
Knowledge Happens

CREATE ASSERTION:
Impossible Dream?
Toon Koppelaars is such a
dreamer.
See page 13.

Wielding the Sword
of Analytics
Guest columnist Jonathan Gennick
explains window functions.
See page 21.

No! to SQL and
No! to NoSQL!
Straight talk from Chris Date
and Hugh Darwen.
See page 4.

Vol. 27, No. 3 · AUGUST 2013	 $15

Much more inside . . .

HiTsw_NoCOUG_DBMoCDC_0712-Q3.indd 1 7/15/2013 2:44:02 PM

3
The NoCOUG Journal

2013 NoCOUG Board
President

Naren Nagtode

Vice President
Hanan Hit

Secretary/Treasurer
Dharmendra (DK) Rai

Membership Director
Abbulu Dulapalli

Conference Director
Gwen Shapira

Conference Track Leaders
Nasreen Aminifard

Vendor Coordinator
Omar Anwar

Training Director
Randy Samberg

Meetup Coordinator
Gwen Shapira

Webmaster
Eric Hutchinson

Jimmy Brock

Journal Editor
Iggy Fernandez

Marketing Director
Ganesh Sankar Balabharathi

IOUG Liaison
Kyle Hailey

Board Member at Large
Ben Prusinski

Book Reviewer
Brian Hitchcock

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer­
ence. Article submissions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other­
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Interview.. 4

President’s Message... 7

Special Feature.. 13

Book Review.. 16

Product Review... 19

SQL Corner...21

Conference Agenda.. 28

ADVERTISERS

HiT Software.. 2

WHIPTAIL Storage..12

Embarcadero Technologies........................... 25

Quilogy Services.. 25

Confio Software.. 26

Delphix... 26

Database Specialists....................................... 27

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12-year period. The professional pictures on

the front cover are supplied by Photos.com.

Next, the Journal is professionally copyedited and proofread by veteran copy­

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Francisco-based Giraffex.

And, finally, Jo Dziubek at Andover Printing Services deftly brings the Journal

to life on an HP Indigo digital printer.

This is the 107th issue of the NoCOUG Journal. Enjoy! s

—NoCOUG Journal Editor

I n t e r v i e w

4
August 2013

It was more than 40 years ago that Edgar “Ted” Codd in-
vented the relational model. In that period, the DBMS market
has come to be dominated by the DBMS vendors—such as Oracle,
DB2, SQL Server, MySQL, and PostgreSQL—who adopted Codd’s
visionary ideas. But a small band of relational purists have been
complaining that the DBMS vendors have deviated from the
teachings of Codd. Two members of that band are Chris Date
and Hugh Darwen. Chris Date is the author of An Introduc­
tion to Database Systems, which has sold some 900,000 copies
since its first edition in 1975, and the author and co-author of
many other books, too numerous to list here. Hugh Darwen, work-
ing for IBM in the UK, was an active participant in the develop-
ment of the ISO SQL standard from 1988 until his retirement from
that company in 2004. He has co-authored a number of books
with Chris Date.

No to SQL!

Most database practitioners would be surprised to hear your
claims that the major database management systems of today
are not fully relational. The logical first question is: what is
the yardstick of “relationality”? I know that the creator of the
relational model, Edgar Codd, wrote an article in Computer­
world magazine in 1985 titled “Is Your DBMS Really Relation­
al?” in which he said: “In this paper, I supply a set of [twelve]
rules with which a DBMS should comply if it is claimed to be
fully relational. No existing DBMS product that I know of can
honestly claim to be fully relational, at this time.” But, only
five years later, he raised the bar higher and went on to list
333 rules—a suspiciously neat and tidy number—in his 1990
book The Relational Model for Database Management: Ver­
sion 2. Then there are the standards produced by the ISO com­
mittee on which Mr. Darwen was the IBM representative in
the UK delegation from 1988 until 2004. The 2011 version of
the ISO SQL standard has almost 4000 pages. Is it fair to keep
moving the target from twelve conformance rules to 333 and
then to 4000 pages of specifications? Isn’t an RBDMS “rela­
tional enough” if it abides by Codd’s original Twelve Rules,
especially since he originally considered such products to be
fully relational?

Chris: To be relational (even “fully” relational) is only a mini-
mum requirement for a DBMS—the relational model addresses
only what might be called core DBMS functionality. With re­
spect to that core, the model serves as an abstract recipe for what
the user interface should look like. And what that recipe says is
basically two things: 1. The data should be presented to the user
as relations (and nothing but relations). 2. The operators avail­
able to the user should be ones that operate on relations (and
that set of operators should be “relationally complete”). SQL fails
on both counts. First, its basic data object is the SQL table, and
there are at least seven points of difference (real logical differ­
ence, I mean) between SQL tables in general and relations.
Second, its operators are, by definition, operators that work on
SQL tables, not relations.

Now, the relational model isn’t a totally static thing—it has
evolved over time—so critics who accuse us of moving the goal­
posts do have a point, in a way. But the criticism is academic,
because none of the mainstream SQL products supports even
the original (1969) version of the model! And in any case, the
changes that have occurred since then are, as I said, evolution­
ary; the model does grow, but it doesn’t gyrate. It resembles
mathematics in that respect; in fact, it’s fair to say the model is
itself a tiny piece of mathematics, in a way.

A word on Codd’s Twelve Rules: I’m sorry to have to say this,
but it’s my honest opinion that the Twelve Rules paper simply
wasn’t up to the standard of Ted’s earlier relational writings. In
fact, I criticized it at the time.1 This isn’t the place to go into de­
tails; suffice it to say the rules weren’t all independent of one

No! to SQL!
No! to NoSQL!

with Chris Date and Hugh Darwen Hugh DarwenChris Date

“There are two ways of constructing a software design: One way is to make it so simple that there are obviously
no deficiencies and the other way is to make it so complicated that there are no obvious deficiencies.”

—The Emperor’s Old Clothes,
1980 Turing Award lecture by C.A.R. Hoare

“[Codd’s Twelve Rules] weren’t all
independent of one another, some
of them didn’t make sense, some

were unachievable, and some
I think were simply wrong.”

1	C. J. Date, “Notes Toward a Reconstituted Definition of the Relational
Model Version 1 (RM/V1),” in C. J. Date and Hugh Darwen, Relational
Database Writings 1989–1991. Addison-Wesley, 1992.

5
The NoCOUG Journal

another, some of them didn’t make sense, some were unachiev-
able, and some I think were simply wrong. Given this state of
affairs, I really think it’s a pity so many people pay attention to
those rules (or say they do, at any rate).

As for RM/V2, I’m afraid the same applies, only more so.
What about SQL’s 4000 pages? Well, I’ll say one small thing in

SQL’s defense here. To repeat, the relational model as such is only
a minimum requirement. You can define that requirement in just
a few pages. But SQL, rightly or wrongly, is trying to deal with a
lot more than that minimum (for example, it has all of those
OLAP functions). So that’s one reason why the specification is so
big. That said, however, I do also believe that if you could some-
how carve out just the pages that deal with SQL’s “relational”
functionality—such as it is—you’d still have several hundred
pages on your hands, because SQL is, quite frankly, a horren-
dously and unnecessarily complicated language.

The net of all this is: To be fully relational, it’s necessary and
sufficient that you support the relational model. And The Third
Manifesto is our attempt to spell out in detail exactly what that
means (see the website www.thethirdmanifesto.com).

Hugh: As far as we’re concerned, the yardstick of “relationality”
has to be The Third Manifesto, which first appeared, as a paper in
a journal, in 1994 but has been subject to minor revisions on
several subsequent republications. The most up-to-date version
is available at our website, www.thethirdmanifesto.com. It’s a
detailed prescription to be followed in the design of a relational
database language, and the few prototype implementations of it
that have become available indicate to us that it does succeed in
serving that purpose. Its first section consists of 26 numbered
points, referred to as RM Prescriptions, where RM stands for
Relational Model, of course. These 26 can be taken as our yard-
stick as such. The second section, RM Proscriptions, mentions
some violations of the RM Prescriptions commonly found in at-
tempts to implement the relational model, mostly in SQL. Other
sections are devoted to (a) database issues that have nothing to
do with the relational model and (b) strong suggestions that for
one reason or another we can’t regard as sine qua nons. The
Manifesto is consistent with Codd’s 1969–70 definition of the
relational model, but it clarifies several points that, because he
didn’t make them very clearly himself, have resulted in a certain
amount of confusion over the years.

Sadly, Codd’s 1985 observation concerning the nonexistence
of “fully relational” DBMS products still holds good in 2013 as
far as the commercial scene is concerned. However, at least we do
now have a few prototype implementations of our Manifesto,
made by individual enthusiasts. These are available as free down-
loads and can be thought of as setting the bar for putative com-
mercial implementations.

As for Codd’s famous “Twelve Rules” of 1985 (actually there
were thirteen, because the numbering started at zero): Well, they
certainly excluded quite a few important points and overempha-
sized others. Also, they omitted much essential detail, and they
weren’t expressed very precisely. (Contrariwise, his 1991 book
suffered from overkill in our view, as well as including many
features—Codd’s term—with which we firmly disagree.) So is a
DBMS “relational enough” if it abides by those rules? No, it isn’t.
For one thing, they aren’t detailed enough. For instance—and
this is just one small but extremely important example—they
don’t make it clear, and nor did his original papers, that the at-

tributes of a relation must be distinguished by name. In fact,
there’s no definition of the term relation in those rules, so when
we criticize SQL for allowing two or more columns of a table to
have the same name, for example (or for allowing the same row
to appear several times in the same table, for another example),
we can’t merely cite the Twelve Rules to justify our criticism.

For our second point, there’s at least one of those rules that we
can’t accept, and that’s Rule 3, Systematic treatment of null values;

in fact, we categorically reject it. Our reasons for doing so have
been given over and over again, in numerous publications, over
the past 30 years or so (and I think Chris will have a little more
to say in a moment in this connection). Most recently, I included
a comprehensive treatment of the effects of nulls on SQL opera-
tions in my book, SQL: A Comparative Survey, available as a free
download from bookboon.com. The exercise, possibly the first
of its kind, was salutary. I can now point to my findings in that
book when somebody accuses me of exaggerating when I com-
plain about the ad hoc‑ery that null gives rise to in SQL and the
inconsistency with which it’s treated from operation to opera-
tion.

The logical second question is: what benefits will a fully rela-
tional DBMS give to users? The need of the hour is perfor-
mance and scalability to manage the explosion of data in a
wired world. Will fully relational database management sys-
tems deliver the performance and scalability that today’s users
are clamoring for? And the logical third question is: why are
DBMS vendors not exactly rushing to make their products
fully relational?

Chris: I think we need to disentangle a few issues here. First of
all, your line of questioning tends to suggest that if those rela-
tional benefits don’t include performance and scalability, then
they’re irrelevant. Forgive me, but that’s like suggesting mathe-
matics is irrelevant because it’s not engineering. In fact, as I’ve
already said, the relational model is a little piece of mathematics,
while performance and scalability are engineering issues. Let me
elaborate.

It’s well known—or, at least, it should be well known—that the
relational model is silent on everything to do with matters of
physical implementation. That silence is deliberate, of course.
The idea was to give implementers the freedom to implement the
model however they saw fit (in particular, in whatever way
seemed likely to yield good performance) and not to constrain
them unnecessarily. Thus, performance and scalability (and
other similar issues) are all matters for the implementation—
they have nothing to do with whether or not the DBMS is rela-
tional. Well . . . that said, let me now add that:

a. To the extent nonrelational systems achieve performance
and scalability, they do so, at least in part, by muddying the
distinction between model and implementation—in effect,
by exposing part of the implementation to the user, thereby
undermining the important goal of data independence.

“The relational model is a little
piece of mathematics, while

performance and scalability are
engineering issues.”

6
August 2013

b.	 Precisely because the relational model doesn’t unnecessar-
ily constrain the implementer, there’s actually good reason
to believe a relational DBMS should be able to do better
than nonrelational systems on performance and related
matters. In this connection, I’d like to mention Steve
Tarin’s work on The TransRelational™ Model, which is a
radically novel and highly promising implementation
technology for relational DBMSs.2 (When I say it’s radi-
cally novel, I mean it’s quite dramatically different from all
of today’s mainstream SQL implementations.)

So what are (or would be) the benefits of a truly relational
DBMS? Well, I’ve already mentioned data independence (which,
as I’ve explained in many places, translates into protecting user
investment). Another is simplicity—something that most certain
ly can’t be claimed for SQL systems (I can show you examples of
queries that take many lines of SQL code but can be expressed in
one short line in a well designed relational language). And a third
is, of course, the strong theoretical foundation the relational
model provides. You wouldn’t tolerate flying in a plane that wasn’t
built in accordance with the principles of physics and aerody-
namics. You wouldn’t tolerate living or working in a high rise
building that wasn’t built in accordance with sound architectural
principles. Why would you tolerate using a DBMS that hasn’t
been built in accordance with solid database principles? In other
words, I don’t think people should ask “What are the benefits of
being relational?” Rather, I think they should ask—or perhaps try
to explain—what the benefits are of not being relational.

Finally: Why are DBMS vendors not rushing to make their
products fully relational? Obviously, because customers aren’t ask-
ing them to. And why aren’t they asking? Because of the failure,
I suppose, of relational advocates like ourselves to educate those
customers adequately. But it’s not for want of trying, I can assure
you. Believe me, we find the situation extremely frustrating.

Hugh: What benefits would a fully relational DBMS give to
users? Well, let me start by citing the objectives that Codd him-
self gave for his relational model in his 1974 invited paper
“Recent Investigations into Relational Database Systems”:

	 1.	 To provide a high degree of data independence

	 2.	 To provide a community view of the data of spartan sim-
plicity, so that a wide variety of users in an enterprise,
ranging from the most computer naïve to the most com-
puter sophisticated, can interact with a common model
(while not prohibiting superimposed views for specialized
purposes)

	 3.	 To simplify the potentially formidable job of the DBA

	 4.	 To introduce a theoretical foundation, albeit modest, into
database management (a field sadly lacking in solid prin-
ciples and guidelines)

	 5.	 To merge the fact retrieval and file management fields in
preparation for the addition at a later time of inferential
services in the commercial world

	 6.	 To lift database application programming to a new level—
a level at which sets (and, more specifically, relations) are
treated as operands instead of being processed element by
element

However, there was no recognized distinction, in 1974, be-
tween “fully relational” and “not fully relational” systems. So we
might add:

	 7.	 Not to compromise these objectives by failing to adhere
strictly to the foundation defined to meet them

	 8.	 Not to mess things up even further by violating generally
accepted principles of good language design

My book SQL: A Comparative Survey (see above) systemati-
cally compares SQL feature by feature with a language, Tutorial
D, that has been designed to meet all eight of the above objec-
tives (especially the last two).

In pursuit of these aims, the relational model as defined by
The Third Manifesto offers the following significant features, for
example:

➤	Physical data independence: the user interface excludes all
reference to the way data is physically encoded in record-
ing media

➤	Uniformity of representation of data at the user interface
(in the form of relations) and concomitant uniformity in
the way data is accessed

➤	Completeness of the set of operators for deriving relations
from relations, for purposes such as expressing queries
and defining integrity constraints

➤	Absence of pointers in the user interface—pointers effec-
tively mean the IT department has to intervene between
the database and its real (i.e., end) users, because, as Codd
himself said in this connection, fewer people understand
pointers than understand simple value comparisons

➤	Obviation of the need for loops and branching in applica-
tion programs when accessing the database—these, like
pointers, being a frequent cause of errors, especially when
they’re nested

I understand that a number of smaller players are attempt-
ing to build fully relational products. The Ingres Project D
effort sounds particularly interesting because Ingres is al-
ready an enterprise-level DBMS with all the bells and whistles
needed by the enterprise. What is the current status of Ingres
Project D?

Hugh: You’re referring to the few prototype implementations of
our Manifesto made by individual enthusiasts that I mentioned
in my answer to your first question. These are listed as Projects
at our website, www.thethirdmanifesto.com. Unfortunately

(continued on page 8)

“Why are DBMS vendors not
rushing to make their products fully

relational? Obviously, because
customers aren’t asking them to.”

2	Date, C. J. Go Faster! The TransRelational™ Approach to DBMS Implementa­
tion. Bookboon.com Ltd.: www.bookboon.com (free download).

P R E S I D E n t ’ s
M E S S A G E

7
The NoCOUG Journal

Winning!
by Naren Nagtode

Naren Nagtode

Stephen Covey wrote what is perhaps the most important
self-help book of all time: The Seven Habits of Highly
Effective People. The habit that governs the rest is “Begin
with the End in Mind.” Imagine your retirement party at

the end of your career. Imagine the speakers telling the group
about you. What do you want them to say? What words do you
want them to use to describe you? Professional? Expert? Teacher?
Thinker? Doer? Start today with those ends in mind. TV per­
sonality Dr. Phil says pretty much the same thing in Life Code:
The New Rules for Winning in the Real World. Rule #1 of his
“Sweet Sixteen” rules for success is “You must have a defined
‘image’ and never go out of character.” Here’s a good example, by
one of the authors who is featured in this Journal issue: “Writer,
Book Editor, Oracle DBA, SQL and PL/SQL Developer, Father,
Husband, Son, Mountain Biker, and EMT.”

But how do you achieve your ends? How do you become a
winner? One of the seven habits noted by Covey is “Sharpen the
Saw.” In your professional life, this means continuously improv­
ing and enhancing your skill set. And that’s where NoCOUG
comes into the picture.

For more than 25 years, NoCOUG has helped Oracle pro­
fessionals like you be winners through our conferences and

Journal. At the summer conference on Thursday, August 15, at
Chevron in San Ramon, NoCOUG members will be treated
to a wide-ranging survey of the relational and non-relational
worlds by Iggy Fernandez, whose keynote topic is “Soul-
Searching for the Relational Movement: Why NoSQL and Big
Data Have Momentum.” Iggy believes that that the perceived
deficiencies of relational technology are actually a result of de­
liberate choices made by the relational movement in its early
years, and that NoSQL and Big Data technologies would not
have gained popularity if they did not excel at certain new prob­
lems that relational implementations cannot handle well. He
suggests that the relational movement needs to do some serious
soul-searching instead of pretending that the new problems do
not exist.

Other speakers at the conference will cover the highlights of
Oracle Database 12c, which has just been released. There will be
all of this and much more: the complete agenda is printed on the
back cover of this Journal.

The conference and Journal are made possible through the
efforts of the dedicated NoCOUG volunteers. They’re all winners
too!

I’ll see you on August 15. s

Raffle winners at the spring conference in May. The raffle had more than $2,000 worth of Oracle Press books, Oracle Press teddy
bears, and other prizes donated by exhibitors. George Wang from Amdocs won the GoPro Action Camera donated by HiT Software.

8
August 2013

Ingres Project D was abandoned unfinished in 2011, for a num­
ber of unrelated reasons that had nothing to do with the Mani
festo as such. Until you asked this question, we had omitted to
update the information at the website. That omission has now
been rectified, but we’ve retained the description of the project’s
aims, for interest’s sake.

By the way, Ingres Project D isn’t exactly the only one inspired
by our Manifesto that you would describe as enterprise level.
There’s also Alphora’s product, Dataphor (see www.alphora.com),
which was the first commercial implementation to come to our

attention. Dataphor is built as a relational front end to SQL sys­
tems. The initial aim was for its language, D4, to be in full con­
formance with the Manifesto, but unfortunately its developers
eventually had to compromise over support for SQL’s nulls. (It
was fully compliant in Version 1, but that meant that existing
SQL databases were incompatible with it, and so they had to ca­
pitulate to user demand.)

You are on record as vigorously opposing nulls and duplicate
rows in SQL. On the other side of the debate, of course, is Don
Chamberlin, the co-inventor of SQL. In A Complete Guide to
DB2 Universal Database, he says that “model the real world”
and “trust the user” were guiding principles of SQL. He also
points out that systematic treatment of null values was one of
Codd’s requirements, and, in fact, Rule 3 of Codd’s set of 12
rules states: “Null values (distinct from the empty character
string or a string of blank characters and distinct from zero or
any other number) are supported in fully relational DBMS for
representing missing information and inapplicable information
in a systematic way, independent of data type.” Chamberlin
concludes his defense by saying: “In the end, I believe that the
true arbiters of the null and duplicate-row issues will be users of
database systems. If users find that these concepts are helpful in
solving real problems, they will continue to use them. If on the
other hand, users are convinced that nulls and duplicates are
harmful, they will avoid these features and scrupulously use
options such as NOT NULL, PRIMARY KEY, and SELECT
DISTINCT. By supporting these options, DB2 makes it easy for
users to ‘vote with their data.’” Your latest books suggest that
you have become resigned to the fact that SQL—for all its
flaws—is widely used and that, if one cannot avoid using it,
then one should use it correctly. Please tell us about your re­
cent books and your reluctant rapprochement with SQL.

Chris: A strong and sufficient reason for opposing nulls and
duplicates is simply that—Codd’s Rule 3 notwithstanding—they
represent a clear and major violation of relational principles,
with all that such violation implies. But if you want a more “prac­
tical” reason, then how about the fact that they lead to wrong
answers? (Wrong answers to queries, I mean.) Space doesn’t

permit a detailed explanation of this point here, but in any case
we’ve gone into great depth on this issue, and related issues, in
many other places.

As for Chamberlin’s arguments: Well, Chamberlin is also on
record as saying “I recognize that nulls and duplicates are reli­
gious topics.” We think the issues are scientific, not religious.
Moreover, we reject the idea that users should or will “vote with
their data.” First of all, SQL syntax and defaults are such as to
make it hard to do the right thing and easy to do the wrong
thing—they give you rope to hang yourself with, as it were.
Second, we can expect users to do the right thing only if they’re
fully aware of all of the arguments on both sides, which in most
cases they’re demonstrably not. And if they do the wrong thing
and then discover their mistake later, the damage is already done.
What’s more, it might not be possible, for all kinds of reasons, to
correct the mistake later, either.

“Model the real world” is good, by the way. That’s exactly what
nulls and duplicates don’t do.

Of course, you’re absolutely right to say SQL is widely used,
and obviously that situation isn’t going to change any time soon.
So what we have to do is try to educate SQL users to use the
language wisely and well. Two of my most recent books from
O’Reilly address this issue (and thanks for the chance to plug
them!). Relational Theory for Computer Professionals is an
attempt to explain relational principles as such (without a knowl­
edge of those principles, there’s no chance you’ll be able to use
SQL “wisely and well”). SQL and Relational Theory then goes on
to show, for each aspect of relational theory, how to use SQL ap­
propriately. In other words, it tells you what you should be doing.
(It tells you what you shouldn’t be doing, too!)

Hugh: Regarding books, I’ve already mentioned SQL: A Com
parative Survey. That book is designed to be studied in parallel
with another book of mine, An Introduction to Relational Data
base Theory, available from the same source.

As for that text by Don Chamberlin, an obvious response
would be: “Well, he would say that, wouldn’t he?” We find it

rather annoying that Codd’s own writings are so often cited in
arguments like Chamberlin’s. The tenor of such citations smacks
of “Codd wrote this, so it must be right.” Why isn’t Codd allowed
to have made a mistake here and there? The rest of us do. If
somebody wishes to express agreement with something Codd
wrote, then they should say why they agree with it. After all,
we’ve stated very clearly why we disagree with Rule 3, and
Chamberlin doesn’t explicitly refute, or even dispute, any of our
points of disagreement. In any case:

a.	 SQL’s support for nulls isn’t exactly systematic. The behav­
ior of null in various operations, notably explicit compari­
sons, is consistent with its denotation as “value unknown,”
but SQL gives it various other meanings, depending on

INTERVIEW (continued from page 6)

“The tenor of such citations
smacks of ‘Codd wrote this, so it
must be right.’ Why isn’t Codd

allowed to have made a mistake
here and there? The rest of us do.”

“SQL is widely used, and obviously
that situation isn’t going to change
any time soon. So what we have to

do is try to educate SQL users to use
the language wisely and well.”

9
The NoCOUG Journal

context, with which that behavior is not consistent at all.
For example, the SUM of no numbers is null instead of
being zero, the SOME of no truth values is null instead
of FALSE, and the AVG of no numbers is null instead of
being undefined. Also, its treatment in certain implicit
comparisons is inconsistent with its treatment in explicit
ones. For example, the result of SELECT DISTINCT on a
table consisting of two rows that compare equal on all but
one of their columns and each have null for the remaining
column contains just one of those two rows. There’s no
other reasonable choice, of course—the problem lies in the
treatment of explicit comparisons, which in turn arises
from the very appearance of null in the first place.

b.	 SQL’s treatment is loosely based on an early proposal by
Codd that Codd himself later abjured (albeit in favor of
something even worse, involving two different kinds of
null and a fourth truth value).

Note also that Chamberlin doesn’t cite Codd in connection
with the duplicate row issue. Presumably that wouldn’t have been
convenient, given Codd’s publicly stated bitter opposition to
SQL’s duplicate row support. We find that people who like to
defend SQL against our criticisms are often prone to this kind of
cherry-picking in their choice of citations.

Chamberlin appeals to the users of database systems as the
“true arbiters of the null and duplicate row issues.” One problem
I have with such statements is that the real end users aren’t the
ones the big SQL vendors take guidance from. Instead, they talk
to the people who develop applications for those end users. Ap­
plication developers are computer programmers. As such, they
like to be in control (and thus maintain their job security); they
don’t like yielding control to the DBMS over matters they feel
competent to deal with themselves. Moreover, developers tend to
be more concerned with convenience in database definition and
updating than with the ease of deriving useful and reliable infor­
mation from the database.

In any case, I would argue that the choice offered to users
isn’t a genuine one, as no attempt has been made in SQL sys­
tems (as far as I know) to address perceived performance prob­
lems that might arise when a single base table containing nulls
is decomposed into several base tables in order to eliminate
those nulls.3

Chamberlin offers SELECT DISTINCT as a partial solution
to the duplicate row problem, but this is a mite disingenuous.
Most SQL systems make little or no attempt to take note of cases
where SELECT ALL and SELECT DISTINCT are equivalent,
even though the technology needed to detect such cases was
known before the appearance of the first SQL products. As a
consequence, SELECT DISTINCT usually runs a lot slower
than SELECT ALL even when they’re guaranteed to deliver the
same result. SQL implementations thus force the user to work
out if DISTINCT is needed (not always a trivial matter), as well
as giving rise to traps for the unwary who accidentally leave it
out when it’s definitely needed. Hence there’s no possibility for
users to arbitrate between a system that always gives duplicate-
free results and one that does so only on demand.

In any case, nulls and duplicate rows are by no means SQL’s
only harmful departures from relational theory. For example,
whereas that theory places no significance on the order in which
the attributes of a relation might appear, many SQL operations

depend on an ordering to the columns of a table. How are users
to express a preference (or otherwise) for a system in which
every column in every table has a name unique to that column,
thus obviating the need for an ordering, when no such system

exists on the commercial scene?

No to NoSQL!

The archetypal NoSQL product is Dynamo from Amazon.com.
The 2007 ACM paper by Amazon.com states: “Customers
should be able to view and add items to their shopping cart even
if disks are failing, network routes are flapping, or data centers
are being destroyed by tornados. Therefore, the service respon­
sible for managing shopping carts requires that it can always
write to and read from its data store, and that its data needs to
be available across multiple data centers. . . . There are many
services on Amazon’s platform that only need primary-key
access to a data store. For many services, such as those that
provide best seller lists, shopping carts, customer preferences,
session management, sales rank, and product catalog, the com­
mon pattern of using a relational database would lead to inef­
ficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.” The Dynamo paper is where the popular
claim originated that NoSQL products are faster, more scal­
able, and more available than relational products in certain
clearly delineated scenarios such as online shopping carts.
But is there any merit to the claim at all?

Chris: First off, let me make it very clear that I know almost
nothing about Dynamo (or any other NoSQL product, come to
that). But if the statement is correct that it provides “a simple
primary-key only interface to meet the requirements of [certain
rather simple] applications”—well, fine. I have no problem with
that. If there’s a class of applications that (a) are important for
some pragmatic reason and (b) require only a limited subset of
the system’s full functionality, then I think it’s perfectly reason­
able for the system to provide a special interface tailored to just
those requirements. Why, that’s exactly what IMS did, with its
Fast Path option! That special interface would support a care­
fully chosen subset of the full relational interface, and the imple­
mentation would be able to take advantage of the fact that the
interface is circumscribed in just such a way. It might be able to
make use of its own special stored data formats as well. And—
just to spell the point out—I see no reason why the provision of
that special interface and those special stored data formats

“Developers tend to be more
concerned with convenience in

database definition and updating
than with the ease of deriving

useful and reliable information
from the database.”

3	Darwen, Hugh. “How To Handle Missing Information Without Using
NULL.” www.dcs.warwick.ac.uk/~hugh/TTM/Missing-info-without-
nulls.pdf.

10
August 2013

should have any negative effect at all on users who want to use
the regular “full function” relational interface.

That said, if there’s a suggestion that Amazon’s various disaster
scenarios, regarding tornados and the rest, are somehow more of
a problem for relational systems than they are for nonrelational
ones, then of course I reject that suggestion 100 percent. As so
often, I strongly suspect that what’s going on here is some kind of
confusion between what truly relational systems ought to be ca­
pable of and what today’s mainstream SQL products can actually
do. If today’s SQL products fail to meet Amazon’s requirements,
well, that might be a valid criticism of those products—but it’s
not a valid criticism of relational systems in general.

To sum up: I do think we should discard SQL, as quickly as we
can, and replace it by something better. Unfortunately, however,
most of the people who currently want to discard SQL (or, at least,
those who are most vocal about doing so) seem to want to do so
for the wrong reasons. And there’s a strong likelihood that they’ll
replace it, not by something better, but by something worse.

Hugh: So Amazon are using a Dynamo key value to access a
giant blob whose structure is understood only by the applica­
tions. In that case they are happy to forgo all of those aforemen­
tioned six advantages given by Codd in 1974, not all of which are
properly delivered by SQL products in any case. If the people at
Amazon are satisfied that Dynamo provides everything they
need, and they feel they have good reason to reject the use of any
SQL products, then who are we to argue? The indictment seems
to be of SQL products, not relational databases.

It’s easy to understand why the mainstream SQL products
might be too “heavy” for Amazon’s needs. Those products have
become extremely cluttered up with all sorts of features that
would be of little or no use in the Amazon scenario: baroque
support for user defined data types, pointers (in the form of REF

values), BLOBS and CLOBs, subtables and supertables, sequence
generators, datalinks, locators, system versioned tables, and on
and on.

Rel (dbappbuilder.sourceforge.net/Rel.html) is an imple­
mentation, by Dave Voorhis of the University of Derby, UK, of
the relational language Tutorial D that we (Chris and I) devised
for teaching and illustrative purposes. Rel is a very simple DBMS
that meets all the criteria for being fully relational. If Rel, or one
of the other prototype implementations of our Manifesto, were
dressed up sufficiently for commercial purposes—including in
particular the performance enhancements to be obtained by
implementation of established optimization techniques and so­
phisticated storage structures—then it would be interesting to
see if Amazon still preferred Dynamo.

All of that said, we admit that full scalability might be hard
to achieve with a fully relational system. That’s because we re­
quire such a system to support expressions of arbitrary com­
plexity for deriving whatever results might be desired from the
database and for expressing whatever integrity constraints
might be needed. Let’s suppose there are extreme cases where
what runs in acceptable time with small databases is simply not
feasible with large ones. Such cases would militate against the
declaration of certain integrity constraints that current SQL
products don’t even support. They also militate against the use
of certain queries, in an OLTP context, that SQL products do
support, but that problem can of course be avoided simply by
not doing such queries. We conjecture that such cases would be
unlikely to arise in Amazon’s shopping scenario. In any case, if
they would still prefer Dynamo to a putative souped-up Rel,
then so be it. If the benefits of a relational system we described
in answer to one of your previous questions aren’t all needed in
a particular situation, and provision of a more tailored solution
in that situation is found to be cost effective, then who could
argue that Amazon would have made a bad choice?

By the way, the bogey of scalability is sometimes advanced as
justification for failing to provide any solution at all. A perti­
nent example is the lack of full support for integrity constraints
in SQL systems (where something close to full support could be
achieved by implementing the ISO standard’s CREATE
ASSERTION statement, for example).4 But some databases are
quite small and subject to quite infrequent updates. I use Rel for
several small databases that I maintain for domestic and hobby
purposes on my home computer. I have benefited significantly
from the ability to define constraints that would be impossible
to define in SQL without CREATE ASSERTION. Without those
constraints, certain errors by me would have gone undetected,
resulting in incorrect databases. I’m typically dealing with rela­
tions consisting of a few hundred tuples, and in some cases I’m
updating no more than once per month. It seems unfair that
small organizations, which have little clout with the SQL ven­
dors, can’t also enjoy the benefits of such solutions, just because
those solutions might not be practical for large organizations
(with deep pockets, therefore listened to by the DBMS vendors)
using OLTP on enormous databases. In this connection, one
SQL DBMS implementer once told me privately that he agreed
with me in principle but tellingly added that supporting
CREATE ASSERTION would be very difficult in his product
and lack of scalability for some kinds of constraint would give
him a good get-out clause!
Another breed of NoSQL products that has gained consider­
able commercial momentum is “graph databases” such as
Neo4J. In “Normalized Database Structure: A Brief Tutorial,”
Codd carved out a special exception for such products: “It
may be argued that in some applications the problems have an
immediate natural formulation in terms of networks. This is
true of some applications, such as studies of transportation
networks, power-line networks, computer design, and the like.
We shall call these network applications . . . Except in network
applications, links should not be employed in the user’s data
model.” Since the problems addressed by these products (e.g.,
shortest path) have no solution in relational calculus, do these
products have a legitimate case to be non-relational?
4	See “CREATE ASSERTION: The Impossible Dream?” by Toon Koppelaars

in this issue of the NoCOUG Journal.

“If there’s a suggestion that
Amazon’s various disaster scenarios,
regarding tornados and the rest, are

somehow more of a problem for
relational systems than they are for
nonrelational ones, then of course I
reject that suggestion 100 percent.”

11
The NoCOUG Journal

Chris: Several points here. Yes, Codd did “carve out a special
exception” for what he called network applications. But I’m not
sure he was right to do so. As a simple counterexample, a com­
pany’s organization chart has “an immediate natural formulation
in terms of networks” (in fact, often—though not always—in
terms of a hierarchy, which is a simple special case). But it doesn’t
follow that we need a network DBMS (i.e., one that exposes
“links” or pointers to the user) in order to deal with corporate
organizations, and of course we don’t.

Second, I’d like to point out that in the paper you reference,
Codd also said this: “[Users often have] occasion to require ta­
bles to be printed out or displayed. What could be a simpler,
more universally needed, and more universally understood data
structure than a table? Why not permit . . . users to view all the
data . . . in a tabular way?”

Third, any graph can always be represented—quite succinctly,
in fact—in relational form. As for “shortest path” and other such
problems, I say again that the relational model is only a mini­
mum requirement. Even if you’re right when you suggest that the
shortest path problem can’t be formulated in relational calcu­
lus—I presume you’re referring to the fact that the relational
calculus as originally defined had no support for the famous
“ancestral” problem—well, that’s not to say it never will have
such support. In fact, a great deal of research has been done on
adding such support (and implementing it efficiently, too).

Fourth, let’s agree for the sake of the argument that there are
some problems that graph-based DBMSs can solve better than
relational ones. I don’t have an issue with that. My position is
this: We know the class of problems for which relational systems
are suited is very large—but it’s not necessarily universal. But I
very much doubt whether any other approach is universal either.
So my objection isn’t to using, e.g., graph-based DBMSs to solve
problems that they solve well; rather, my objection is to attempts
to solve by nonrelational means problems that can reasonably,
perhaps better, be solved by relational means. In other words,
graph-based DBMSs (for example) might well have a role to play,
but that role is not to take over the entire database world. To re­
peat something I’ve said elsewhere: I’ve never seen a proposal for
“taking over the database world”—i.e., for replacing the rela­
tional model—in which the person doing the proposing really
understood the relational model. Surely, if you want to claim that
Technology A is no good and needs to be replaced by Technology
B, then it’s incumbent on you to understand Technology A in the
first place? And, more specifically, to demonstrate that Tech­
nology B solves not only all of the problems that Technology A
does, but also some problem that Technology A doesn’t?

Hugh: Well, graph DBMSs and the like simply are nonrelational.
Of course we don’t suggest that all databases should be relation­
al—only that all general purpose ones should be. But if you were
to ask if it’s legitimate to claim that solutions to problems like
“shortest path” are inherently unobtainable with a relational sys­
tem, then the answer is an emphatic “No!” As Chris has effec­

tively already said, having no solution in relational calculus
doesn’t mean it’s impossible for a relational DBMS to provide the
necessary operators. For example, Tutorial D already includes an
operator, TCLOSE, for deriving a relation representing the tran­
sitive closure of its operand, a recursive relation. And even SQL
includes support—rather elaborate support, in fact—for recur­
sive table expressions in general. Any operator that’s closed over
relations is admissible in a relational database language.

Now, the proponents of graph databases might wish to argue
that their systems can provide much faster solutions to such
problems than could ever be obtained by implementations of
suitable relational operators. But suppose the graph DBMS were
the engine of a relational DBMS, such that a relational expression
is mapped under the covers to an equivalent expression or pro­
cedure in the graph DBMS’s language. Wouldn’t we then see the
relational DBMS performing pretty much as well—or as badly!—
as the graph DBMS on its own? And wouldn’t its user then be
receiving all the benefits claimed for relational DBMSs in gen­
eral in addition to those claimed for graph DBMSs in particular?
It’s interesting to see in this connection that some of the DBMSs
listed in the Wikipedia article “Graph database,” notably those
available from Oracle, use some form of SQL as their query lan­
guage.

Another breed of NoSQL products that has gained consider­
able commercial momentum is the so-called “Big Data” prod­
ucts like Hadoop that aim to process non-transactional data
outside the transactional DBMS. It was apparent that the
glaring drawback of this class of NoSQL products was the
absence of SQL, and so there has been a rush to provide SQL-
like functionality in this space, with Impala from Cloudera
leading the way. Which leads to the question: Is it kosher to
decouple relational algebra and relational calculus from the
DBMS as Impala has done?

Chris: Before I became “a database person,” I was a languages
person. I worked for several years at IBM Hursley (in the UK),
which in those days was the home of PL/I. (Of course, you might
never have heard of PL/I, and I’ll be the first to admit that as a
language it looks a little antiquated now. But it was a big deal at
the time—and a big revenue earner for IBM, I might add.) So
when I first learned about Ted Codd’s relational model, I wanted
to add relations and relational operators to PL/I—in order that
PL/I would be able to operate on data in a relational database, of
course, but not only for that reason; I always thought it would be
useful to have “local” relations, meaning ones that weren’t in the
database, and to be able to operate on those relations by means
of joins and unions and so on. So if that’s what you mean by
“decoupling relational algebra and relational calculus from the
DBMS,” then I’m all for it.

“I do think we should discard
SQL, as quickly as we can, and
replace it by something better.”

“If the people at Amazon are
satisfied that Dynamo provides
everything they need, and they

feel they have good reason to reject
the use of any SQL products, then

who are we to argue?”

12
August 2013

years of the need being perceived for a “decoupled” relational
front end to a nonrelational system. For example, in the early
1980s a group in IBM (UK) developed an SQL front end to IBM’s
ancient and still running hierarchical system IMS. There can be
no objection to such products; on the contrary, if the front end
were fully relational (as opposed to SQL), we would encourage
them to be provided where the need arises.

Parting Advice

Thank you for spending so much time with us today. Most
NoCOUG Journal readers have long careers ahead of them in
the relational field. Do you have any parting advice for them?

Chris: As for the time, you’re more than welcome. I’m always
happy to do anything I can to help dispel all the myths there are
out there regarding relational systems. Parting advice? Well, if
you’re right that they have long careers ahead of them in the re-
lational field—my italics—then I congratulate them; the subject
is intellectually stimulating, and pragmatically important, and it

can be fun. One piece of advice I can offer is this (and I’m sorry
if this sounds a little self-serving—I don’t mean it to be): 1. Learn
the relational model, by reading the right books and/or attending
the right courses. 2. Go out and get your hands dirty working on
a real project for a year or three. 3. Come back and read those
books and/or attend those courses again. A related piece of ad-
vice is: Learn the relational model first, SQL second (doing it the
other way around is hard). Finally: Read either or both of Ted
Codd’s first two papers every year.5

Hugh: Yes, please do your best to become properly informed
about what “relational” really means. In our experience, those
who disparage relational are almost invariably very far from
being properly informed and almost invariably equate “relation-
al” with SQL and its implementations. If the NoSQL movement
were to advocate relational as one of its proposed alternatives to
SQL, then we would sign up ourselves! s

Interview conducted by Iggy Fernandez
Picture of Chris Date by Douglas Robertson (Edinburgh)

But you touch on something else here: “Big Data.” Sorry if I’m
beginning to sound like a broken record—I guess that metaphor
is pretty antiquated too!—but I see no reason why a relational
system shouldn’t be able to handle “big data” perfectly well. Data
size is, of course, an implementation concern, not a model con-
cern. As I said in answer to your second question, the relational
model is deliberately silent on all matters of physical implemen-
tation. Just because the implementation has to deal with enor-
mous volumes of data, that’s no reason, as far as I can see, why
the user interface has to be anything other than relational.

Hugh: My observations on graph databases seem applicable here
too. Couldn’t Impala be thought of as the DBMS and Hadoop as
Impala’s database engine? Well, up to a point, perhaps, but if
Impala users have to use Hadoop itself for certain purposes (per-
haps database definition? updating? constraint enforcement?),
then we could hardly call Impala a fully relational DBMS, even if
its language, as far as it goes, were in keeping with the relational
model. In any case, there have been many examples over the

5	Derivability, Redundancy, and Consistency of Relations Stored in Large Data
Banks, IBM Research Report RJ599 (August 19th, 1969), reprinted in
ACM SIGMOD Record 38, No. 1 (March 2009); A Relational Model of
Data for Large Shared Data Banks, CACM 13, No. 6 (June 1970), reprinted
in the 100th issue of the NoCOUG Journal (www.nocoug.org/Journal/
NoCOUG_Journal_201111.pdf).

“If the NoSQL movement were to
advocate relational as one of its

proposed alternatives to SQL, then
we would sign up ourselves!”

“In our experience, those who
disparage relational are almost
invariably very far from being
properly informed and almost

invariably equate “relational” with
SQL and its implementations.”

13
The NoCOUG Journal

S P E C I A L
F E AT U R E

One of the promises of relational database manage­
ment systems (RDBMSs) was that they would pro­
vide us with full support for declarative data integ­
rity constraints. Unfortunately, more than 25 years

after their appearance into the marketplace, they still fail to do
so. Although a few good mechanisms are offered to declara­
tively implement constraints, for the vast majority of constraints
we still have to develop (i.e., code) our own mechanisms to im­
plement them. Just to be sure we are all on the same page here,
let me briefly clarify this and take a structured (class-by-class)
approach in doing so.

A common classification scheme for data integrity constraints
is to look at the scope of data that is being constrained. We’ll
briefly introduce this classification here. For the interested
reader (with some mathematics education), there’s a book on
data integrity constraints and other related topics that is worth­
while reading: Applied Mathematics for Database Professionals
(AM4DP), Apress 2007.

➤	Attribute constraints deal with a single column value in­
side a single row. For instance: salary must be between
1500 and 9500.

➤	Tuple constraints deal with two or more column values,
still inside a single row. For instance: trainers must earn
more than 5000.

➤	Table constraints deal with column values across multiple
rows inside a single table. For instance: departments with
trainers must also employ at least one clerk.

➤	Database constraints deal with column values that span
multiple tables. For instance: trainers cannot be employed
in LA.

We all know the mechanism to implement attribute and tuple
constraints: the CHECK clause, which is part of the CREATE
(and ALTER) table statement.

alter table EMP add constraint SAL_CHK
check (SALARY between 1500 and 9500);

alter table EMP add constraint TRN_SAL_CHK
check (JOB != 'TRAINER' or SALARY > 5000);

These are declarative: the expressions specify what needs to be
implemented, not how. Fortunately for a DBMS vendor, the how
in the cases of attribute and tuple constraints is not that difficult
to implement given the specification of the what. We’ll talk about
how this is no longer the case for table and database constraints.

But first we demonstrate how the ANSI ISO committee that de­
veloped the SQL standard envisioned full declarative constraint
support in RDBMSs. They introduced a language construct for
this called a “SQL assertion.” Using assertions, all table and data­
base constraints can be declaratively specified. Here’s an asser­
tion for the table constraint involving only EMP:

create assertion TRN_CLRK as
CHECK (
 not exists (
 select 'department in violation'
 from (select distinct DEPTNO from EMP) e1
 where exists (
 select 'a trainer'
 from EMP e2
 where e2.DEPTNO = e1.DEPTNO
 and e2.JOB = ‘TRAINER'
)
 and not exists (
 select 'a clerk'
 from EMP e3
 where e3.DEPTNO = e1.DEPTNO
 and e3.JOB = 'CLERK'
)
)
);

And an assertion for the database constraint, involving both
EMP and DEPT, could be:

create assertion TRN_CLRK as
CHECK (
 not exists (
 select 'an LA department'
 from DEPT d
 where d.location = 'LA'
 and exists (
 select 'a trainer in it'
 from EMP e
 where e.DEPTNO = d.DEPTNO
 and e.JOB = 'TRAINER'
)
)
);

One important point to make right now is that primary,
unique, and foreign keys are just special cases of assertions. For
instance, here’s the assertion for a primary key in EMP:

create assertion EMP_PK as
CHECK (
 not exists (
 select 'two EMPs with same EMPNO'
 from EMP e1, EMP e2
 where e1.EMPNO = e2.EMPNO

CREATE ASSERTION:
The Impossible Dream?

by Toon Koppelaars
Toon Koppelaars

14
August 2013

 and e1.rowid != e2.rowid
)
);

The assertion for a foreign key is left to the reader. Since pri­
mary, unique, and foreign keys are so ubiquitously present in
(and fundamental to) database designs, the SQL standard com­
mittee introduced special shorthand syntax for these constraints.
This, in turn, opened up the opportunity for DBMS vendors to
implement dedicated constraint validation code for these three
subclasses of constraints. The fact that a constraint can be speci­
fied via shorthand immediately enables a DBMS vendor to come
up with an efficient implementation for it. This is, in general, not
true for constraints specified through assertions. But why isn’t it
true? After all, aren’t we supplying the DBMS with a syntacti­
cally correct and executable expression that it could easily use for
validating the constraint?

Well, yes, but . . . (and this is a big “but”). Let’s take a closer
look at the table constraint (trainers requiring a clerk in the same
department). Would you accept an evaluation of the expression
as specified in that create assertion command every time a trans-
action changes something in the EMP table? This is an execution
strategy that could easily be implemented by the DBMS vendor.
But it would be one that you would not accept. Why not? Be­
cause this implementation strategy is a very inefficient one. You
would have at least two major objections to it.
	 1.	 Clearly not every transaction that changes something in

the EMP table requires validation of the constraint. Take,
for example, a transaction that increases the salary of an
employee. We should hope that in this case the DBMS
would not evaluate the table constraint, for it would be
completely superfluous.

	 2.	 The expression given in the assertion validates all data
(i.e., all departments) in the EMP table, whereas the trans­
action at hand might only be inserting a trainer in depart­
ment 42 and therefore necessitate validation of the con­
straint for department 42 only.

It is here where the complexity surfaces that we ask the DBMS
vendor to solve for us. The vendor is tasked with developing an
algorithm that takes as its input the assertion expression and
produces as its output an implementation strategy for the asser­
tion that is efficient in that it at least addresses the above two
major objections. Note: the algorithm should work for every ar-
bitrarily complex assertion, which makes it orders of magnitude
more complex than developing an algorithm taking (predefined)
shorthand as its input. To illustrate the kind of output that the
algorithm needs to produce, let us investigate an implementation
strategy for the example table constraint and make sure objection
1 is dealt with. The first challenge is to identify the kinds of trans­
actions that would need validation of the constraint. A way to do
this is to investigate insert, delete, and update statements sepa­
rately. Thinking about this for a little bit, you can come up with
the following scenarios:

➤	For inserts: only inserts of a trainer require validation of
the constraint. The DBMS should verify whether a clerk is
present in the same department.

➤	For deletes: only deletes of a clerk require validation of the
constraint. The DBMS should verify whether, if this is the
last clerk being deleted from that department, then no
trainer is employed anymore in the department.

➤	For updates: only updates on the involved columns could
require validation of the constraint. Note that the involved
columns in this constraint are DEPTNO and JOB. Updates
of all other EMP columns will not affect the validity of the
constraint. Now what kinds of updates on DEPTNO and
JOB actually do require validation? Well, if we promote a
salesman to become a manager, the constraint is obviously
unaffected. Only if we update the JOB column to the
trainer value (this mimics a new trainer insert) or update
it away from the clerk value (this mimics a clerk delete)
does the constraint require validation. Thinking about the
DEPTNO column, we can come up with following sce­
narios: only if we update the DEPTNO value of a trainer
or a clerk does the constraint require validation. This kind
of update represents a move of the employee to a new de­
partment. When moving a trainer, the DBMS will have to
validate the constraint for the new department. And when
moving a clerk, the DBMS will have to validate the con­
straint for the old department.

Following from the second objection, the next challenge for
the DBMS is to compute the minimal expression to validate in all
of the above cases. The assertion expression validating all depart­
ments was:

not exists (
 select 'department in violation'
 from (select distinct DEPTNO from EMP) e1
 where exists (
 select 'a trainer'
 from EMP e2
 where e2.DEPTNO = e1.DEPTNO
 and e2.JOB = 'TRAINER'
)
 and not exists (
 select 'a clerk'
 from EMP e3
 where e3.DEPTNO = e1.DEPTNO
 and e3.JOB = 'CLERK'
)
)

It is now the task of the algorithm to identify the first (and
only) inline view in the expression above as the lever to only
validate a subset of the departments. So, for instance, when a
transaction inserts a trainer in department 42, the DBMS should
only execute the following (or some equivalent) expression to
determine the continued validity of the constraint (note the
change of the inline view):

not exists (
 select 'department in violation'
 from (select 42 as DEPTNO from DUAL) e1
 where exists (
 select 'a trainer'
 from EMP e2
 where e2.DEPTNO = e1.DEPTNO
 and e2.JOB = 'TRAINER'
)
 and not exists (
 select 'a clerk'
 from EMP e3
 where e3.DEPTNO = e1.DEPTNO
 and e3.JOB = 'CLERK'
)
)

Somehow we humans seem to have little trouble in coming up
with all of the above: when to validate the constraint and how to
(minimally) validate the constraint in those cases. It does require
some thinking on our part. But all in all it’s not too difficult for

15
The NoCOUG Journal

us. Nevertheless, writing an algorithm that computes all of this
given some arbitrarily complex assertion is something com­
pletely different. Neither Oracle nor any other vendor has been
able to produce this yet. In Chapter 11 of the AM4DP book, you
can find a much more detailed treatment of this topic.

So where does this all leave us now? As stated earlier, for the
vast majority of (table and database) constraints, we still have to
develop (i.e., code) our own mechanisms to implement them.
One vehicle of choice would be to employ database triggers for
this purpose. This is, in fact, no different from what the database
vendor already does for the constraints that we have shorthand
for. Let’s take a look at the foreign key for example. We specify it
declaratively as follows:

alter table EMP add constraint emp_dept_fk
foreign key (DEPTNO) references DEPT(DEPTNO);

The vendor has a straightforward algorithm embedded in its
kernel that takes the above shorthand specification and injects
constraint validating code right after:

➤	Inserts of rows into the EMP table, to verify if the refer­
encing department exists in the DEPT table.

➤	Updates of the DEPTNO column of rows in EMP, to veri­
fy whether the new value exists in the DEPT table.

➤	Deletes of rows from the DEPT table, to verify whether the
department being deleted is no longer being referenced by
any row in the EMP table.

➤	Updates of the DEPTNO column of rows in DEPT, to
verify whether the old DEPTNO value is no longer being
referenced by any row in the EMP table.

And, of course, the algorithm only validates minimally—per
department in this case. Conceptually this validating code exe­
cutes (“fires”) at the same moment that after-statement table
triggers would fire. In the next few paragraphs we’ll sketch the
trigger design to implement the other table and database con­
straints ourselves.

Step 1: Design after insert, delete, and update row triggers to
capture what is being changed (inserted, deleted, or updated) in a
table. We can use a global temporary table to track the changes
and build three views on top of it called inserted_rows, deleted_
rows, and updated_rows. These views will hold details of the rows
that have been inserted, deleted, or updated respectively by the
statement that caused the row triggers to fire. In scientific papers
this information is often referred to as the “Transition Effect” of a
(dml) statement. Chapter 11 of AM4DP has detailed examples
of building the row triggers for maintaining the Transition Effect.

Step 2: For the given assertion, write queries on top of these
three views that reflect when the assertion is in need of valida­
tion. The semantics of these queries should be such that if they
return no rows, then the assertion does not require validation.
And if they do, then the assertion does require validation. We’ll
call these queries Transition Effect (TE) queries. These TE que­
ries will “guard” the execution of code that performs the actual
validation of the assertion: they prevent this code from firing
when it’s not necessary and, vice versa, will ensure that it fires
when it’s necessary. For the example table constraint, this results
in the following three queries:

select deptno
from inserted_rows

where job = 'TRAINER'
--
select deptno
from deleted_rows
where job = 'CLERK'
--
select old_deptno as deptno
from updated_rows
where((old_deptno != new_deptno) or (old_job != new_job))
and old_job = 'CLERK'
union
select new_deptno as deptno
from updated_rows
where((old_deptno != new_deptno) or (old_job != new_job))
and new_job = 'TRAINER'

The last TE query above is a bit tricky, but it reflects exactly
the kind of updates that require validation of our table con­
straint.

Step 3: Rewrite the assertion expression into a minimal query
that uses information generated by the TE queries (a DEPTNO
value in this case) and tries to detect a violation of the assertion.
We’ll use this query in the after insert, delete, and update state-
ment triggers to perform the actual constraint validation. Here is
the after insert trigger code, which combines the TE query with
this validation query. The delete and update triggers are coded
similarly.

create or replace trigger EMP_AIS_TRN_CLRK
after insert on EMP
declare pl_message varchar2(80);
begin
 --
 for r in (select deptno from inserted_rows where job = 'TRAINER')
 loop
 --
 begin
 --
 select 'Department '||to_char(deptno)||' requires a clerk.'
 into pl_message
 from (select r.deptno as DEPTNO from DUAL) e1
 where exists (
 select 'a trainer'
 from EMP e2
 where e2.DEPTNO = e1.DEPTNO
 and e2.JOB = 'TRAINER'
)
 and not exists (
 select 'a clerk'
 from EMP e3
 where e3.DEPTNO = e1.DEPTNO
 and e3.JOB = 'CLERK'
);
 --
 raise_application_error(-20000,pl_message);
 --
 exception when no_data_found then null;
 end;
 --
 end loop;
 --
end;
/

We are now almost done. There is one final step to perform.
Step 4: Add serialization code to the statement triggers. The

scope of this short paper prevents a detailed treatment of this
topic. Without the necessary serialization code, you can end up
having two concurrently executing transactions both success­
fully validating the same assertion, but when they’re committed,
they leave the database in an incorrect state. This is due to the
fact that Oracle’s snapshot isolation (MVCC) does not guarantee
serializability. You can find more on this topic in the AM4DP
book, Chapter 11.	 (continued on page 26)

16
August 2013

Details
Author: Atul Kumar
ISBN: 978-1-84968-268-8
Pages: 280
Year of Publication: 2011
Edition: 1
List Price: $59.99
Publisher: Packt Publishing
Overall Review: This book offers some good information, but it
contains too many screenshots and typos. I’m not sure this book
is worth its $60 price.
Target Audience: Administrators working with Fusion Middle­
ware and/or Fusion Applications.
Would you recommend this book to others: I would recom­
mend this book conditionally, but please read the whole review.
Who will get the most from this book? Administrators sup­
porting Oracle Fusion Middleware, specifically OID, OAM, and
OIM.
Is this book platform specific: No.
Why did I obtain this book? I wanted to learn more about these
components of Oracle Fusion Middleware, and NoCOUG pur­
chased this book for me to review.

Overall Review
I am currently supporting Oracle Fusion Middleware (FMW)

for multiple customers. Since Oracle Identity Manager (OIM),
Oracle Access Manager (OAM), and Oracle Internet Directory
(OID) are components of Fusion Middleware, I was looking for
books that would help me understand how they operate and in­
tegrate with the applications they support. I was looking for
specific details of how they work and how to troubleshoot them
when they don’t.

The many pieces of FMW came from multiple companies
acquired by Oracle. I would have liked an overview showing
where OIM, OAM, and OID came from, and how Oracle has,
over time, integrated them—as well as how this integration will
likely continue.

I did learn a lot about OAM: specifically, where things get
installed and how to find various parts of OAM in the screens of
the GUI.

As we use more and more GUIs to manage software, screen­
shots are necessary to describe how to do things. At the same

time, it is easy to fill many pages with screenshots, instead of
writing. This book explores the limit of how many screenshots
are too many. I would have preferred more writing to go with the
large supply of screenshots.

Normally I don’t find typos to be an issue. In this book, how­
ever, there were so many that it distracted me from the material
I was trying to read.

Preface
The author tells us what this book covers and describes what

you will need if you want to actually install these Oracle products
on a machine of your own. I did not attempt to install anything;
I see enough of these installations every day! In the five pages of
this Preface, I found two typos. Not a good start.

We are told that this book will cover various aspects of IDAM,
which is a new term to me (it stands for Oracle Identity and Ac­
cess Management). I’m used to seeing this group of products iden­
tified as Oracle Identity Management (OIM), which refers to the
group of products that include Oracle Identity Manager (OIM).
Confused? It is confusing. Anyway, IDAM was new to me.

Chapter 1—Oracle Identity Management: Overview and
Architecture

This chapter provides an overview of Oracle Identity Manage­
ment—specifically, Oracle Access Manager (OAM) and Oracle
Identity Manager (OIM). Both of these, and many other parts of
FMW, rely on WebLogic Server (WLS), and an overview of WLS
is offered as well. In the section on WLS, we are told about clus­
ters being a group of WebLogic Servers and that these servers can
be Admin Servers or Managed Servers. Really? I thought only
Managed Servers could be clustered. It would have been good to
have this clarified. The section explaining Node Manager is okay,
but I would stress its role in starting and stopping managed serv­
ers on remote machines.

I learned several things from this chapter, including the fact
that the OAM policy store must be in an RDBMS and that OIM
uses database schema MDS for storing configuration informa­
tion and schema OIM for user information.

I found two typos in this chapter.

Chapter 2—Installing Oracle Identity and Access Manager
This chapter covers the steps of installing both OIM and

OAM. There are lots of screenshots, which are good, but it would
be better to have more insight as to what is happening, why it is
happening, and what can go wrong.

The need to install Coherence is mentioned, but no explana­
tion is given as to what it is, nor are there details of what the JMS

B O O K
R E V I E W

Oracle Identity and Access
Manager 11g for Administrators

A Book Review by Brian Hitchcock

17
The NoCOUG Journal

persistence store is or does. This is mainly a checklist for instal­
lation steps. This is okay, but you don’t learn much about how
things work.

I did learn that SOA suite is required for OIM. I wanted some
troubleshooting tips, since installations don’t always go accord­
ing to plan. Similarly, what if the newly installed components
don’t start? The utilities “pack” and “unpack” are mentioned but
not explained. What are they and what do they do?

Only one typo in this chapter, but it is pretty bad. On page 28
we have this section heading: “Run Repository Creaion . . .” I
would think a spell check would have caught this.

Chapter 3—IDAM Directory Structure and Files
I was surprised by this chapter. It is a whole chapter of screen­

shots of files in directories. These screenshots were taken on a
terminal window that had a dark background, and the text is
dark. It is almost impossible to read most of the text in these
screenshots. I think this would have been noticed by anyone else
that read this chapter. There is a table that tells us what each item
in the DOMAIN_HOME directory is. While this is very thor­
ough, I don’t think most readers need to have all of these entries
explained.

If you weren’t familiar (already) with WLS, OIM, and OAM, I
don’t think you could get much from this chapter. So many acro­
nyms fly by so fast!

I found three typos in this chapter.

Chapter 4—Start-up Shutdown IDAM
The steps needed to start up and shut down the components

of IDAM are explained. But I think there is too much space taken
up with listing commands. I don’t think we need to be shown the
full syntax of a command with “start” replaced by “stop.” The
concept of a Node Manager being associated with a “machine” is
brought up, but it needs to be explained more fully. It isn’t made
clear that you can stop (but not start) the Admin Server from the
WLS Admin Console.

Chapter 5—OAM Administration and Navigation
I found a lot of good information here. The description of the

Identity store was helpful. The Oracle Secure Token Service is
mentioned but not explained. I’m not sure why it was intro­
duced. The description of how to create a new User Identity Store
is fine, but I don’t understand when I would need to do this.
LDAP is mentioned but not explained.

Some of the screenshots have sections that appear to have
been redacted, i.e., covered up in a sloppy manner. I understand
that you need to obscure some of the fields in screenshots, but
you could edit in some fake values.

But back to the good parts. I liked the description of OAM
policy and session data store, and learning that these two stores
can be in a single database or two separate databases. The infor­
mation about the OAM config data store was good, and I didn’t
know that the OAM Key Store is not available through any of the
GUI consoles and can’t be viewed or modified. The process of
OAM server registration was explained well. For the first time I
see where the OAM agent gets set up and what it is protecting.
The process of registering OAM agents using the Admin console
was good. I would have liked to have seen more discussion of
when to use OAM WebAgent versus OSSO.

I found two typos in this chapter.

Chapter 6—OAM Policy Component and Single Sign-On
This chapter opens with a description of the primary function

of OAM. This is good, but I really want more explanation. An
example of how OAM fits into a real-world application would be
a big help. However, there is a good discussion of the definition of
application domain and resource type. The host identifier is de­
scribed as a list of all the URLs that can be used to access an ap­
plication. I’m not clear what happens if I fail to include all the
combinations: does that mean the URL I left out is not protected?

The explanation of OAM’s SSO capability was useful. Next is
a discussion of the success and failure URLs, referring to where
users are sent if their attempt to log in is successful or fails. I’m
confused about the success URL. Usually I get sent to the pro­
tected resource after I authenticate. In the screenshot this field is
blank. Is this a real-world example or do we normally have to
supply a success URL? An example would have helped me un­
derstand how these URLs work.

The SSO login request flow diagram is confusing. Some of the
items numbered in the diagram don’t have corresponding sec­
tions in the text on the next page.

The next diagram, showing SSO login request flow with
OSSO agents, is also confusing. It is hard to see which numbers
correspond to which parts of the diagram.

The chapter ends with good information about managing
an application domain. The example is good, and this time the
screenshots presented really help explain what the text is dis­
cussing.

I found two typos in this chapter.

Chapter 7—OAM Session Management
The definition of session was simple and to the point. The

flow of OAM session management is shown in a diagram. Again
we have a diagram with numbers that aren’t linked with the cor­
responding sections in the text. The description of each step in
the diagram was good. I learned new things from the description
of OAM Session Management, Session Management Engine
(SME), and Oracle Coherence. How Coherence is used to share
session state among multiple OAM servers was shown in the
next diagram; I didn’t know this much about Coherence.

I also liked the description of the OAM clustered environ­
ment as well as the discussion of user session lifecycle and the
settings that affect this lifecycle.

Chapter 8—Installing and Configuring OAM Agents
OAM agents are a topic that I am very interested in. I knew

they were part of OAM, but I didn’t know much else about them.
This chapter helped me a lot. For example, I didn’t know that by
default, all resources (URLs) are protected by OAM. You have to
specifically set up a resource that has a separate authentication
scheme to allow access to users that are not authenticated.

Chapter 9—OIM Navigation: Administration and Design
Console

Reading this chapter I learned that the screens of the OIM
administration console are different depending on how you ac­
cess it. If you are an authenticated user, you see more options
than the self-service screens that are shown to nonauthenticated
users. I would have liked to learn when I need to use each of
these OIM interfaces. An example of the workflows requiring
these different interfaces would also be good.

18
August 2013

At one point, the “attestation process” is mentioned but not
explained. I assume this refers to some process in the OIM work­
flow, but I don’t know this for sure. I tried the index but did not
find an entry for this topic.

The advanced administration console screens have various
tabs that are highlighted in the screenshot and listed in the text,
but when do we need to use each tab?

The section on the OIM Design Console doesn’t make clear if
this utility is only available on Windows or not. I have run this
utility on Linux systems. It would be good to include some infor­
mation about which releases run on which platforms. The sec­
tions covering how to navigate through the screens of this utility
were helpful, since I am using this on my current job.

I had not heard of SPML web services or Service Provisioning
Markup Language (SPML) before. They provide OIM services to
client applications.

I found two typos in this chapter.

Chapter 10—OIM Connectors—Installation and Configuration
A good explanation of the OIM connector opens this chapter.

The components that make up a connector are listed, although
not in the same order that they are discussed in the text that
follows. We are told that the process form captures the data
needed to provision a user; if we had ten users, we would have
ten instances of this process form. I wanted to learn more about
how this process scales. What happens if we have 1,000 users?

We learn next about the reconciliation process. This occurs
when user data in OIM needs to be reconciled with user data in
a target system. The target system might be OID, Oracle
E-Business Suite, or Microsoft Active Directory. However, there
wasn’t any information about how this process actually works.
What happens when there is a conflict between the data in these
two systems? Which system wins? What happens to data in
OIM that is not in the target system? Perhaps this process only
works in one direction?

Starting with the section covering deploying the OIM con­
nector for Oracle Internet Directory and continuing to the end
of this chapter, far too much time is spent on the details of in­
stallation. The installation details are presented for each combi­
nation of OIM to target system. I doubt most readers will need
more than one type of connector. I think the time should have
been spent discussing operational issues, such as what goes
wrong and how to fix it.

The last topic covers transferring connectors from test to pro­
duction using Deployment Manager. The coverage here was good.
I did not know about this process.

I found six typos in this chapter.

Chapter 11—OIM Configuration and Tasks
I had not seen the WebLogic Full Client before, so this section

was useful to me. This is a jar file needed by various OIM utili­
ties. The MDS repository is referenced, but I don’t know what
this is. I wanted more coverage of this topic and details of the
database schema that is used.

I found one typo in this chapter.

Chapter 12—OAM Integration with Fusion Middleware and
EBS R12

This was, for me, the best chapter of the entire book. I learned
many new things that will help me on the job. The summary of
the changes that are done when a Fusion Middleware application

is integrated with OAM to provide SSO was very good.
The six pages that discuss Fusion Middleware security con­

cepts are also very good. I didn’t know that the credential and
policy stores are pointed to the same type of store.

However, in this chapter I also found the worst typo seen so far.
I present this section title just the way it appears in the book:
“Sentence case and hyphenate High-level for OAM with FMW.”
This is a really bad typo. I assume the author intended this to be
“High-level steps to integrate OAM with FMW.” The diagram
describing the request flow for EBS integrated with OAM is
missing some arrowheads, which makes it difficult to follow the
flow.

I found six typos in this chapter.

Chapter 13—Logging and Auditing for OIM/OAM
This chapter covers the different available logging methods.

The Oracle Diagnostic Logging (ODL) framework is explained,
including the various loggers and log handlers available.
Changing log level is covered using two different utilities. First is
the WebLogic Scripting Tool (WLST), which is a command-line
utility. Second is the Fusion Middleware Control, a GUI interface
featuring Oracle Enterprise Manager that has been extended to
manage FMW. The WebLogic logging service and OAM auditing
are also covered.

The Remote Diagnostic Agent (RDA) is explained. This util­
ity gathers all kinds of information and generates a zip file to be
uploaded to Oracle Support. I know from personal experience
that RDA can save significant time when working with Oracle
Support. The section covering configuring RDA was good, as it
explained that RDA is only available for OAM and not OIM—or,
at least, not yet.

I found three typos in this chapter.

Appendix
The appendix covers a number of FAQs and then has a sec­

tion on common issues that covers starting and stopping various
components and several OIM issues.

Conclusion
While I did learn valuable things from this book, there are too

many typos and too much space is used on screenshots. I ex­
pected more insights into how these Oracle products work and
how to fix them when they break. I don’t usually comment on
typos because they don’t usually interfere with reading a book. In
this case, however, the typos were so frequent that they did in­
deed interfere with my reading. If I can find 30 typos by reading
this book once—and I wasn’t looking for typos; I was just trying
to read the text—why weren’t most, if not all, of these found be­
fore the book got to me?

Inside the back cover I see that my copy of this book was
printed 10 May 2013. The copyright page shows 2001. I don’t
understand how, between 2001 and May 2013, these typos were
not found and corrected. Further, as it becomes normal to print
books “on demand,” i.e., as they are ordered, instead of in one
huge print run, I would expect the number of simple mistakes to
go down, not up.

I also want to add what I would do if I were asked to make this
book better. I know what I wanted from this title and what I need
to help me at work. I would discuss the complete flow of user
access without OIM, OAM, and OID, including the log files in

(continued on page 26)

19
The NoCOUG Journal

P R O D U C T
R E V I E W

RuleGen 3.0:
Data Quality Assurance

by Mark Rooijakkers
Mark Rooijakkers

CB is the logistics service provider for the book, media,
fashion, and healthcare industries. With no fewer
than 65,000 square meters of warehousing and 120
trucks, CB-Logistics operates an extensive distribu­

tion network in the Netherlands and Belgium, and offers wide-
ranging and integral logistics services. As an example, we dis­
tribute on average 70,000 books on a daily basis from our central
warehouses to bookstores within our network.

This, of course, would be impossible without a very high de­
gree of IT to automate and support our many business processes.
The 60 people working in our IT department maintain a very
large, custom-made, back-office application landscape that sup­
ports the complete order value stream: from order entry all the
way to product delivery and associated financial handling. Main
components within our IT landscape are the Oracle 11g DBMS,
(traditional) WebForms, and an increasing Apex footprint. All of
our applications have been developed in a database-centric man­
ner: our Forms and Apex pages are thin, and our database is fat.
All business logic resides and runs inside the database tier as PL/
SQL code.

Data quality is of vital importance for us. In our 24/7 opera­
tion, we cannot allow the garbage-in, garbage-out syndrome.
The specification and rigorous implementation of business rules
(data integrity constraints) using table triggers that disallow gar­
bage to enter in our databases is a continuous high priority in our
software development practice. Some eight years ago we decided
to investigate new ways to implement our business rules, as dif­
ferent developers approached this in different ways (just think
about the different ways to circumvent the infamous mutating
table error, or using materialized views and function-based in­
dexes for special cases), taking different amounts of effort and
resulting in different levels of maintainability of the code in­
volved. It was back then that we discovered, investigated, and
adopted the RuleGen framework (www.rulegen.com).

In this article we will give a bird’s-eye overview of how
RuleGen enables us to implement (or change) our business rules
inside the database quickly and confidently. RuleGen is a PL/
SQL generator and is itself built in PL/SQL. Using an Apex front-
end application, a database developer can quickly specify new
business rules. The way this is done is that the developer needs
to specify when a business rule needs to be validated and how it
should then be validated. This is done through specifying a few
queries and is really quite simple. What’s better than to just pro­
vide you with an example?

Let’s assume that we have the following business rule: “The
sum net value of the books ordered by a bookstore cannot exceed
this bookstore’s daily net-value threshold.” Data-model-wise, it
would look like this BOOKSTORE table that holds the daily
threshold:

create table book_store
(store_id number not null -- id for this bookstore
,...other columns…
,daily_net_value_threshold number not null
,primary key (store_id));

And we have an ORDER table that holds the book orders for
bookstores:

create table book_order
(order_id number not null -- id for this order
,order_date date not null
,store_id number not null -- reference to bookstore
,book_id number not null -- reference to book
,net_price number not null -- negotiated net price
,...other columns…
,primary key (order_id)
,foreign key (store_id) references book_store(store_id));

So the rule basically dictates that the result of the following
query must at all times be empty:

select *
from (select s.store_id
 ,trunc(o.order_date)
 ,sum(o.net_price) as sum_price
 ,s.daily_net_value_threshold
 from book_store s
 ,book_order o
 where s.store_id = o.store_id
 group by s.store_id, trunc(o.order_date))
where sum_price > daily_net_value_threshold;

It’s always good to come up with a query like this first. It will
show you what the involved columns for this business rule are
(which helps you in the first step below); moreover, such a
query is a nonambiguous way of specifying the constraint, next
to the (potentially ambiguous) English sentence explaining the
rule.

What we need to do now is tell RuleGen when this business
rule needs to be validated. You need to specify what type of
transaction could violate this rule, which is not too difficult for
this rule: we will have to investigate inserts, deletes, and updates
(on the involved columns) of the involved tables:

20
August 2013

1.	 Whenever the threshold value for a bookstore is de­
creased, we’ll have to check the rule for the bookstore (and
all dates at which orders exist for this bookstore);

2.	 Whenever a book order is entered, we’ll have to check the
rule for the bookstore and the date for which the order was
entered;

3.	 Whenever the net price for an existing book order is in­
creased, we’ll have to check the rule for the bookstore and
the date of the order;

4.	 And finally, whenever the store_id or order_date columns
of an existing book order are updated, we’ll have to check
the rule for the new store_id / order_date values.

We now have to transform the above into four queries: one for
the bookstore table and three for the book order table. Here’s the
first one identifying the update to bookstore:

select store_id -- rule needs to revalidated for this store
from updated_rows -- This view is provided by RuleGen
where new_daily_net_value_threshold < old_daily_net_value_threshold

And here are numbers 2, 3, and 4 identifying the type of
changes to the book order table that require rule validation:

select store_id
 ,trunc(order_date) as order_date -- Revalidation for this store + date
from inserted_rows -- View provided by RuleGen

As events 3 and 4 both concern updating the book_order
table, we must combine this into one query specification for
RuleGen as follows:

select store_id,trunc(order_date) as order_date
 -- Revalidation for this store + date combination
from updated_rows
where new_net_price > old_net_price
union
select new_store_id as store_id
 ,trunc(new_order_date) as order_date
from updated_rows
where new_store_id != old_store_id
or trunc(new_order_date) != trunc(old_order_date)

Note that in the first case the query only produces a store_id
value, whereas in cases 2, 3, and 4, a store_id and an order_date
(trunc’d) are produced. Our final step now is to provide RuleGen
with two revalidation queries: one that accepts a store_id bind
variable and one that accepts both a store_id and order_date
bind variables. These queries should be such that they produce
the error messages that should be raised in case our business rule
gets violated. Here they are:

select 'Cannot decrease threshold. Violation found for store '||
 p_store_id||' at date'||order_date||'.' as msg
from (select s.store_id
 ,trunc(o.order_date) as order_date
 ,sum(o.net_price) as sum_price
 ,s.daily_net_value_threshold
 from book_store s
 ,book_order o
 where s.store_id = o.store_id
 group by s.store_id, trunc(o.order_date))
where sum_price > daily_net_value_threshold
and store_id = p_store_id -- Bind variable here
select 'Cannot decrease threshold. Violation found for store '||
 p_store_id||' at date'||p_order_date||'.' as msg
from (select s.store_id
 ,trunc(o.order_date) as order_date

 ,sum(o.net_price) as sum_price
 ,s.daily_net_value_threshold
 from book_store s
 ,book_order o
 where s.store_id = o.store_id
 group by s.store_id, trunc(o.order_date))
where sum_price > daily_net_value_threshold
and store_id = p_store_id -- Bind variable here.
and trunc(order_date) = p_order_date -- Bind variable here.

With the above five queries, we are done specifying this rule
for RuleGen. All we need to do now is press a button to generate
all necessary trigger code. These queries and the generated code
for our business rules are maintained in RuleGen’s rule reposi­
tory. The generated code can simply be exported into a script file
that we can then keep in our source code control system and
deploy on the target database environment.

For more examples, check out www.rulegen.com.

Conclusion
With RuleGen, the task of managing hundreds of rules in our

application’s database design becomes straightforward. Rules can
easily be added, dropped, or changed and then redeployed.
RuleGen not only generates efficient code, the code generated
also caters to various manipulations of rules, just as can be done
with declarative constraints: you can enable/disable rules, set
rules to be deferred (!), log errors that rules generate, and even
control the order in which they should “fire.” And on top of that,
the code also uses the DBMS_LOCK package to acquire locks for
correctly serializing the code.

RuleGen abstracts technology (complex database trigger and
package code, circumventing mutating table issues, and serial­
izing code execution) for us from functional requirements:
we simply specify our business rules through a few queries,
and at the push of a button RuleGen generates all necessary PL/
SQL code to enforce them. It is easy to learn and very intuitive
to use. s

Mark Rooijakkers has been developing applications since 1993
using Oracle Forms, Oracle Designer, APEX, PL/SQL, and
JDeveloper. He is currently a technical architect at CB-Logistics,
Netherlands.

Copyright © 2013, Mark Rooijakkers

Step 1:
Enter when and how
for the rule

Step 2:
Generate
trigger code

Step 3:
Export generated code
and deploy

RuleGen’s rule
repository

and
generator

RuleGen’s
frontend

Application
(Apex)

21
The NoCOUG Journal

S Q L C O R N E R

Wielding the Sword
of Analytics

by Jonathan Gennick
Jonathan Gennick

Our brethren in SQL Server land have just gained a
full implementation of window functions, termed
analytic functions in Oracle Database, with the re­
cent release of SQL Server 2012. Having a new con­

stituency brought to mind the challenges involved in wielding
these useful functions. Learning the syntax and mechanics of
how they operate is the easy problem. The greater challenge in
my mind lies in helping developers recognize when these won­
derfully expressive functions can simplify what otherwise is a
tough query problem.

Summary and Detail Together
The classic problem that analytic functions solve extremely

well is the need to mix and compare summary and detail results
in the same query. Imagine that you’re an analyst for a depart­
ment store chain. The sample data can be found at gennick.com/
WindowExampleData.sql. Here’s an example of a question that
you might be faced with:

In what quarters were appliance sales below average for the
calendar year?

Answering this question calls for quarterly sales data, so begin
by writing a simple query to list appliance sales by quarter:

SELECT year, quarter, sales
FROM quarterly_sales
WHERE department = 'Appliances'
ORDER BY year, quarter;

YEAR QUARTER SALES
2000 1 235956.23
2000 2 129871.95
2000 3 398213.39
2000 4 54111.05
2001 1 87230.33
2001 2 105231.94
...

Next you need to compare each quarterly sales result against
an average value for the year. For that, you need a fourth column
in the query output to reference in a WHERE clause. Begin by
writing an aggregate function to generate an average sales
amount:

SELECT year, quarter, sales,
 AVG(sales)
...

Next is where the magic begins. Add the keyword OVER to
indicate an analytic function:

SELECT year, quarter, sales,
 AVG(sales) OVER
...

For each detail row, you want the average sales for that row’s
department and year. The PARTITION BY clause added next
gives you that result:

SELECT year, quarter, sales,
 AVG(sales) OVER (
 PARTITION BY department, year)
...

Two housekeeping details remain: 1) Round average sales to
the nearest cent, and 2) Add a column alias. Here’s the final ver­
sion:

SELECT year, quarter, sales,
 ROUND(AVG(sales) OVER (
 PARTITION BY department, year),2) avg_sales
...

Following is an execution of the new query and some of the
results:

SELECT year, quarter, sales,
 ROUND(AVG(sales) OVER (
 PARTITION BY department, year),2) avg_sales
FROM quarterly_sales
WHERE department = 'Appliances'
ORDER BY year, quarter;

YEAR QUARTER SALES AVG_SALES
2000 1 235956.23	 204538.16
2000 2 129871.95	 204538.16
2000 3 398213.39	 204538.16
2000 4 54111.05	 204538.16
...

Each quarterly sales result includes the average quarterly sales
for the year. You have all the data needed—summary and de­
tail—to answer the business question. Just feed that data into an
enclosing query having an appropriate WHERE clause. Here’s the
final query and some of the results:

22
August 2013

SELECT *
FROM
(
SELECT year, quarter, sales,
 ROUND(AVG(sales) OVER (
 PARTITION BY department, year),2) avg_sales
FROM quarterly_sales
WHERE department = 'Appliances'
) x
WHERE sales < avg_sales
ORDER BY year, quarter;

YEAR QUARTER SALES AVG_SALES
2000 2 129871.95 204538.16
2000 4 54111.05 204538.16
2001 1 87230.33 114948.91
...

The inner query generates the raw data, and the outer query
filters that data to return the rows answering the original busi­
ness question. You need this two-step process because analytic
functions are evaluated late in a query’s execution, after any fil­
tering by the WHERE and HAVING clauses.

Values from Other Rows
Functions such as LAG and LEAD enable you to treat a row set

as a two-dimensional entity. Imagine that you have quarterly
sales by department in your data mart. You decide to compare
quarterly sales year-on-year to answer the following question:

In what quarters did a department’s sales drop below those of
the same quarter one year previously?

In other words, if a department sold $100,000 in Quarter 2 of
2005 and then only $95,000 in Quarter 2 of 2006, you want to
know about that, because it represents a year-on-year drop that
bears further investigation.

Following is a simple query showing the available data:

SELECT department, year, quarter, sales
FROM quarterly_sales
ORDER BY department, year, quarter;

DEPARTMENT YEAR QUARTER SALES
Appliances 2000 1 235956.23
Appliances 2000 2 129871.95
Appliances 2000 3 398213.39
...

LAG provides easy access to a value from a prior row. It’s per­
fect for working with time-series data in which the time interval
from row to row is consistent. There are four quarters in a year,
so there are four rows per combination of year and department.
Write a LAG function to retrieve the fourth sales amount back:

SELECT department, year, quarter, sales,
 LAG(sales, 4) year_ago_sales
...

For LAG to be useful, you need a data-cleansing step to elimi­
nate any gaps. I’ve already ensured that the example data repre­
sents a continuous run of quarterly data, with no missing rows.

Going back four rows means nothing without some sort of
ordering. Add an OVER clause to the function and specify an
ordering that follows the calendar:

SELECT department, year, quarter, sales,
 LAG(sales, 4) OVER (
 ORDER BY year, quarter) year_ago_sales
...

Then partition by department so as to avoid commingling re­
sults from different departments:

SELECT department, year, quarter, sales,
 LAG(sales, 4) OVER (
 PARTITION BY department
 ORDER BY year, quarter) year_ago_sales
...

Now execute the query. Each row of output contains the cur­
rent quarterly sales along with the corresponding value from
four quarters—i.e., one year—before. For example:

SELECT department, year, quarter, sales,
 LAG(sales, 4) OVER (PARTITION BY department
 ORDER BY year, quarter) year_ago_sales
FROM quarterly_sales
ORDER BY department, year, quarter;

DEPARTMENT YEAR QUARTER SALES YEAR_AGO_SALES
Appliances 2000 1 	 235956.23
Appliances 2000 2 	 129871.95
Appliances 2000 3 	 398213.39
Appliances 2000 4 	 54111.05
Appliances 2001 1 	 87230.33	 235956.23
Appliances 2001 2 	 105231.94	 129871.95
...

There’s no history prior to 2000, so rows from that year re­
ceive a null in the YEAR_AGO_SALES column. Subsequent rows
pick up the sales amount from the same quarter and department
one year earlier. Feed these rows into a parent query that answers
the business question:

SELECT *
FROM
(
SELECT department, year, quarter, sales,
 LAG(sales, 4) OVER (
 PARTITION BY department
 ORDER BY year, quarter) year_ago_sales
FROM quarterly_sales
) x
WHERE sales < year_ago_sales
ORDER BY department, year, quarter;

DEPARTMENT YEAR QUARTER SALES YEAR_AGO_SALES
Appliances 2001 1 87230.33 235956.23
Appliances 2001 2 105231.94 129871.95
...
Electronics 2003 2 624831.23 673839.83
Electronics 2003 3 634839.23 665839.73
...
Jewelry 2002 2 323939.83 364983.54
Jewelry 2003 3 383542.32 387213.39
...

The WHERE clause predicate in the outer query—sales <
year_ago_sales—should be clear enough as written. The
presence of nulls when no prior history is available is enough on
its own to prevent any year-2000 data from cluttering the results.
The ORDER BY clause is now in the outer query and serves to
present the results in calendar order by department. You can
readily see when a given department has suffered a drop in year-
on-year quarterly sales.

23
The NoCOUG Journal

Ranking and Numbering
Functions such as ROW_NUMBER, RANK, and DENSE_RANK as­

sign rankings to rows in a result set. Look to them anytime you
are faced with a business question involving words or phrases
such as “topmost” or “bottommost,” “top N” or “bottom N,” or
that is otherwise answerable by ranking the rows in a result set
according to some criteria you can apply to one or more columns
of data.

For example, you might be asked the following:
What are three examples of poor quarterly performance for

each department?
Using ROW_NUMBER, you can rank quarterly sales records in

order from poorest to best performance. Then you can peel off
three of the worst examples by department. Here’s a ROW_
NUMBER invocation to do that numbering:

ROW_NUMBER() OVER
 (PARTITION BY department
 ORDER BY SALES) rank

Here’s an explanation of what this function is doing:

	 1.	 Rows for each department are treated separately.
(the PARTITION BY department clause)

	 2.	 Each row for a department is given a number, beginning
at 1. (the ROW_NUMBER() invocation)

	 3.	 Row number 1 is the row with lowest sales for a given
department. Row numbers increase as sales increase.
(the ORDER BY sales clause)

Here’s an example showing some of the results:

SELECT department, year, quarter, sales,
 ROW_NUMBER() OVER
 (PARTITION BY department
 ORDER BY sales) rank
FROM quarterly_sales;

DEPARTMENT YEAR QUARTER SALES RANK
Appliances 2000 4 54111.05 1
Appliances 2001 1 87230.33 2
Appliances 2002 1 95678.13 3
Appliances 2005 3 96078.73 4
Appliances 2001 4 100010.13 5
...
Electronics 2000 1 345873.14 1
Electronics 2000 2 401144.56 2
Electronics 2000 3 454987.33 3
Electronics 2001 1 467043.14 4
Electronics 2000 4 476539.23 5
...

Ties in the data call for a more sophisticated approach than
just numbering the rows in sequence. You can generate some ties
by amending the business question as follows:

Round all sales numbers to the nearest $10,000. What are
the three worst quarters for each department, ties included?

RANK is your secret weapon here. RANK respects ties by assign­
ing them the same rank number. Substitute RANK in place of
ROW_NUMBER. Invoke ROUND as required. Done! Here is the new
query and results:

SELECT * FROM
(
SELECT department, year, quarter,
 ROUND(sales,-4) sales,
 RANK() OVER
 (PARTITION BY department
 ORDER BY round(sales,-4)) rank
FROM quarterly_sales
) bottom_three
WHERE rank <= 3;

DEPARTMENT YEAR QUARTER SALES RANK
Appliances 2000 4 50000 1
Appliances 2001 1 90000 2
Appliances 2001 4 100000 3
...
Mattresses 2000 1 30000 1
Mattresses 2000 4 30000 1
Mattresses 2000 3 40000 3
...

There is still a quirk to consider. Look at Mattresses. Why the
jump from rank number 1 to rank number 3? What happened to
rank number 2?

The two rows ranked as 1 are properly indicated as tying for
first place. The third row is properly indicated as being third. It
is third because it is preceded by two other rows.

Sometimes you prefer a different point of view. You might
not want to derail a presentation to management with an expla­
nation of how the RANK function works. DENSE_RANK is your
friend now. You can use DENSE_RANK in the same manner as
RANK, but the difference is that DENSE_RANK eliminates gaps in
the numbering. That pesky jump from 1 to 3 will be gone, and
that’s one less detail for you to have to explain when presenting
the data.

The following query uses RANK just as before, but this time
only in the selection criteria. A new column created by DENSE_
RANK is added for display purposes.

SELECT department, year, quarter, sales, drank FROM
(
SELECT department, year, quarter,
 ROUND(sales,-4) sales,
 RANK() OVER
 (PARTITION BY department
 ORDER BY ROUND(sales,-4)) rank,
 DENSE_RANK() OVER
 (PARTITION BY department
 ORDER BY ROUND(sales, -4)) drank
FROM quarterly_sales
) bottom_three
WHERE rank <= 3;

Here are some results:

DEPARTMENT YEAR QUARTER SALES DRANK
Appliances 2000 4 50000 1
Appliances 2001 1 90000 2
Appliances 2001 4 100000 3
...
Mattresses 2000 1 30000 1
Mattresses 2000 4 30000 1
Mattresses 2000 3 40000 2
...

Rows are the same as before due to the continued use of RANK
in the selection criteria. You still get the bottom three performing
quarters by department, including ties. However, the SELECT list
is changed to show the results from DENSE_RANK, so you won’t

24
August 2013

see any gaps in the rankings when you view the results. Rankings
now move smoothly from 1 to 2 to 3, with no gaps.

Moving Frames of Reference
The framing clause is ideal when you can arrange a business

question such that an answer comes from applying an aggregate
function to a range of rows sliding or stretching smoothly as
focus moves from one row to the next. Imagine that you wish to
produce a running sum of quarterly sales by department.
Following is a query and some results. Glance over the query;
then read the detailed explanation following the output.

SELECT department, year, quarter, sales,
 SUM(sales) OVER (
 PARTITION BY department
 ORDER BY year, quarter) running
FROM quarterly_sales
ORDER BY year, quarter, department;

DEPARTMENT YEAR QUARTER SALES RUNNING
Appliances 2000 1 235956.23	 235956.23
Electronics 2000 1 345873.14	 345873.14
Jewelry 2000 1 240939.33	 240939.33
Mattresses 2000 1 34873.33	 34873.33
Vacuums 2000 1 65873.32	 65873.32
Appliances 2000 2 129871.95	 365828.18
Electronics 2000 2 401144.56	 747017.7
Jewelry 2000 2 304984.38	 545923.71
Mattresses 2000 2 47383.93	 82257.26
Vacuums 2000 2 56983.43	 122856.75
Appliances 2000 3 398213.39	 764041.57
Electronics 2000 3 454987.33	 1202005.03
...

Look at the three rows for Appliances. Notice that the running
sum progresses from 235,956.23 to 365,828.18, to 764,041.57.
Each subsequent Appliances row adds that row’s sales amount to
the running sum. What’s the magic? How does the query oper­
ate? Let’s walk through it:

	 1.	 We want a running sum, so we begin by invoking the ag­
gregate function to sum the sales amounts:

SUM(sales)

	 2.	 The running sum should be computed separately for each
department:

SUM(sales) OVER (
 PARTITION BY department

	 3.	 And of course, the running sum should be computed in
order by year and quarter:

SUM(sales) OVER (
 PARTITION BY department
 ORDER BY year, quarter

	 4.	 Now for a tricky bit. The frame of reference for each row
should begin at the beginning:

SUM(sales) OVER (
 PARTITION BY department
 ORDER BY year, quarter
 RANGE BETWEEN
 UNBOUNDED PRECEDING

	 5.	 . . . and end at the current row:

SUM(sales) OVER (
 PARTITION BY department
 ORDER BY year, quarter
 RANGE BETWEEN
 UNBOUNDED PRECEDING AND CURRENT ROW) running

	 6.	 But! It turns out that RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW is default behavior trig­
gered by the ORDER BY clause. It is common to omit the
phrasing and simplify the function call to just:

sum(sales) over (
 partition by department
 order by year, quarter) running

You can execute the preceding example query using the invo­
cation of SUM from either Step 5 or Step 6. You’ll get the same
result both ways.

The moving average is another widely used tool in business,
providing a way to smooth out and get a better sense of a trend
over time. You might decide to compute a moving average in­
volving five quarters: the current quarter of focus plus two quar­
ters in either direction. Thus, the following five rows would
determine the moving average reported for year 2000, quarter 3:

2000 1 235956.23
2000 2 129871.95
2000 3 398213.39
2000 4 54111.05
2001 1 87230.33

(235956.23 + 129871.95 + 398213.39 + 54111.05 + 87230.33)
/ 5 = 181076.59 = Moving Average for year 2000, quarter 3, cen­
tered over five quarters.

Following is the window function invocation to compute such
an average:

AVG(sales) OVER (
 PARTITION BY department
 ORDER BY year, quarter
 ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)

The framing clause here is ROWS BETWEEN 2 PRECEDING
AND 2 FOLLOWING. For each current row, the average sales
amount is computed using the sales values from the two prior and
two subsequent rows. The result is a five-value moving average
centered on the row for which the function is being evaluated.

You’ve seen that a framing clause can be written with RANGE
BETWEEN or ROWS BETWEEN. What’s the difference? Here it is in
a nutshell:

➤	Use ROWS BETWEEN to specify an exact number of rows
preceding or rows following. Take care to sort input val­
ues deterministically. Endpoints such as UNBOUNDED
PRECEDING, UNBOUNDED FOLLOWING, and CURRENT
ROW refer to specific single rows.

➤	Use RANGE BETWEEN when values are sorted ambiguously.
Endpoints such as UNBOUNDED PRECEDING, UNBOUNDED
FOLLOWING, and CURRENT ROW refer to groups of rows
that all sort to the same position because they share the
same sort key values.

Don’t allow your thinking to stop at running sums and mov­
ing averages. Explore what the other functions have to offer. You

25
The NoCOUG Journal

can get creative with MAX and MIN, for example, to identify new
highs and lows. Imagine the following question:

In what quarters do the sales represent a new high for the given
department?

To identify a new high, you must compare the current quar­
ter’s sales amount against the highest amount from all past quar­
ters. As the current quarter advances, the list of past quarters
stretches and grows longer. This shifting frame of reference is
your clue to think about the framing clause.

Following is a query invoking MAX with a framing clause to
answer the preceding question:

SELECT department, year, quarter, sales,
 MAX(sales) OVER (
 PARTITION BY department
 ORDER BY year, quarter
 ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING
) prev_max
FROM quarterly_sales
ORDER BY department, year, quarter;

DEPARTMENT YEAR QUARTER SALES PREV_MAX
Appliances 2000 1 235956.23
Appliances 2000 2 129871.95	 235956.23
Appliances 2000 3 398213.39	 235956.23
Appliances 2000 4 54111.05	 398213.39
Appliances 2001 1 87230.33	 398213.39
...
Electronics 2000 1 345873.14
Electronics 2000 2 401144.56	 345873.14
Electronics 2000 3 454987.33	 401144.56
Electronics 2000 4 476539.23	 454987.33
Electronics 2001 1 467043.14	 476539.23
...

It’s now a simple matter to wrap this query in an outer query
that filters on the condition (SALES > prev_max) or
(prev_max IS NULL). If you want to look at new highs over,
say, a five-year period rather than over the entire history, you can
rewrite the framing clause as ROWS BETWEEN 60 PRECEDING
AND 1 PRECEDING. Replace MAX with MIN, and you can search
out new lows. The framing clause is a great tool to have in your
kit.

Summary
Analytic functions are a wonderful part of SQL. Their expres­

sive power makes many previously difficult problems trivial and
even fun to solve. Recognizing when to use them is sometimes
the challenge. Keep in mind the different use cases described in
this article, and you’ll be well on your way to wielding these func­
tions appropriately and with great success. s

Jonathan Gennick is an Assistant Editorial Director at Apress with
responsibility for database topics.

Copyright © 2013, Jonathan Gennick

Oracle Professional
Consulting and
Training Services

Certified training and professional
consulting when you need it,
where you need it.

www.quilogyservices.com
education@aspect.com

866.784.5649© 2011 Embarcadero Technologies, Inc.
All trademarks are the property of their respective owners.

Introducing DB PowerStudio for Oracle.
It provides proven, highly-visual tools
that save time and reduce errors by simpli-
fying and automating many of the complex
things you need to do to take care of your data, and your customers.

Whether you already use OEM or some other third-party tool, you’ll
find you can do many things faster with DB PowerStudio for Oracle.

Oracle Database Administration, Development,
and Performance Tuning...
Only Faster.
Taking care of your company’s
data is an important job.
Making it easier and faster is our’s.

Go Faster Now. >>> Get Free Trials and More at www.embarcadero.com

Don’t forget Data Modeling! Embarcadero ER/Studio®,
the industry’s best tool for collaborative data modeling.

DB PowerStudio
™

> Easier administration
with DBArtisan®

> Faster performance
with DB Optimizer™

> Faster development
with Rapid SQL™

> Simplified change management
with DB Change Manager™

26
August 2013

BOOK REVIEW (continued from page 18)
which we can see a user accessing WLS, for example, directly. I
would then cover all the pieces installed for OIM, OAM, and
OID, and then show the complete flow of user access with OIM,
OAM, and OID in place. Showing (again) the log files, we would
learn the access flow and where to see it, so we can troubleshoot
issues when they occur.

Implicit in this is a lot more coverage of Oracle Internet
Directory (OID), which is Oracle’s implementation of LDAP. I
think some amount of LDAP information is needed to explain
how OIM and OAM work. I would also provide a title for each
figure in this book. The text associated with each figure needs to
refer to the figure explicitly to help the reader understand what
is being discussed.

Overall this book has value, but I don’t think it is worth the
$60 list price. A significant fraction of the pages are filled with
screenshots, without enough accompanying text to provide the
insights I would expect from a book on this topic. s

Brian Hitchcock worked for Sun Microsystems for 15 years sup-
porting Oracle databases and Oracle Applications. Since Oracle
acquired Sun, he has been with Oracle supporting the On Demand
refresh group and, most recently, the Federal On Demand DBA
group. All of his book reviews and presentations—and his contact
information—are available at www.brianhitchcock.net. The
statements and opinions expressed here are the author’s and do
not necessarily represent those of Oracle Corporation.

Copyright © 2013, Brian Hitchcock

SPECIAL FEATURE (continued from page 15)

Nothing hunts down Oracle
performance issues like ™

Over 50% of DBAs who try Ignite resolve a
performance problem on the �rst day.

Start your free trial at

(303) 938-8282
© 2013 Con�o Software

Con�o.com

As you can probably understand, the task of managing all
required trigger code in a typical application with dozens, if not
more than 100, assertions can become daunting. You should re­
alize, though, that the vast majority of the required trigger code
can be generated. Once you have figured out the TE queries and
the validation query, all code required to implement an assertion
can be generated.

That then leaves us—or, rather, the DBMS vendor—with
some final questions: Is it possible to “compute” the TE queries
and the validation query, given only the assertion text? Can an
algorithm be developed that parses an assertion and then figures
out only when (i.e., during what type of dml changes) and how
to most efficiently validate the assertion? On researching this
topic you’ll find that this challenge is, at its core, the very same
challenge that a DBMS vendor has when it tries to figure out how
to “fast refresh” any given materialized view. So on the one hand,
a lot of code should already be available to help implementing
assertions. On the other hand, though, we are still far away from
support of fast refresh for any given materialized view. A lot of
restrictions still apply. So keep an eye on these restrictions be­
coming fewer and fewer. s

Toon Koppelaars has more than a quarter century of relational
database experience and is the creator of RuleGen, a utility for
automating the generation of assertion code in a relational data-
base. He is currently a software development manager for Oracle
Netherlands working on Oracle Health Insurance products. The
views expressed in this article are his own and do not necessar­
ily reflect the views of Oracle Corporation.	 © 2013, Toon Koppelaars

• Cost-effective and flexible extension of your

IT team

• Proactive database maintenance and quick

resolution of problems by Oracle experts

• Increased database uptime

• Improved database performance

• Constant database monitoring with

Database Rx

• Onsite and offsite flexibility

• Reliable support from a stable team of DBAs

familiar with your databases

Keeping your Oracle database systems highly available takes knowledge, skill, and experience. It also takes knowing that

each environment is different. From large companies that need additional DBA support and specialized expertise to small

companies that don’t require a full-time onsite DBA, flexibility is the key. That’s why Database Specialists offers a flexible

service called DBA Pro. With DBA Pro, we work with you to configure a program that best suits your needs and helps you

deal with any Oracle issues that arise. You receive cost-effective basic services for development systems and more com-

prehensive plans for production and mission-critical Oracle systems.

DBA Pro’s mix and match service components

Access to experienced senior Oracle expertise when you need it

We work as an extension of your team to set up and manage your Oracle databases to maintain reliability, scalability,

and peak performance. When you become a DBA Pro client, you are assigned a primary and secondary Database

Specialists DBA. They’ll become intimately familiar with your systems. When you need us, just call our toll-free number

or send email for assistance from an experienced DBA during regular business hours. If you need a fuller range of

coverage with guaranteed response times, you may choose our 24 x 7 option.

24 x 7 availability with guaranteed response time

For managing mission-critical systems, no service is more valuable than being able to call on a team of experts to solve

a database problem quickly and efficiently. You may call in an emergency request for help at any time, knowing your call

will be answered by a Database Specialists DBA within a guaranteed response time.

Daily review and recommendations for database care

A Database Specialists DBA will perform a daily review of activity and alerts on your Oracle database. This aids in a proac-

tive approach to managing your database systems. After each review, you receive personalized recommendations, com-

ments, and action items via email. This information is stored in the Database Rx Performance Portal for future reference.

Monthly review and report

Looking at trends and focusing on performance, availability, and stability are critical over time. Each month, a Database

Specialists DBA will review activity and alerts on your Oracle database and prepare a comprehensive report for you.

Proactive maintenance

When you want Database Specialists to handle ongoing proactive maintenance, we can automatically access your data-

base remotely and address issues directly — if the maintenance procedure is one you have pre-authorized us to perform.

You can rest assured knowing your Oracle systems are in good hands.

Onsite and offsite flexibility

You may choose to have Database Specialists consultants work onsite so they can work closely with your own DBA staff,

or you may bring us onsite only for specific projects. Or you may choose to save money on travel time and infrastructure

setup by having work done remotely. With DBA Pro we provide the most appropriate service program for you.

CUSTOMIZABLE SERVICE PLANS FOR ORACLE SYSTEMSD B A P R O B E N E F I T S

C A L L 1 - 8 8 8 - 6 4 8 - 0 5 0 0 T O D I S C U S S A S E R V I C E P L A N

Database Specialists: DBA Pro Service

© 2001, Database Specialists, Inc.
Database Rx is a trademark of Database Specialists,
Oracle is a registered trademark of Oracle Corporation.
All rights reserved.

All DBA Pro services include Database Rx, our

automated database monitoring and alert

notification service. Database Rx monitors

these and other key areas:

Instance configuration parameters

Messages in the alert log

I/O and free space

Tablespace sizing and configuration

Redo log configuration

Rollback segment configuration and contention

Temporary tablespace configuration

User configuration

Session statistics

Wait events and locks

Latch statistics and contention

Shared pool statistics

SQL statement execution and performance

Object sizing and storage

Index definitions and usability

Database jobs

Customer-defined metrics and alerts

“Database Specialists offers a
well-rounded set of experts who can
assist companies in a wide range of
database-related activities. It is clear
that they are an asset to any team.”

Wm. Brad Gallien

Vice President

NetForce, Inc.

TRUST DATABASE SPECIALISTS FOR ONGOING DATABASE SUPPORTI N C L U D E D W I T H D ATA B A S E R X

O R A C L E A P P L I C A T I O N S | B A C K U P A N D R E C O V E R Y S T R A T E G I E S | M I G R A T I O N S A N D U P G R A D E S | D A T A B A S E M O N I T O R I N G

S Y S T E M A R C H I T E C T U R E | D A T A B A S E D E S I G N | P R O D U C T I O N S U P P O R T | P E R F O R M A N C E T U N I N G | D A T A B A S E D E V E L O P M E N T

Our Oracle Certified Professionals have an average of eight years of experience, specifically with Oracle technology.

We have been providing Oracle systems consulting since 1995. Our consultants know how to assess the situation, plan

solutions in a timely manner, tackle system issues with efficiency and accuracy, and transfer critical knowledge to your

in-house personnel. After all, there’s no substitute for experience.

Database Rx: automated system monitoring included with all DBA Pro services

All DBA Pro plans include the use of Database Rx, our automated web-based Oracle database monitoring and alert

notification service. Depending on the service plan you choose, you can designate whether your in-house staff or the

DBA Pro team receives ongoing database alerts. You’ll also have an accurate record of your service history. All database

activity and performance history, calls and requests to Database Specialists, recommendations by Database Specialists

DBAs, and monthly reports are easily accessible at the Database Rx Performance Portal 24 x 7 via HTTPS.

Database access and security

Except for pre-authorized maintenance services, there is no need to provide Database Specialists with constant access

to your database or full DBA privileges. You may choose to provide read-only or DBA-privileged access in specific instances

in order to perform a specific task, but Database Specialists DBAs won’t be logging in to your database unless you want

us to. Database Rx uses a unique push technology that allows us to effectively monitor your databases and give you

detailed recommendations without logging in to your database remotely.

Full database administration outsourcing

By configuring a DBA Pro service plan with all available components, you get a full DBA outsourcing solution for

mission-critical systems — including proactive monitoring, 24 x 7 availability, full database maintenance, and

special projects.

Special projects

As we work together with you as part of your database support team, you may find you need additional assistance

in areas such as performance tuning, backup and recovery planning, database migrations or upgrades, mentoring, and

special projects. These can be performed onsite or offsite, depending on the task. And, we’ll have the benefit of our

ongoing familiarity with your system developed through our DBA Pro services.

Database Specialists, Inc.

388 Market Street, Suite 400, San Francisco, CA 94111

Tel: 415-344-0500 | Fax: 415-344-0509 | Toll-Free: 888-648-0500

www.dbspecialists.com

Database Specialists: DBA Pro Service

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP required at http://www.nocoug.org

8:00–9:00 a.m.	 Registration and Continental Breakfast—Refreshments served
9:00–9:30	 Welcome: Naren Nagtode, NoCOUG president
9:30–10:30	 Keynote: Soul-Searching for the Relational Movement: Why NoSQL and Big Data Have Momentum

—Iggy Fernandez
10:30–11:00	 Break
11:00–12:00	 Parallel Sessions #1
	 Room 1220: Analyze This! Analytical Power in SQL—More Than You Ever Dreamed Of—Hermann Baer,

Oracle Corp.
	 Room 1240: Creative Wait Interface Maneuvers: Fast Performance Problem Resolution—Craig Shallahamer, OraPub
	 Room 1150: TBD
12:00–1:00 p.m.	 Lunch
1:00–2:00	 Parallel Sessions #2
	 Room 1220: Oracle Partitioning in Oracle Database 12c: It’s Getting Even Better—Hermann Baer, Oracle Corp.
	 Room 1240: Introduction to Time-Based Performance Analysis: Stop the Guessing!—Craig Shallahamer, OraPub
	 Room 1150: MySQL Technology Update for Oracle DBAs and Developers—Lynn Ferrante Howells, Oracle Corp.
2:00–2:30	 Break and Refreshments
2:30–3:30	 Parallel Sessions #3
	 Room 1220: Using Resource Manager to Consolidate Databases in Oracle Database 12c—Sue Lee, Oracle Corp.
	 Room 1240: ASH: Architecture and Advanced Usage—John Beresniewicz, Oracle Corp.
	 Room 1150: HBase and Lewis Carroll—Jeff Bean, Cloudera
3:30–4:00	 Raffle
4:00–5:00	 Parallel Sessions #4
	 Room 1220: Heat Map and Automatic Data Optimization in Oracle Database 12c—Gregg Christman, Oracle

Corp.
	 Room 1240: Hey Oracle Optimizer! Don’t Mess with My Plans—Janis Griffin, Confio Software
	 Room 1150: NoSQL Drill-Down: So What’s a Graph Database?—Philip Rathle, Neo Technology
5:00–	 NoCOUG Networking and No-Host Happy Hour

NoCOUG Summer Conference Schedule
Thursday, August 15, 2013—Chevron, 6101 Bollinger Canyon Road, San Ramon, CA

Please visit http://www.nocoug.org for updates and directions, and to submit your RSVP.
Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Fr
on

t c
ov

er
 p

ho
to

: S
un

flo
w

er
s

by
 D

av
e

Ab
er

cr
om

bi
e.

	NoCOUG201308-CVR-fyi.pdf
	NoCOUG201308-fyii.pdf

