inst_Id
And One.Sid = Three.Sid
And Name = 'transaction tables consistent reads - undo records applied'
And Program Not Like 'Oracle@%'
And Value > 90000
Order By Value;

INST SID PROG MOD TRUNDO
7 1978 xtsora@cisxx01 (TNS xtsora@risint01 (TNS	157315
4 408 xtsora@cisxx01 (TNS xtsora@risint01 (TNS	178481

We can see above that there were two active sessions that ap­
pear to be impacted.

What Can I Do?
The essence of the problem is having to repeatedly recon­

struct the contents of the “slots” in the transaction table. If there
were fewer reuses of the slots, then there would be less work re­
quired. Oracle support has suggested keeping more undo seg­

ments online—and therefore more slots available.
This is accomplished by setting the underscore parameter

“_rollback_segment_count.” The idea is to override the automa­
tic undo process and force more undo segments to stay online.
It seems like the number of reused “slots” should go down com­
mensurately with the extra undo segments that are kept online.
So, if we keep 4x as many undo segments online, I would expect
to see approximately a 4x reduction in transaction table roll­
backs. That’s the theory, anyway, but I haven’t confirmed it yet.

How Does the Story End?
As of this date, we have not yet tried the secret rollback seg­

ment parameter. We are wondering about adverse effects and
intend to test the parameter with all of our batch jobs.

We can’t help wondering why the database thinks that it’s a
good idea to take undo segments offline in the first place (and
what will happen when we block that). Perhaps the caching effect
is better when there are fewer undo segments involved?

We haven’t been able to get a clear answer to that question. I
am eager to see what happens. s

Chris Lawson is an Oracle Ace and performance specialist in the
San Francisco Bay Area. He is the author of The Art & Science of
Oracle Performance Tuning as well as Snappy Interviews: 100
Questions to Ask Oracle DBAs. When he's not solving perfor-
mance problems, Chris is an avid hiker and geocacher, where he
is known as Bassocantor. Chris can be reached at: Chris@
OracleMagician.com.

Copyright © 2013, Chris Lawson

The NoCOUG mascot showing off the raffle prizes at the summer conference. All his
little brothers and sisters found good homes with NoCOUG members!

One.Inst
One.Sid
One.Statistic
Two.Statistic
One.Inst
Three.Inst
One.Sid
Three.Sid
mailto:Chris@OracleMagician.com
mailto:Chris@OracleMagician.com

24
November 2013

presidential
m essage

It Takes Very Little
Effort to Help NoCOUG!

by Naren Nagtode Naren Nagtode

NoCOUG would not have thrived for more than 25
years without the efforts of volunteers. Many of you
have told me that you would like to help NoCOUG
but don’t have a lot of time. But there are a couple of

ways in which you can help NoCOUG that take very little effort
on your part:

➤	NoCOUG’s biggest challenge is reaching more Oracle pro­
fessionals in the Bay Area, but the solution is literally at
the tips of your fingers! The simplest and most effective
way to help NoCOUG literally requires only a few key­
strokes on your part! All you have to do is to forward our
email messages to your friends and colleagues. How easy
is that? They can attend their first conference for free! At­
tendance at our conferences would surely double if every
NoCOUG member forwarded our email messages to at
least one other person.

➤	Another simple and effective way for you to help NoCOUG
is to update your profile stored in our member manage­
ment system. Our board members can better choose top­
ics and venues that meet your needs if they knew your job

role and the city in which you live and work. It will only
take you a few seconds to update your profile. You can do
so at http://nocoug.wildapricot.org.

Our next conference is on Thursday, November 21, at Net­
work Meeting Center in the TechMart on Great America Park­
way in Santa Clara in the South Bay. You’re welcome to attend
for half a day if you cannot attend for the whole day. Our key­
note speaker is none other than Tom Kyte, and he will talk about
the best new features in the recently released Oracle Database
12c. Another highlight of this conference is the “RAC Attack”
hands-on lab sessions. RAC experts from Database Specialists
will help you install and configure RAC on your own laptop. Con­
ference sponsor Fusion-io will be hosting a wine-and-cheese
reception for the conference speakers the day before the confer­
ence at 4:30 p.m. at the same venue. It’s an opportunity to net­
work with Oracle experts in a social setting while enjoying the
hospitality of Fusion-io. You can RSVP for the wine-and-cheese
reception when you RSVP for the conference.

I’ll see you at the wine-and-cheese reception on November 20
and the conference on November 21. s

The NoCOUG mascot showing off the NoCOUG Journal at the summer conference.

http://nocoug.wildapricot.org/

25
The NoCOUG Journal

Nothing hunts down Oracle
performance issues like ™

Over 50% of DBAs who try Ignite resolve a
performance problem on the �rst day.

Start your free trial at

(303) 938-8282
© 2013 Con�o Software

Con�o.com

Oracle Professional
Consulting and
Training Services

Certified training and professional
consulting when you need it,
where you need it.

www.quilogyservices.com
education@aspect.com

866.784.5649© 2011 Embarcadero Technologies, Inc.
All trademarks are the property of their respective owners.

Introducing DB PowerStudio for Oracle.
It provides proven, highly-visual tools
that save time and reduce errors by simpli-
fying and automating many of the complex
things you need to do to take care of your data, and your customers.

Whether you already use OEM or some other third-party tool, you’ll
find you can do many things faster with DB PowerStudio for Oracle.

Oracle Database Administration, Development,
and Performance Tuning...
Only Faster.
Taking care of your company’s
data is an important job.
Making it easier and faster is our’s.

Go Faster Now. >>> Get Free Trials and More at www.embarcadero.com

Don’t forget Data Modeling! Embarcadero ER/Studio®,
the industry’s best tool for collaborative data modeling.

DB PowerStudio
™

> Easier administration
with DBArtisan®

> Faster performance
with DB Optimizer™

> Faster development
with Rapid SQL™

> Simplified change management
with DB Change Manager™

26
November 2013

ask the
oracles

Advice for an
Oracle Beginner?

by Tom Kyte Tom Kyte

Originally published in the February 2011 issue of the NoCOUG
Journal.

When I first started out in IT, I had no experience,
no training, no background whatsoever. I was a
math major fresh out of college in the year 1987.
I hadn’t taken any computer courses beyond the

initial “introduction to” type of classes. It wasn’t until I got a job
as a computer programmer—advertised as “no experience re­
quired”—that I started even really using computers.

So, given that I had no experience, no real formal training—
how did I get started, how did I get to where I am today? I think
it comes down to two simple words: mentorship and participa­
tion.

When I first started out as an entry-level programmer, I had
an excellent mentor. This was probably the key difference be­
tween success and failure for me. My mentor—who back then
was about the age I am now (that is, he was old)—took the time
to teach me the ropes. He taught me the right way to do things—
not the fast way, not the “shortcuts,” not the checklist of things to
do—but the right way. In many cases, the right way isn’t the easy
way, isn’t the quickest way . . . but it is ultimately the best way. He
taught me many things I myself teach these days. Simple things
such as “make your subroutine fit on a screen, you have to see it
all,” “instrument your code to death,” “write as little code as you
can but as much as you have to,” “code defensively; don’t trust
anyone else to just know what to do with your code,” and “test,
test, test, benchmark and test again.” My mentor made me the
programmer I am.

The second item—participation—is what propelled me be­
yond being just a programmer. In the early 1990s, I started par­
ticipating in online forums hosted on Usenet. For those who
never heard of it, “Usenet” was Twitter, blogging, Facebook—any

social network goes here—before any of them were invented.
Usenet consisted of a relatively small (by today’s standards) group
of individuals that would discuss topics of interest to them. My
interest was, of course, all things Oracle, and discuss we did. I
”met” in a virtual sense on those discussion forums many people
I still correspond with and interact with face to face. I learned a
lot from them—and they (hopefully!) learned a thing or two from
me. It was on these forums that I found the answers to many of
my questions—and formulated answers to questions from others.
This give-and-take allowed my knowledge of Oracle, program­
ming, and databases in general to expand and grow immeasur­
ably. Participation in the Oracle community is what took me
from being just another programmer to being “AskTom.” It gave
me the confidence to write my first book in the year 2000: Expert
One on One Oracle. It also gave me the audience for such a book.
Without the act of participating, I do not think I would be where
I am today.

So, in short, find a mentor. This is crucial. Find someone that
you trust, that you respect, that others trust and respect. Learn
from your mentor. Then, start participating. Participate in your
local user group. Get up in front of an audience and present on
some technical topic. Attend conferences. Get active in a discus­
sion forum, such as those on http://otn.oracle.com. Don’t be
afraid to make mistakes (you will; I did), but make sure to learn
from them. That would be my advice. s

Tom Kyte is a Senior Technical Architect in Oracle’s Server Tech
nology Division. Before starting at Oracle, Tom worked as a sys-
tems integrator building large-scale heterogeneous databases and
applications, mostly for military and government customers. Tom
spends a great deal of time working with the Oracle database and,
more specifically, working with people who are working with the
Oracle database. In addition, he is the Tom behind the “AskTom”
column in Oracle Magazine, answering people’s questions about the
Oracle database and its tools (http://asktom.oracle.com). Tom is
also the author of Expert Oracle Database Architecture: Oracle
Database 9i, 10g, and 11g Programming Techniques and Solutions
(Apress, 2010), co-author of Beginning Oracle Programing (Wrox
Press, 2002), and author of Effective Oracle by Design (Oracle
Press, 2003). These are books about the general use of the database
and how to develop successful Oracle applications.

Copyright © 2013, Tom Kyte

“Participation in the Oracle
community is what took me from
being just another programmer
to being ‘AskTom’. Without the

act of participating, I do not think
I would be where I am today.”

http://otn.oracle.com
http://asktom.oracle.com

• Cost-effective and flexible extension of your

IT team

• Proactive database maintenance and quick

resolution of problems by Oracle experts

• Increased database uptime

• Improved database performance

• Constant database monitoring with

Database Rx

• Onsite and offsite flexibility

• Reliable support from a stable team of DBAs

familiar with your databases

Keeping your Oracle database systems highly available takes knowledge, skill, and experience. It also takes knowing that

each environment is different. From large companies that need additional DBA support and specialized expertise to small

companies that don’t require a full-time onsite DBA, flexibility is the key. That’s why Database Specialists offers a flexible

service called DBA Pro. With DBA Pro, we work with you to configure a program that best suits your needs and helps you

deal with any Oracle issues that arise. You receive cost-effective basic services for development systems and more com-

prehensive plans for production and mission-critical Oracle systems.

DBA Pro’s mix and match service components

Access to experienced senior Oracle expertise when you need it

We work as an extension of your team to set up and manage your Oracle databases to maintain reliability, scalability,

and peak performance. When you become a DBA Pro client, you are assigned a primary and secondary Database

Specialists DBA. They’ll become intimately familiar with your systems. When you need us, just call our toll-free number

or send email for assistance from an experienced DBA during regular business hours. If you need a fuller range of

coverage with guaranteed response times, you may choose our 24 x 7 option.

24 x 7 availability with guaranteed response time

For managing mission-critical systems, no service is more valuable than being able to call on a team of experts to solve

a database problem quickly and efficiently. You may call in an emergency request for help at any time, knowing your call

will be answered by a Database Specialists DBA within a guaranteed response time.

Daily review and recommendations for database care

A Database Specialists DBA will perform a daily review of activity and alerts on your Oracle database. This aids in a proac-

tive approach to managing your database systems. After each review, you receive personalized recommendations, com-

ments, and action items via email. This information is stored in the Database Rx Performance Portal for future reference.

Monthly review and report

Looking at trends and focusing on performance, availability, and stability are critical over time. Each month, a Database

Specialists DBA will review activity and alerts on your Oracle database and prepare a comprehensive report for you.

Proactive maintenance

When you want Database Specialists to handle ongoing proactive maintenance, we can automatically access your data-

base remotely and address issues directly — if the maintenance procedure is one you have pre-authorized us to perform.

You can rest assured knowing your Oracle systems are in good hands.

Onsite and offsite flexibility

You may choose to have Database Specialists consultants work onsite so they can work closely with your own DBA staff,

or you may bring us onsite only for specific projects. Or you may choose to save money on travel time and infrastructure

setup by having work done remotely. With DBA Pro we provide the most appropriate service program for you.

CUSTOMIZABLE SERVICE PLANS FOR ORACLE SYSTEMSD B A P R O B E N E F I T S

C A L L 1 - 8 8 8 - 6 4 8 - 0 5 0 0 T O D I S C U S S A S E R V I C E P L A N

Database Specialists: DBA Pro Service

© 2001, Database Specialists, Inc.
Database Rx is a trademark of Database Specialists,
Oracle is a registered trademark of Oracle Corporation.
All rights reserved.

All DBA Pro services include Database Rx, our

automated database monitoring and alert

notification service. Database Rx monitors

these and other key areas:

Instance configuration parameters

Messages in the alert log

I/O and free space

Tablespace sizing and configuration

Redo log configuration

Rollback segment configuration and contention

Temporary tablespace configuration

User configuration

Session statistics

Wait events and locks

Latch statistics and contention

Shared pool statistics

SQL statement execution and performance

Object sizing and storage

Index definitions and usability

Database jobs

Customer-defined metrics and alerts

“Database Specialists offers a
well-rounded set of experts who can
assist companies in a wide range of
database-related activities. It is clear
that they are an asset to any team.”

Wm. Brad Gallien

Vice President

NetForce, Inc.

TRUST DATABASE SPECIALISTS FOR ONGOING DATABASE SUPPORTI N C L U D E D W I T H D ATA B A S E R X

O R A C L E A P P L I C A T I O N S | B A C K U P A N D R E C O V E R Y S T R A T E G I E S | M I G R A T I O N S A N D U P G R A D E S | D A T A B A S E M O N I T O R I N G

S Y S T E M A R C H I T E C T U R E | D A T A B A S E D E S I G N | P R O D U C T I O N S U P P O R T | P E R F O R M A N C E T U N I N G | D A T A B A S E D E V E L O P M E N T

Our Oracle Certified Professionals have an average of eight years of experience, specifically with Oracle technology.

We have been providing Oracle systems consulting since 1995. Our consultants know how to assess the situation, plan

solutions in a timely manner, tackle system issues with efficiency and accuracy, and transfer critical knowledge to your

in-house personnel. After all, there’s no substitute for experience.

Database Rx: automated system monitoring included with all DBA Pro services

All DBA Pro plans include the use of Database Rx, our automated web-based Oracle database monitoring and alert

notification service. Depending on the service plan you choose, you can designate whether your in-house staff or the

DBA Pro team receives ongoing database alerts. You’ll also have an accurate record of your service history. All database

activity and performance history, calls and requests to Database Specialists, recommendations by Database Specialists

DBAs, and monthly reports are easily accessible at the Database Rx Performance Portal 24 x 7 via HTTPS.

Database access and security

Except for pre-authorized maintenance services, there is no need to provide Database Specialists with constant access

to your database or full DBA privileges. You may choose to provide read-only or DBA-privileged access in specific instances

in order to perform a specific task, but Database Specialists DBAs won’t be logging in to your database unless you want

us to. Database Rx uses a unique push technology that allows us to effectively monitor your databases and give you

detailed recommendations without logging in to your database remotely.

Full database administration outsourcing

By configuring a DBA Pro service plan with all available components, you get a full DBA outsourcing solution for

mission-critical systems — including proactive monitoring, 24 x 7 availability, full database maintenance, and

special projects.

Special projects

As we work together with you as part of your database support team, you may find you need additional assistance

in areas such as performance tuning, backup and recovery planning, database migrations or upgrades, mentoring, and

special projects. These can be performed onsite or offsite, depending on the task. And, we’ll have the benefit of our

ongoing familiarity with your system developed through our DBA Pro services.

Database Specialists, Inc.

388 Market Street, Suite 400, San Francisco, CA 94111

Tel: 415-344-0500 | Fax: 415-344-0509 | Toll-Free: 888-648-0500

www.dbspecialists.com

Database Specialists: DBA Pro Service

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP required at http://www.nocoug.org

8:00–9:00 a.m.	 Registration and Continental Breakfast—Refreshments served
9:00–9:30	 Welcome: Naren Nagtode, NoCOUG president
9:30–10:30	 Keynote: Introducing Oracle Database 12c—Tom Kyte, Oracle Corporation
10:30–11:00	 Break
11:00–12:00	 Parallel Sessions #1
	 Santa Clara: Advanced Analytic Functions—Tom Kyte, Oracle Corporation
	 Cupertino: Ten MORE Surprising Performance Tactics—Chris Lawson, PG&E
	 Los Altos: Oracle NoSQL Database Application Development—Robert Greene, Oracle Corporation
12:00–1:00 p.m.	 Lunch
1:00–2:00	 Parallel Sessions #2
	 Santa Clara: Empowering Your Data-Sharing Architecture for Continuous Availability

—Susan Wong, Dell Software Group
	 Cupertino: Live Oracle Active DataGuard Failover Under Extreme Workload—Ganesh Balabharathi, Fusion-io
	 Los Altos: Improving MySQL Performance with Hadoop—Sastry Vedantam, Oracle Corporation
2:00–2:30	 Break and Refreshments
2:30–3:30	 Parallel Sessions #3
	 Santa Clara: Using Oracle Execution Plans for Performance Gains—Janis Griffin, Confio
	 Cupertino: Architecting Multi-Tenancy Analytics in the Cloud Using OBIEE and Oracle DB

—Mayank Srivastava and Hanan Hit, Xtime
	 Los Altos: RAC Attack Part I—Ian Jones and Terry Sutton, Database Specialists
3:30–4:00	 Raffle
4:00–5:00	 Parallel Sessions #4
	 Santa Clara: Oracle Database Scalability—Some Perspectives—Sai Devabhaktuni and John Kanagaraj, PayPal
	 Cupertino: Scaling ETL with Hadoop—Gwen Shapira, Cloudera
	 Los Altos: RAC Attack Part II—Ian Jones and Terry Sutton, Database Specialists
5:00–	 NoCOUG Networking and No-Host Happy Hour at Evolution Cafe & Bar, Hyatt Regency Santa Clara

NoCOUG Fall Conference Schedule
Thursday, November 21, 2013—Network Meeting Center, Santa Clara, CA

Please visit http://www.nocoug.org for updates and directions, and to submit your RSVP.
Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Fr
on

t c
ov

er
 p

ho
to

: C
lo

se
-u

p
of

 a
 b

ab
y

bo
y

pl
ay

in
g

w
ith

 a
n

ab
ac

us
 b

y
Ge

or
ge

 D
oy

le
, P

ho
to

s.c
om

.

Journal Editor’s Pick

	cover-lo.pdf
	NoCOUG_Nov13_005c.pdf

