
Bind Variable
Peeking: Bane or
Boon?
We ask the Oracles.

See page 7.

First International
NoCOUG SQL
Challenge
We have a winner!

See page 14.

Much more inside . . .

Great Expectations
We interview the newest
member of the OakTable
network.

See page 4.

Let Knowledge Ripen
at NoCOUG

Vol. 23, No. 3 · AUGUST 2009 $15

Official Publication of the Northern California Oracle Users Group

J O U R N A L

NORTHERN CALIFO
R

N
IA

O
R

A
C

LE

USERS GROUP

✸

� August 2009

2009 NoCOUG BOARD
President

Hanan Hit, Enteros, Inc.
hanan.hit@enteros.com

Vice President
Jen Hong, Stanford University

hong_jen@yahoo.com

Secretary/Treasurer
Naren Nagtode, Franklin Templeton

nagtode@yahoo.com

Director of Membership
Joel Rosingana, Independent Consultant

joelros@pacbell.net

Journal Editor
Iggy Fernandez, Database Specialists

iggy_fernandez@hotmail.com

Webmaster
Eric Hutchinson, Independent Consultant

erichutchinson@comcast.net

Director of Conference Programming
Randy Samberg

Access Systems Americas, Inc.
rsamberg@sbcglobal.net

Training Day Coordinator
Chen Shapira, HP

chen.shapira@hp.com

IOUG Representative/Track Leader
Claudia Zeiler

girlgeek@wt.net

Member-at-Large
Noelle Stimely

noelle.stimely@ucsf.edu

NoCOUG Staff
Nora Rosingana

Book Reviewer
Brian Hitchcock

Publication Notices and Submission Format
The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for the upcoming November 2009 issue is August 31, 2009.
Article submissions should be made in Microsoft Word format via email.

Copyright © 2009 by the Northern California Oracle Users Group except where
otherwise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

President’s Message 3

Interview.. 4

Ask the Oracles.. 7

Book Review... 11

SQL Corner... 14

Special Feature... 18

Sponsorship Appreciation.............................. 23

Session Descriptions.. 24

Conference Schedule...................................... 28

ADVERTISERS

Electronic Commerce, Inc.17

Enteros... 22

Database Specialists, Inc............................... 25

Precise Software Solutions 25

Confio Software.. 25

Burleson Consulting....................................... 27

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

	 Size	 Per Issue	 Per Year

	 Quarter Page	 $125	 $400

	 Half Page	 $250	 $800

	 Full Page	 $500	 $1,600

	 Inside Cover	 $750	 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Let Knowledge Ripen
at NoCOUG

T
he First International NoCOUG SQL Challenge was a great suc-

cess; nine solutions were found by participants in seven coun-

tries and three continents. Alberto Dell’Era wins the contest for his

wonderful solution using Discrete Fourier Transforms; the runner-

up is André Araujo from Australia, who used binary arithmetic and common

table expressions in his solution. The August Order of the Wooden Pretzel will be

bestowed on Alberto but the real prize is six books of his choice from the Apress

catalog. André will receive a prize of six e-books of his choice. Thanks to Chen

Shapira for publicizing the event in her blog, Dan Tow for helping to judge

the contest, and Apress for donating the books.

The complete results and a detailed analysis of the winning solution can be

found on page 15. I hope you enjoy this edition of the NoCOUG Journal. Join me

to hear Donald Burleson, Dan Morgan, Daniel Liu, Tim Gorman, and other great

speakers at the summer conference on August 20. s

—Iggy Fernandez, NoCOUG Journal Editor

�The NoCOUG Journal

P R E S I D E n t ’ s
M E S S A G E

“The productivity of knowledge work—still abysmally low—
will become the economic challenge of the knowledge society. On
it will depend the competitive position of every single country,
every single industry, every single institution within society.”

—Peter Drucker

T
he economic recession creates greater opportuni-
ties for Oracle professionals as companies strive
to improve their operational processes and raise
their efficiencies by combining newer technology

with greater staff expertise. Stephen Elliot, IT senior analyst
with IDC, showed that on average 80% of IT-system outages
are caused by operator and application errors. With the toler-
ance of such errors diminishing, there is a growing demand for
those who can implement the most recent Oracle technolo-
gies to reduce operational cost and improve business applica-
tion availability.

Lately I have been studying the concepts and policies
recommended by the Information Technology Infrastructure
Library (ITIL), and I was amazed that many organizations
are still inefficient and ineffective. Rather than analyzing
risks, organizations tend to avoid them altogether based on
technical assumptions that have not been validated, prefer-
ring intuitions over methodical research. Planning is often
inadequate due to lack of knowledge—and the outcome is
IT projects that cost more and deliver less than expected.

Successful projects result from application of methodical
problem-solving skills based on deep understanding of how

the systems being deployed function. Such problem-solving
skills include, among others, the ability to identify and elim
inate database bottlenecks and the ability to develop efficient
SQL statements. Adequately preparing for an Oracle project
greatly increases the chance of success and reflects positively
on the organization as well as our career. Preparing and plan-
ning will help. Successful projects boost the contributor’s ca-
reer—both directly and by contributing to the organization’s
revenue and improving its competitive advantage. NoCOUG
can assist in all these areas. Use NoCOUG as a resource in
your research and information-gathering stage. At NoCOUG
conferences you can network with others who may have al-
ready completed a similar task. The NoCOUG Journal and
website are also valuable sources of information.

The NoCOUG Summer Conference will be held on Aug
ust 20 in San Ramon. Donald Burleson, a world-renowned
presenter will kick off the day with a keynote presentation,
“Oracle 2020—A Look at How Oracle Will Change in the
Next Decade,” followed by a presentation about self-tuning
databases. The day will be filled with technical presentations
by staff from Oracle Corporation as well as other renowned
presenters such as Tim Gorman, Daniel Morgan, and Iggy
Fernandez, and real Oracle users like you and me. The day
will be rounded out with the usual networking opportuni-
ties, book raffles, and plenty of food and drink. Get all of
the conference details and submit your registration on the
NoCOUG website at www.nocoug.org. I hope to see you
there. s

Human Factors Affect
Successful Change

by Hanan Hit Hanan Hit

Free Database Upgrade Workshop
by the Oracle Upgrade Development Group

October 9, 2009 at the Oracle Conference Center
Register at apex.oracle.com/pls/otn/f?p=16772:100

 How to upgrade a database to Oracle Database 11g

 All the required preparatory steps

 Minimal downtime strategies

 Performance evaluation techniques using:

 SQL Plan management

 Real Application Testing

 SQL Performance Analyzer

 Database Replay

 Tips and tricks and common pitfalls

� August 2009

I NT E R V I E W

Great Expectations
An Interview with Tanel Poder

Tanel Poder is an experienced consultant with deep expertise
in Oracle database internals, advanced performance tuning, and
end-to-end troubleshooting. He specializes in solving complex
problems spanning multiple infrastructure layers such as Unix,
Oracle, application servers, and storage. He hosts an Oracle perfor-
mance tuning blog at blog.tanelpoder.com and has published
useful Oracle troubleshooting tools like PerfSheet, LatchProfX, and
Session Snapper. In addition to consulting and training, Tanel
frequently speaks at major conferences such as OracleWorld,
UKOUG, Hotsos Symposium, IOUG-A Live, and many regional
ones. Tanel is one of the first Oracle Certified Masters in the world,
an Oracle ACE Director, and an OakTable Network member.

Tell us something about yourself.

I am an IT enthusiast, fascinated by the opportunities of
using technology to improve our productivity and our lives.
I’m focused on getting the most out of information technolo-
gy, both for my clients and for me.

I started my professional career at age 16 as a part-time C
developer (I was not too good at it back then, because I lacked
software engineering experience). I got introduced to Unix,
though, which gave me a good foundation for understanding
Oracle and enterprise-class applications when I started work-
ing for a consulting company at age 19.

By now I have over 12 years of experience managing and
improving Oracle-based database and application environ-
ments, plus troubleshooting; tuning; and delivering training
classes for user groups, Oracle Education, and partners. Cur
rently I’m particularly focused on researching Oracle 11g in-
ternals and its touch point with Unix/Windows for gaining fast
and accurate troubleshooting skills—and, of course, for get-
ting the most out of its new features.

I took the first public Oracle Certified Master DBA exam in
the Oracle Education Center in Chicago (2002) and became
the 25th–27th OCM in the world. The range of numbers is
because previously there had been two internal beta exams for
Oracle employees and 24 people were certified already; also a
few people (like Dave Ensor) had received an honorary OCM
certificate. There were four people taking the exam, but one of
them, unfortunately, lost some data during a simulated crash,
and a DBA cannot be called a master if they fail to deliver the
most fundamental part of their work—retaining the data. So,
25th–27th it is (smile).

In 2004 I was invited to join the OakTable Network during

the Miracle Database Forum. I think this is the greatest profes-
sional honor and recognition I’ve ever received, and I proudly
accepted (after having to justify why MS-SQL Server is much
better than Oracle to 10+ OakTable members in a public de-
bate).

In April 2003 I also got my first international conference
speaking experience from IOUG-A Live in Orlando, FL. I
spoke about how to do major Oracle E-Business Suite up-
grades with minimum downtime for the business. I had about
15 people attending my session in a big 300+ capacity room.
But it looked like they liked it and I sure liked it. Ever since I’ve
been speaking at conferences three to five times per year, de-
pending on how busy (and lazy) I have been during that par-
ticular year.

And now I’m blogging. I hope to give something back to the
community, as I have gained so much from it. But also I hope
this blog becomes a good way to keep in touch with friends
around the world in today’s extremely busy life— which we’ll
definitely improve, eventually, as we throw even more technol-
ogy at it (smile).

I’m now also an Oracle ACE Director.

What’s an Oracle ACE director?

Oracle ACE director status is Oracle Corporation’s official
recognition for Oracle community members who have a track
record of being community advocates on Oracle-related topics
and who have advanced the Oracle technology field with their
blogs, publications, and conference presentations. One differ-
ence between Oracle ACE and ACE director is that Oracle ac-
tively involves ACE directors in getting feedback and ideas
about product usage and development directions.

You started your IT career as a programmer and went on to
become a database administrator. Here is part of an email
message that I received from a reader: “I purchased your
book in order to embark on a self-study of Oracle in order to
pursue a career as a DBA. My education background is of a
Bachelor Degree in Information Systems (Honors) from UK.
The problem is I have no background in programming and
my professional experience [is] as a business analyst.” Should
lack of programming experience stop someone from pursuing
a career as a database administrator?

There are many DBAs out there without programming
background. Understanding programming concepts and the

Tanel Poder

I NT E R V I E W

�The NoCOUG Journal

ability to write database maintenance scripts will definitely
help a lot, but nowadays this is not a prerequisite for starting
as a junior DBA. If you want to end up a senior DBA, then be
prepared to learn some scripting language such as some Unix
shell or Perl. The good news is that the database maintenance
scripts usually don’t require advanced programming skills
such as multithreading, objects, etc.

Also, you could use your background as a business analyst
to your advantage. If you aim toward being a development DBA
or database designer, business analysis and knowledge of your
company’s business can be helpful as you can communicate
with end users more easily and add more value.

Certification can be a costly pursuit. In addition to the work
absences, there’s the cost of instructor-led training courses;
exam fees; and travel, board, and lodging. How much did you
spend in acquiring the OCM credential? Was it a good invest-
ment? Would you recommend certification to other Oracle
professionals? Should employers favor professionals with cer-
tification?

The total cost was around $6000. One-third of it was the
exam fee, another third went for the two advanced courses I
had to take as a prerequisite for the exam, and rest went on the
trip from Europe to Chicago, as back in 2002 that was the only
exam center giving OCM exams. This number excludes the
costs involved taking the prerequisite OCP exams and, of
course, all the learning time.

But yes, I think OCM was a good investment, especially as
I could keep mentioning that I was one of the first OCMs out
there (smile).

When looking for contract roles in the past, I had to explain
to all recruiters what the heck OCM means, but once my re-
sume passed them, I think the credential made a difference. I
was definitely invited to the interview and the techies were
eager to have a conversation with me.

Of course, at the interview table, you must back up what
your credentials say—answer all the questions, even if some
answers are simply, “I don’t know, but I know how to find out.”
It doesn’t matter how many certificates or diplomas you have:
if you can’t answer your job-related questions at the interview,
you’re out.

You won membership in the OakTable network by arguing that
SQL Server might sometimes be a better choice than Oracle.
Some of those arguments might come as a surprise to those who
have never worked with a database technology other than
Oracle. Would you care to share some of them with us?

Heh heh, well I think it was already decided by the Oak
Table junta that I’d be in, but they just wanted to give me a
hard time and have some good laughs. This was five years ago
and I didn’t know many of the OakTable members personally
yet, so it was a situation to remember. I was standing with
another new Oakie-to-be on one side of the room across from
10 existing OakTable members, whom I already knew from
their work and had high respect for, answering a long series of
questions that they bombarded us with. I was actually nervous
but it was also fun at the same time, since I knew they were just
teasing us. This was an exam of personality, not technology.
I don’t remember exact questions anymore, but none of the
questions were serious ones (smile).

You’ve published some free Oracle tools. What do they do?

I think my Oracle Session Snapper should be the first thing
to mention. This is a single SQL script containing an anony-
mous PL/SQL block, which allows you to take snapshots and
report session-level performance statistics in Oracle. It’s very
convenient to query where one or more sessions’ response
time is spent with Snapper plus other statistics like number of
executions, logical IOs, and more. The key design principle
behind Snapper is that it does not require any change to the

Advanced Oracle Troubleshooting
With Tanel Poder

November 11–12, 2009 • Register at www.nocoug.org

This seminar is concentrated entirely on Oracle troubleshooting—understanding exactly what Oracle is doing right now or
what it was doing when the problem occurred. You will gain the skill to systematically discover the reasons for crashes,
hangs, bad performance and other misbehavior. Using a holistic approach for end-to-end troubleshooting, Tanel explains

the full lifecycle of a database request all the way from database client libraries and network to Oracle database kernel and the
underlying operating system. For each layer, a troubleshooting technique is provided, along with advice on using the right tool for
the right problem at the right time.

The seminar consists of two full days of intensive learning, reading dumps, stack traces, network packet captures and Oracle SGA
directly. You’ll use debuggers and custom tools provided to you for real-time and post-mortem diagnosis. Safety comes first, and,
therefore, Tanel’s practical troubleshooting techniques are designed to require no change to database schemas or instance param-
eters. Because there are so many demonstrations and hands-on exercises with Tanel’s custom tools, you will need to bring your own
laptop with Oracle installed. You will walk away with answers to your most vexing Oracle issues right on your own laptop.

More detailed information can be found at blog.tanelpoder.com/seminar. Questions can be e-mailed to training@
nocoug.org. To register, please go to www.nocoug.org.

	 Early-Bird Pricing (Until September 25)	 Regular Pricing
	 $700 for members	 $800 for members
	 $1050 for non-members	 $1200 for non-members

� August 2009

database whatsoever—no temporary tables, no PL/SQL pack-
ages, nothing—it’s just an anonymous PL/SQL block parsed
and executed on the fly. This is especially useful for trouble-
shooting databases under tight change control.

Another tool of mine is LatchProfX. This is a script that
allows you to be more systematic when troubleshooting latch
contention issues. Whenever a session is waiting for a latch, it’s
because some other session is holding it. LatchProfX allows
you to easily identify who the latch holders are and why they
are holding it. Again, this is an Oracle session-level trouble-
shooting approach; this is a more universal and reliable way
for latch contention troubleshooting than the old system-wide
latch sleep-based technique.

Finally, I have written an Excel-based tool called PerfSheet
that I use for easy visualization of performance and other data.
Basically the idea is that you can define a number of SQL que-
ries in an Excel sheet; from there it takes just a couple of mouse
clicks to run them against a database, and the result set is auto
matically fetched into Excel and visualized for you. There is
no need to dump data to CSV and load to Excel; all data
transport and visualization is done for you. This reduces
many time-consuming (and boring) steps from data analysis
and visualization. I have used this tool successfully in multi-
ple troubleshooting and capacity-planning cases and some-
times use it for monitoring as well.

All the Oracle scripts and tools I’ve written have come out
of necessity. I have had some problem I’ve needed to fix or I’ve
realized I’m wasting too much time doing something manu-
ally over and over again. I don’t like wasting time on doing
things manually, so I’ve automated some tasks with my scripts
or tools. I hope they are useful for you too.

You travel more than 100,000 miles every year to speak at
conferences and deliver training. How do you cope? Do you
have any travel tips to share? Favorite airports?

As with my work, I optimize my travel too (smile).
For example, when I started taking (too) frequent long-

haul flights, I bought good noise-canceling headphones. I can
both sleep and concentrate better with these on, as it’s much
quieter for me. Regarding jet lag, I’ve realized that it’s more
important to have a good rest before the flight instead of try-
ing to get myself into the right time zone by skipping a night
of sleep before the flight or forcing myself to wake up really
early. Also, I try to take long-haul flights that depart in the
morning so I can work the whole day on the plane instead of
trying to try to get some sleep in flight. Obviously, sleeping in
a hotel bed works much better than sleeping on a plane.

My favorite airport is Singapore’s Changi airport. It actu-
ally feels good to be there. They have won numerous awards
for their quality. They even have live piano music and occa-
sional singers there.

Is Unix a better choice than Windows for an Oracle database
and—if so—why? In your experience, is Oracle on Windows
any less stable or reliable than Oracle on Unix?

By now I have realized that when running on comparable
platforms (and Unix, Linux, and Windows are comparable
nowadays), the quality of people involved in building and

maintaining the system is much more important than the in-
dividual details of the underlying platform. With an experi-
enced and motivated team you can build a scalable and
working solution on Windows/MSSQL, just like with Unix/
Oracle. With an inexperienced or unmotivated team, it doesn’t
matter how good the infrastructure you use is—you will have
problems. The design decisions and coding quality can hurt or
benefit the end result more than change from one major plat-
form to another.

From a technical perspective I still like Unix/Linux plat-
forms more than Windows for running Oracle databases, as
they tend to have better diagnosability infrastructure available
than when running on Windows. Of course you can always
download and install additional tools and debuggers, but on
Unixes they usually tend to be there. On the other hand, if your
company is a 100% Windows shop, go with Windows as you
already have Windows experience in-house.

My personal favorite is Solaris due to its extremely good
instrumentation and diagnosability tools such as DTrace. This
allows me to systematically go deeper in troubleshooting with-
out having to resort to guessing or luck.

You’ll be delivering your Advanced Oracle Troubleshooting
Seminar at NoCOUG in November. Why should I come to
your seminar?

The main reason is that I will provide a systematic ap-
proach to troubleshooting, along with the scripts and tools
required for it. And the word Advanced in the seminar title
actually means advanced too! I will show you how to drill
down extremely deep in case of Oracle instrumentation bugs
and complex issues such latch and mutex contention. Another
reason is that I won’t cover just Oracle database in isolation, I
will also talk a lot about how Oracle interacts with operating
systems and hardware and how to troubleshoot Oracle from
the OS side too. Finally, you will see demos during the major-
ity of the seminar time in SQL*Plus, Unix shell, or with few
GUI tools of mine. This allows showing how Oracle really
works and the troubleshooting techniques in action.

This seminar is concentrated entirely on Oracle trouble-
shooting—understanding what exactly Oracle is doing right
now or what it was doing when the problem occurred. You will
gain the skill to systematically work out the reasons for crashes,
hangs, bad performance, or other misbehavior.

The seminar takes a holistic approach to end-to-end trouble
shooting. It will explain the full lifecycle of a database request,
from database client libraries and networks to the Oracle data-
base kernel and the underlying OS. For each layer, a trouble-
shooting technique is provided along with advice on using the
right tool for the right problem at the right time.

The two days are full of intensive learning, reading dumps,
stack traces, network packet captures, and Oracle SGA directly.
You’ll be using debuggers and custom tools provided to you
for real-time and post-mortem diagnosis. The emphasis is on
practical troubleshooting; safety comes first and many tech-
niques are designed to require no change to database schemas
or instance parameters. I hope to see you there (smile). s

Interview conducted by Iggy Fernandez

�The NoCOUG Journal

Blind Variable Peeking:
Bane or Boon?

Ask the Oracles!
Wolfgang Breitling: Bind variable
peeking was introduced by Oracle
with 9i. Quoting from the Oracle 9 i
Database Performance Tuning Guide
and Reference:

“The CBO peeks at the values of
user-defined bind variables on the
first invocation of a cursor. This fea-

ture lets the optimizer determine the selectivity of any WHERE
clause condition, as well as if literals have been used instead of
bind variables. On subsequent invocations of the cursor, no
peeking takes place, and the cursor is shared, based on the stan-
dard cursor-sharing criteria, even if subsequent invocations use
different bind values. When bind variables are used in a state-
ment, it is assumed that cursor sharing is intended and that
different invocations are supposed to use the same execution
plan. If different invocations of the cursor would significantly
benefit from different execution plans, then bind variables may
have been used inappropriately in the SQL statement.”

To stake my position up front I think for the most part it is
a bane. It appears to me that Oracle is trying to fix from the
database side sins committed by the application programmer,
much like the “cursor_sharing=force” (or, even worse, = simi-
lar) parameter setting. In that case Oracle is trying to “posthu-
mously” use bind variable because the programmer neglected
to do so.

The central purpose of this feature is to “let the optimizer
determine the selectivity of any WHERE clause condition, as
well as if literals have been used. . . .”

Let’s take a look at this. Where does the difference between
using a bind variable or a literal make a difference in the selec-
tivity of a predicate? In this context we exclude predicates on
columns with histograms. If the distribution of your column
values is skewed such that a histogram is warranted, then you
should not use bind variables. That is one of the lemmas de-
rived from that disclaimer in the second paragraph in the
quote from the Performance Tuning Guide.

We’ll look at these types of predicates:
	 1.	 Equality predicate: Column = value
	 2.	 Like predicate: Column like value
	 3.	 Range predicate: Column between low-value and high-

value; or, as the optimizer transforms it: “column >=
low-value and column <= high-value” where, option-
ally, either side of the “and” may be omitted (unbound-
ed range) or the “>=” or “<=” operands be just “>” or
“<”.

We will look at the resulting selectivity by examining the
row source cardinality (cardinality = selectivity * num_rows)
of three scenarios:
	 a)	 Using a literal
	 b)	 Using a bind variable with bind variable peeking dis-

abled (“_optim_peek_user_binds” = false)
	 c)	 Using a bind variable with bind variable peeking en-

abled (“_optim_peek_user_binds” = true)
For the tests I use a table created “as select from dba_objects

where rownum <= 10000” with a unique index on object_id
and an index on owner,object_name.
	 a)	 Select count(*) from test where owner = ‘SCOTT’

Num_distinct of owner was 9, and in all three cases the
estimated cardinality turned out to be 1111 = 10000 / 9. So
here bind variable peeking does not make a difference in the
cardinality estimate and, therefore, also not for the access
plan.

Not for Oracle 9i, that is. If you do the test in 10g or 11g and
give a value that is not within the range set by LOW_VALUE
<= predicate <= HIGH_VALUE, then the optimizer does not
use a selectivity of 1/num_distinct, i.e., .1111 in this case, but
“Using prorated density: 0.047437 of col #1 as selectivity of
out-of-range value pred.” The prorated density value depends
on how far away the predicate value is from the low or high
value known to the optimizer, but it is always less than the
column density and, therefore, the estimated cardinality is less
if a literal or bind peeking is used. In the latter case, that can
have devastating effects if it happens to be the hard parse that
determines the access plan for all. So the developer had done
the right thing using a bind variable and “assumed that cursor
sharing is intended and that different invocations are sup-
posed to use the same execution plan.” But he did not antici-
pate that the plan would turn out to be a stupid plan for the
majority of “within-range” predicates based on an unfortunate
and unusual value at hard parse time. I certainly consider this
a bane of BV peeking, especially since Oracle changed the rules
of the game with the upgrade to 10g.
	 b)	 Select count(*) from test where object_name like ‘A%’

	 Select count(*) from test where object_name like ‘AL%’
	 Select count(*) from test where object_name like ‘ALL%’
These three tests use different lengths for the like string.

The cardinality of object_name was 8556 and the estimated
cardinalities 245, 2, and 1 with bind peeking and 500 (5% of
10,000) in all three cases with bind peeking turned off.

So here, clearly, bind peeking does make a difference, both
for the estimated cardinality and also probably for the result-

A S K T H E
O R A C L E S

� August 2009

ing access plan. However, is it correct to expect that “cursor
sharing is intended and that different invocations are sup-
posed to use the same execution plan”? I think this is a clear
case where a bind variable should not be used, and thus the
question “to peek or not to peek” becomes moot.
	 c)	 Select count(*) from test where object_id between

100000 and 200000;
		 Select count(*) from test where object_id between

10000 and 20000;
		 Select count(*) from test where object_id between 100

and 200;
Again, three tests that use different range spans. The cardi-

nality of object_id, being the unique key column, is obviously
10,000 and the range is 2 to 232,471, so all the above ranges are
within the low-high range, avoiding any complications from
selectivity adjustments due to “out-of-bounds” ranges.

The estimated cardinalities with BV peeking are 4304, 432,
and 6—exactly following the formula for bounded range
predicates (high – low) / (HI – LO) * 10,000—while all three
estimates without BV peeking are 25—5% of 5% of 10,000.
The upper-case range is that of the column statistics; the lower-
case range is that of the predicate. There is also an additional
estimate of 2 added to account for the CPU cost part and
rounding.

Again bind peeking provides more accurate estimates based
on the actual range. The difference between the 0.25% selec-
tivity without and the selectivity with BV peeking is most
pronounced, of course, if the predicate range covers a large
portion of the column range.

So back to the question “Is bind variable peeking good or
bad”? As we have seen, it does not make a difference for equal-
ity predicates except in the out-of-bound predicate case in 10g
and later, and then it is more of a curse than a blessing. Where
it makes a difference is with like and range predicates. However,
the sharing of the cursor because of the bind variables can eas-
ily backfire if the values for different executions are not similar.
Remember the disclaimer warning. That, of course, was not
the case before BV peeking because of the fixed 5% selectivity
per predicate (ranges are two predicates: >= and <= , thus the
5% * 5% = 0.25% selectivity).

In Oracle 9i, where BV peeking was introduced, the overall
effect was more or less neutral as long as bind variables were
used as intended. But in my opinion Oracle 10g tipped the
scale decidedly to “bane” due mainly to two new features:
	 a)	 The already-mentioned special selectivity for “out-of-

bound pred,” which can suddenly wreck the access plan
for all “normal” predicate values because the plan was
optimized for a rogue bind value—or because the data
values change faster than statistics gathering can keep
up with, and you legitimately query for new values that
are outside the existing statistics.

	 b)	 The change of the default of method_opt for statistics
gathering from “for all columns size 1” in 9i to “for all
columns size auto” in 10g, which unpredictably gener-
ates histograms for many more columns—too many, in
my opinion—than before. Even if, or especially if, the
histogram may be justified because the distribution of
the column values is highly skewed, one “untypical”

bind value can again ruin the access plan for all the
other executions of the shared cursor.

No wonder the number of horror stories reported in fo-
rums and on Oracle-L has increased since 10g, or 11g, has
widely replaced 9i.

To reiterate my position, I think Oracle tried to fix an applica-
tion problem, using bind variables where not appropriate, by
peeking at bind values (much like it tried to fix another applica-
tion problem, not using bind variables where appropriate, with
cursor_sharing={force|similar}). Of course, the ultimate insanity
is to use bind variable peeking together with cursor sharing. s

Wolfgang Breitling was born in Stuttgart, Germany, and studied
mathematics, physics, and computer science at the University of
Stuttgart. Following several years as a systems programmer for
IMS and later DB2 databases on IBM mainframes, he got on the
project to implement Peoplesoft on Oracle. In 1996 he became an
independent consultant specializing in administering and tuning
Peoplesoft on Oracle. The particular challenges in tuning People
soft, often with no access to the SQL, motivated him to explore
Oracle’s cost-based optimizer in an effort to gain a better under-
standing of how it works and use that knowledge in tuning. He
has shared the findings from this research in papers and presenta-
tions at IOUG, UKOUG, local Oracle user groups, and other con
ferences and newsgroups dedicated to Oracle performance topics.

Christian Antognini: Since its intro-
duction in Oracle 9i, many people
have argued over the pros and cons
of bind variable peeking. Not sur-
prisingly, however, most of the con-
tributors to this debate have mostly
pointed out the disadvantages of the
feature. This is probably because it’s

much easier to recognize when something goes wrong because
of a specific feature than the opposite. So before sharing my
answer with you on the question of “bane or boon,” I would
like to briefly review what the pros and cons of bind variable
peeking are. To do so, however, I have to begin with a discus-
sion of the pros and cons of bind variables. This is necessary
because too often I hear people criticize bind variable peeking
when, in fact, it’s the utilization of bind variables that should
be questioned.

From a performance point of view, bind variables intro-
duce both an advantage and a disadvantage. The advantage of
bind variables is that they allow the sharing of cursors in the
library cache and that way avoid hard parses and the associated
overhead. The disadvantage of using bind variables in WHERE
clauses, and only in WHERE clauses, is that crucial informa-
tion is hidden from the query optimizer. For the query opti-
mizer, it is in fact much better to have literals instead of bind
variables. With literals, it is able to improve its estimations and,
therefore, to choose optimal execution plans. This is especially
true when it has to check whether a value is outside the range
of available values (that is, lower than the minimum value or
higher than the maximum value stored in the column), when
a predicate in the WHERE clause is based on a range condition
(e.g., HIREDATE>’2009-12-31’), and when it makes use of

�The NoCOUG Journal

histograms. As a result, for cursors that can be shared, you
should always use bind variables if one of these three condi-
tions is not met. The main exception is for SQL statements for
which the parsing time is several orders of magnitude less than
the execution time. In this kind of situation, using bind vari-
ables is not only irrelevant for the whole execution time, but
it also increases the risk that the query optimizer will generate
very inefficient execution plans.

To overcome the disadvantage due to bind variables, Oracle
introduced bind variable peeking. The concept of bind vari-
able peeking is simple. During the physical optimization
phase, the query optimizer peeks at the values of bind variables
and uses them as it would with literals. Hence, at first sight we
have a win-win situation: the number of hard parses is re-
duced and the query optimizer makes better estimations. The
problem with this approach, however, is that the generated
execution plan depends on the values provided by the first
execution. Consequently, as long as the cursor remains in the
library cache and can be shared, it will be reused. This occurs
regardless of the efficiency of the execution plan related to it.
As a result, some executions might be efficient and some others
might not. In addition, depending on how long a cursor re-
mains in the library cache, unpredictable response times might
be experienced. To solve (or at least diminish) the disadvan-
tage due to bind variable peeking, as of Oracle Database 11g, a
new feature called “extended cursor sharing” (also known as
“adaptive cursor sharing”) is available. Its purpose is to auto-
matically recognize when the reutilization of an already avail-
able cursor leads to inefficient executions. This is a good thing.
But be careful, the database engine is only able to recognize
such a situation when a given cursor is executed several times
with a suboptimal execution plan. In other words, the database
engine tries to learn from its mistakes (but, of course, it has to
make some mistakes to be able to recognize them).

In summary, to increase the likelihood that the query opti-
mizer will generate efficient execution plans, you should not
use bind variables when one of the conditions mentioned
before is met. Even if bind variable peeking might help, it is
sometimes a matter of luck whether or not an efficient execu-
tion plan is generated. The only exception is when the new
extended cursor sharing of Oracle Database 11g automatically
recognizes the problem.

So, bane or boon? As usual, it depends. There are applications
that work very well with bind variable peeking. The reason is
simple: they have been implemented carefully. They use bind
variables in a sensible way. On the other hand, there are applica-
tions that experience unpredictable execution times for the op-
posite reason. For them, it is usually necessary to disable the
feature through the undocumented initialization parameter _
optim_peek_user_binds. Of course, it is never a good thing to set
an undocumented parameter. It is my opinion that Oracle should
not only promote this parameter as a regular one but also provide
hints to control the utilization of bind variable peeking. In other
words, they should give us the ability to choose whether it is ben-
eficial to use bind variable peeking or not. s

Since 1995, Christian Antognini has focused on understanding
how the Oracle database engine works. His main interests in-

clude logical and physical database design, the integration of
databases with Java applications, the query optimizer, and basi-
cally everything else related to application performance manage-
ment and optimization. Christian is the author of the book
Troubleshooting Oracle Performance (Apress, 2008). He is cur-
rently working as a principal consultant and trainer at Trivadis
in Zürich, Switzerland.

Dan Tow: Prior to 11g (where almost
all of us are still working), bind-vari-
able peeking was very definitely a
two-edged sword, creating at least as
many problems as it solved, in my
opinion. Consider several possible
cases:

1. The query does not execute
often, less than once per minute. In this case, even parsing for
every execution, with a different hard-coded constant each
time it executes, is not that bad, with parse costs lost in the
noise compared to overall load on the database. If the constant
would almost always only have one of a few values (at most,
often just one value), then it is useful to see those few values
when tuning and maintaining SQL—hiding the one, or at most
few, values behind a bind variable saves extremely few parses
and makes the query harder to maintain and tune. In the case
where a statement executes rarely and with at most just a few
distinct values attached to the bind variable, we are better off
with a hard-coded constant than with a bind variable, when
possible, eliminating the need for bind variable peeking. Only
if the bound values vary over a large number of values is there
a maintenance benefit to a bind variable. If you are capturing
SQL stats, it is easier to recognize that this is a single statement
and a single tuning and maintenance problem if it really is a
single statement with a bind variable, not a thousand state-
ments with a thousand different hard-coded constants.

2. The query executes often, and the selectivity of the query
conditions varies little regardless of the values used in the bind
variables. Bind variables are great here, potentially saving lots
of parses that would happen if we hard-coded lots of different
constants instead, but bind variable peeking is unnecessary
because we always end up wanting the same execution plans
regardless of the peeked-at values, and using averaged selec-
tivities would yield the same results.

3. The query executes often, and always with one—or at
most a few—bind variable values that lead to the same best
plan, while that is not the plan we would get if we didn’t peek
at those values. In this case, bind variable peeking is useful, but
the same result can be had with hard-coded constants (with
a few more parses, at most, to cover the few values), or with a
hint-forced plan that is chosen with the expected selectivity in
mind or with plan outlines.

4. The query executes often, and the selectivity of the query
conditions varies widely, depending on the values used in the
bind variables. This is the case that bind variable peeking was
designed to address—we potentially need bind variables to
avoid frequent parses, but the best execution plan depends on
the values attached to those bind variables, and presumably we
have any necessary histograms to help know how selectivity

10 August 2009

would vary by bind variable assignments. However, the big
problem here is that prior to 11g, bind variable peeking only
happens at the first parse, and we’re stuck with that execution
plan until the SQL ages out of the cache (which won’t happen
for a long time in this case where the query executes often), so,
since selectivities vary widely for values actually used, the cho-
sen plan that we are stuck with, and that was correct for the first
execution, will be wrong for many of the other executions.
Furthermore, we have nasty inconsistency in performance,
where one day the first execution leads to an execution plan
that works terribly for one set of bind values, and the next day
(when that first peek leads to a different plan), we get a plan
that works terribly for the other set of bind values. Even if we
usually get a plan that works well most of the time, we can
unexpectedly get a plan that works really poorly on average,
possibly at a very inopportune time, like the quarter close, just
because we got unlucky and that first peek saw some uncom-
mon case that leads to a plan that usually runs poorly. This
behavior is very hard to anticipate or prevent as long as we have
bind variable peeking. There are really two subcases here:
	 a)	 The most common subcase, by far, is that there are at

most a few values for some unevenly distributed col-
umn matched to a bind variable. In this case, it’s not a
problem to replace the bind variable with hard-coded
constants, since the result will be only a few parses for a
few versions of the query, and we get different execution
plans precisely when we want different plans.

	 b)	 A very rare subcase is that we have a large number of
possible values—and some call for one plan while others
call for another plan—and the query executes frequent-
ly enough for parse costs to matter. Here we have some
trade-offs: We can live with whatever unpredictable
result we get from the peeking for the first parse; we can
force a single plan, chosen to be better on average, with
hints that override bind-variable peeking; we can hard-
code constants, tolerating significantly higher parse
costs in order to get the best plans every time; or we can
distinguish which plan we would prefer at the applica-
tion layer and branch to different SQL with forcing
hints for each of the cases.

I can see no cases, prior to 11g, where bind variable peeking
offers both significant parse savings over hard-coded constants
and consistent good performance compared to results we get
without bind variable peeking. In practice, I have seen many
problems created by bind variable peeking, and the only problems
I have seen prevented were problems that could also have been
prevented by hard-coding a constant where a bind variable was
always assigned the same value or by using dynamic hardcoding
of values for SQL that executed very infrequently. s

Dan Tow has 20 years of experience focused on performance
and tuning, beginning at Oracle Corporation from 1989 to
1998, where he headed the performance and tuning group for
all of Oracle applications and invented a systematic, patented
method (U.S. Patent #5761654) to tune any query efficiently.
This method is extended and elaborated in his book, SQL
Tuning. Dan lives in Palo Alto, California, and is reachable at
dantow@singingsql.com.

Jonathan Lewis: Looking at this ques
tion, I can’t help imagining an editor
writing an opinion piece shortly after
the scythe started replacing the sickle
as the latest technological aid for bring-
ing in the harvest. Scythes: bane or boon?
How many farmers would praise the
implement for the extra efficiency, how

many would curse the way it made it easy to take a chunk out of
your own leg? The story of bind variable peeking is the same.

Developers and DBAs hadn’t really got to grips with the
cost-based optimizer and the impact of statistics on execution
plans when Oracle Corp. dropped a bombshell in 9i that
meant you couldn’t figure out why the current execution plan
had appeared for a query (using bind variables) unless you
knew what values had been passed in when that plan was first
generated. And this wasn’t a feature you could choose to en-
able, it was a feature you could only choose to disable—if you
discovered the correct hidden parameter!

If you have lots of users on an OLTP system who are con-
stantly doing the same high-precision jobs, using SQL state-
ments that can be separated into a small number of “class
actions” where every statement in a given class is virtually iden-
tical and is expected to do the same amount of work as every
statement in that class, then one “token” optimization for each
class is a good idea because optimization is expensive and you
don’t want to keep doing it for every tiny little query. And that’s
why (a) bind variables are good—each class of statements turns
into a single representative text with bind variables, and (b)
bind variable peeking is good—you really do need to use genu-
ine values when you do your one “token” optimization.

Note, however, the critical assumptions:
	 Everyone is doing the same amount of work with any

given (class of) SQL statement.
	 Every (class of) SQL statement is used very frequently.
	 Each (class of) SQL statement does a small amount of

work—so the overhead of optimization is relatively
large compared to the work done.

As soon as your application fails to meet this model, you
have to ask yourself: Do you really need to adopt a bind vari-
able approach? Could it even be counter-productive to adopt
a bind variable approach? And if you do adopt a bind variable
approach, how flexible and subtle does it have to be to avoid
the side effects of not conforming to the model?

The biggest threat with bind variables comes when the
first assumption doesn’t apply. If different input values result
in different amounts of work, a single execution plan from
the “token” optimization may not be enough —but one plan
is all you get and that one plan is dependent on the first set
of peeked values. There are three main types of query most
likely to cause problems. Queries involving:

	 Ranges (often date ranges) that are allowed to vary
enormously

	 Columns such as “status” or “flag” that have a small
number of distinct values with very different frequen-
cies that have had (frequency) histograms built on
them

(continued on page 17)

11The NoCOUG Journal

BOOK REVI EW

Details

Author: Mana Takahashi and
Shoko Azuma

ISBN: 978-1-59327-190-9

Pages: 224

Year of Publication: 2009

Edition: 1

Price: $19.95

Publisher: No Starch Press

Summary

Overall review: A refreshingly entertaining overview of a topic
that is all too often made boring by experts.

Target audience: Anyone new to databases.

Would you recommend to others: Yes.

Who will get the most from this book: Anyone who needs to
understand the basic principles of relational databases.

Is this book platform specific: No.

Why did I obtain this book: While I was attending MySQL
Bootcamp, one of the instructors brought this book to class.

Overall Review

First, what is Manga? I’d say it is a form of graphic novel or
comic book from Japan. You may not be familiar with Manga,
but you would probably recognize the style of illustration seen
in Manga. It has become very popular recently, and now we
have a whole series that sets out to teach subjects such as elec-
tricity, physics, and databases, and that is illustrated in this
style. While it would be easy to dismiss the books in this series
as being just for kids, that isn’t fair. I got a chance to look at this
book while attending a MySQL class and found it interesting.
And after reading it, I found it worthwhile.

The material is presented cheerfully, at times bordering
on the comical, but the information is accurate and easily
understood. For people who aren’t already familiar with how
relational databases operate, this book is very good. I would
recommend it to anyone who needs to understand, at a high
level, the most important features of all modern relational
database products.

The material is really very serious, but it is presented by
means of a simple story, a very Manga-type story of a king-
dom that sells fruit and all the problems that come up as their
business grows and they try to keep track of everything with
paper and pencil. You will not be surprised to find out that
just when our heroes appear to have no hope, a database comes
to the rescue.

Preface

Here the author presents the design and structure of the
book. We are told that databases are crucial parts of almost all
business computer systems and that the true nature of the
database is hard to understand. I’m not sure I know the true
nature of the database, but it is an interesting concept (some-
thing to think about while waiting for support to respond).

Chapter 1: What Is a Database?

This chapter actually starts with a more important ques-
tion, namely, why do we need a database? To answer this ques-
tion, a story is told. It’s the story of a kingdom that sells fruit
—lots of fruit, and more and more fruit all the time. A princess
(Ruruna) is responsible for all aspects of the fruit business and
she relies on a humble assistant (Cain). (Do you have any users
who act like a prince or princess? I thought so . . .) The princess
is struggling to keep up with all the paperwork for the business
using her laptop—a laptop with a logo that looks like a piece
of fruit, but definitely not an apple.

It is the busy season for the fruit business and the princess
is frustrated. There are so many departments, and they sell
fruit to many countries. Things are getting out of hand.

Enter the humble assistant with a magic book from the king,
a book that describes a secret technology called a “database.”
Apparently the king found this book in a faraway land. (Some
one went to Oracle World on a full pass and attended a lot of
marketing presentations.)

Our heroes (the princess and her humble assistant) open
the book and release a fairy, a database fairy named Tico. And
the database fairy is only visible to those who opened the book.
(DBAs appear to be talking to persons who aren’t really there
all the time . . .)

Tico offers to help our heroes with the supernatural powers
of the book in a proper manner. Tico says the first step is to
create a database, at which point the princess asks, what is a
database? The database fairy is eager to explain, and then ob-
serves that our heroes are trying to manage values and num-
bers, customers and sales, files and departments, and all in an
uncoordinated fashion. Data is duplicated in each department,
for example. This can create problems. It seems the princess
had a crisis just the other day. (This is sounding more and
more familiar.) Specific examples of the daily crises are given:
the price of apples went up and this required updating data in
multiple places. One department didn’t update their data, one
department updated the price incorrectly, and there was lots of
time spent finding and correcting all these errors. Tico offers
insight: “You will be tormented by data management even
if you do your best, won’t you.” This hits close to home.

The Manga Guide To Databases
A Book Review by Brian Hitchcock

12 August 2009

Tormented. The database fairy speaks the truth.
But Tico is here to help, explaining that a database is a sys-

tem where data can be shared by everyone (cue the SOX fairy
. . .) and, listen carefully, if you use a database you “would not
have to keep useless data.” Unfortunately, Tico doesn’t explain
that last part. Upon hearing this, the princess wants a database
very much and now wants to create one and asks Tico, “Can’t
you just do it?” Sounds like a consulting gig to me, but Tico
replies that the princess and her assistant have to create the
database themselves. Tico can only offer guidance. Sounds like
a consultant to me.

At this point the Manga story pauses and we have several
pages where the ideas introduced so far are described in a
more classical style without comic book artwork. This section
covers how data is duplicated among departments, how data
conflicts arise, update difficulties, and how a database handles
all of these issues.

Chapter 2: What Is a Relational Database?

This chapter starts, after a brief bit of drama with a prince
from a neighboring country (who has no interest in databases,
only the princess), by defining some database terms. Tico, the
database fairy, explains that this knowledge is necessary before
designing a database. Terms such as “record,” “field,” and
“product code” are discussed. You can see how this is leading
to normalization. We also see that duplicated records are not
good. The need for NULLs is brought up and covered very
briefly—if only it were this simple.

Next we are told about different data models used in data-
bases. Tico, with a BOINK and a SHAZAM (no, I’m not mak-
ing this up!) causes a hierarchical data model to appear,
followed, with similar sound effects, by a network data model
and finally a relational model. The first two models are left
simply as diagrams with little explanation, while the relational
model is explained in detail. Tables with keys and relational
operations are all covered. And then it is time to leave the story
to give more detailed explanations and examples of all that was
covered so far. The types of data models are further explained.
The way the various operations work is illustrated with tables
and data for the kingdom’s fruit business. At the end of this
section we are told that “The Relational Database Prevails!”—
and indeed it does!

Chapter 3: Let’s Design a Database!

Now that the princess Ruruna and her assistant Cain have
the necessary knowledge, it is time to design the database for
the kingdom. Tico appears to present an ER diagram. Entities
and relationships are discussed. A many-to-many (way too
many?) relationship is illustrated between fruit and export
destinations. I like the map showing a horse-drawn cart over-
loaded with fruit exiting the kingdom. My databases are never
this interesting. Tico explains all this by using a chalkboard,
a nice retro touch.

Next up is normalization, which requires making more ta-
bles. The princess is not happy; she had just one table for all
the product sales and was satisfied. But Tico shows us why
more tables are better with the example of updating the price
of a product. Better to have the price of each product in a

separate table and link that to a table of sales.
Tico is shown leading our heroes up “Mt. Relational Data

base” as the levels of normalization are explained. Everyone is
very tired when this is completed. Having arrived at the top of
the mountain, with third normal form, it is again time for a
more detailed explanation of the various concepts covered.
More traditional examples are given to further illustrate rela-
tionships and normalization.

Chapter 4: Let’s Learn About SQL!

This chapter opens with more Manga-style drama. The
princess and her assistant are strolling through the town. The
relationship between them isn’t clear, but the princess obvi-
ously perceives that they have some sort of connection. The
prince appears and suddenly the princess wants to go into a
café with Cain (and not the prince) to “study databases for a
while.” I guess this is one way to deal with your relationship
issues. And Cain is clueless. But so it goes. Anyway, with this
drama out of the way we can now focus on SQL. Why the
prince isn’t bright enough to pursue the princess into the café
is not explained.

Tico re-emerges from the database book and explains that
we need SQL to use the database. Both the princess and Cain
look at Tico and in unison ask “Squeal?” Indeed, there is lots of
squealing when users start using SQL. Tico explains that when
you go to the Swimmy region “across the sea” you need to speak
the Swimmy language, and therefore, when you want to have
a conversation with a database you need SQL. Ah, sure, the
Swimmy Region and Squeal. It’s all coming into focus, isn’t it?

But seriously, we learn how to use SQL to enter data into
and retrieve data from the tables we created earlier to model
the entities and relationships for the kingdom’s fruit business.
When Tico directs our heroes to retrieve data from the prod-
uct table, both Princess Ruruna and Cain begin to pray for the
data to be retrieved. Squealing and praying— clearly Tico has
worked with users for a long time! After explaining how to get
data from a single table using wildcards and how to sort the
data that is returned, joins are discussed. Tico also tells us that
a table must have a primary key and that this will prevent the
entry of incorrect data. I would offer that incorrect data can be
entered at any time, the definition of what would make data
incorrect is complicated, and that a primary key really only
prevents entering duplicate key values, but Tico seems pretty
definite about this so I’ll keep my opinions to myself. Again it
is time for a more detailed explanation of SQL, comparison
operators, searches, functions, subqueries, and how to create
tables. All the basics are covered. With a description of views
and several examples for us to study, we are done.

Chapter 5: Let’s Operate a Database!

Suddenly, the quiet kingdom has an IT department! We see
nameless drones pounding at keyboards (click, click, clack,
click) surrounded by lots of screens. While our heroes have
learned a lot about databases, they have “some worries.” Cain
has done some research and wonders how a database can let a
large number of users access data at the same time. But not to
worry, he has a set of charts that he will present to us, with a
wonderful title of “Database Theater.” My Oracle classes were

13The NoCOUG Journal

never this entertaining. There is much excitement (clapping and
a “Whoopee!”) as the show begins. The first chart is presented:
“One day, Andy and Becky accessed the database at the same
time”—the chart shows two users (stick figures), each with a
pointed hat, one labeled “A” and the other “B.” Do your users
wear silly hats? Do you see them as cartoonish stick figures?

It turns out that UserA and UserB both read from the data
base that a total of 30 apples were in stock, but UserA added
10 to that amount while UserB did the same thing. We can
see that 50 apples total are now in stock, but the database
only reports 40. The princess is quick to accuse Cain of eat-
ing the 10 missing apples (Cain is a DBA, he just doesn’t
realize it yet).

Cain has more charts of course, and he is quick to offer that
a database is designed to process data operations in “lumps.”
Indeed, this is the way I’ve always thought of it. Lumps, swirl-
ing silently in space. And these “lumpy” operations are called
“transactions.” I will assume that a follow-up book will be
needed to explain what happens when your database has too
many lumps at one time. A lumpy Method-R perhaps? The
Automated Lump Repository can’t be far behind, but it will
probably require an additional license fee. Cain’s charts provide
a very clear and detailed explanation of how transactions pre-
vent UserA and UserB from having a conflict, and locks come
into the picture. The princess is impressed with Cain. There are
different kinds of locks. Tico whispers in the princess’s ear that
Cain is “dependable.” Deadlocks are covered in more charts,
and a cancelled transaction is rolled back while completed
transactions are committed. But wait, Database Theater is
about to provide more relationship drama as the prince ap-
pears with a relevant comment about concurrency. Who knew?
It seems the prince has appeared because he has invoices from
the kingdom that are a real mess, and also because “a database
is a nasty thing.” Cain (ever more the hapless DBA) opines that
“someone with malicious intent might have performed an
unauthorized data overwrite.” What? There’s no chance that a
user with a silly hat put in some incorrect data? My money is
on UserZ—I never trusted that user. But back to the relation-
ship drama. The prince thinks that as compensation for this
inconvenience, the princess should marry him and leave the
kingdom to live in his country. Cain isn’t sure why he is upset
by this (clueless) but he keeps quiet. Cain proposes that they set
up usernames and passwords to control user access. And they
will grant specific rights to access specific data to specific users.
The princess thinks this is clever. The prince tries to steer the
princess back to the subject of marriage, but Cain isn’t done.
He also wonders what will happen as more and more users ac-
cess the growing database. Searches could become slow. The
prince asks if it is “safe to trust a database,” foreshadowing fu-
ture conflicts between his country and the kingdom over things
like medical records privacy, et al, but that is getting ahead of
the current drama. But Cain (the once and future DBA) is on
a roll. He offers that indexing seems to be promising. The
prince wants to discuss marriage, but Cain rolls on, explaining
all about indexes. The prince and Cain then discuss disaster
recovery and logs that keep track of all data operations per-
formed in the database. It isn’t clear why the prince is suddenly
able to discuss database issues. Perhaps his country needs a

DBA as well? We are told about rolling forward (and back)
transactions as part of disaster recovery. And now, the prince
returns to the marriage issue, but the princess suddenly an-
nounces her “passion” for Cain and their database.

This is followed by detailed descriptions of transactions,
atomicity, concurrency, and query optimization.

Chapter 6: Databases Are Everywhere!

The Manga drama is pretty much over. Now that the prin-
cess has a DBA under her control (marriage is a low-cost way
to ensure in-house DBA services) she can focus on running
her empire. Tico tells our heroes that databases are used in
other countries for things like banks, railways and even the
Web! It seems that, in other countries, you can by any book
you want from the Web! Imagine that! It seems that you can
enter search criteria into a web page and that information is
used by a database on the Web to find and return data using
SQL. Princess Ruruna is shocked to find that her father has a
book for sale online titled Fruit Love. But we move on. This
leads to a discussion of multiple databases to share the load
(distributed database, failover) and hints at the issues of keep-
ing multiple databases in sync so that any one of them can take
over if the others fail. Stored procedures are described as a way
to reduce the burden on the network by doing lots of the pro-
cessing in the server instead of sending SQL and results back
and forth. Triggers are next. Then princess Ruruna concludes
that she will, by using databases, build a wonderful country.
Wow! These databases can work miracles!

The final section provides more details about databases on
the Web, stored procedures, partitioning data, two-phase com-
mit, replication, and more.

Conclusion

Despite what you might think, the material is very accurate
and does bring out the important issues. The style is very dif-
ferent from all other database books I’ve seen, and that is very
refreshing.

Perhaps I will be replaced by the database fairy—oh wait,
that’s right, the fairy can’t do the actual work. Perhaps this
fantasy kingdom looks a lot more like my workplace than at
first glance?

I think this book has another message, one that is very im-
portant for all of us in the database management world. This
series of books (search Amazon.com for Manga Guide) covers
very basic topics such as electricity, physics, statistics, and mo-
lecular biology (and Sudoku!). While Manga is enjoyed by
many people of all ages, it is primarily aimed at young people.
Note the range of subjects that young people are interested in
these days, and then realize that databases are right in there with
molecular biology (and Sudoku!). What we do all day has be-
come relevant to a much wider audience than we realize. Many
high school students have had exposure to MySQL databases as
part of websites they frequent. These days, databases really are a
part of everyday life and are becoming more important all the
time. The fact that a publisher wants a series of Manga titles to
cover databases is something worth knowing. The impact of the
systems we create and support is huge and growing.

(continued on page 17)

14 August 2009

T
he First International NoCOUG SQL Challenge was
a great success; nine solutions were found by par-
ticipants in seven countries and three continents.
Alberto Dell’Era wins the contest for his wonderful

solution using Discrete Fourier Transforms; the runner-up is
André Araujo from Australia, who used binary arithmetic and
common table expressions in his solution. The August Order of
the Wooden Pretzel 1 will be bestowed on Alberto but the real prize
is six books of his choice from the Apress catalog. André will
receive a prize of six e-books of his choice. Thanks to Chen
Shapira for publicizing the event in her blog, Dan Tow for help-
ing to judge the contest, and Apress for donating the books.

The Challenge

An ancient 20-sided die (icosahedron) was discovered in
the secret chamber of mystery at Hogwash School of Es-Cue-
El. A mysterious symbol was inscribed on each face of the die.
The great Wizard of Odds discovered that each symbol repre-
sents a number. The great wizard discovered that the die was
biased: that is, it was more probable that certain numbers
would be displayed than others if the die were used in a game
of chance. The great wizard recorded this information in tabu-
lar fashion as described below.

	 Name	 Null?	 Type

	 FACE_ID	 NOT NULL	 INT
	 FACE_VALUE	 NOT NULL	 INT
	 PROBABILITY	 NOT NULL	 REAL

The great wizard then invited all practitioners of the an-
cient arts of Es-Cue-El to create an Es-Cue-El spell that dis-
plays the probabilities of obtaining various sums when the die

is thrown N times in succession in a game of chance, N being
a substitution variable or bind variable. The rules of the com-
petition can be found in the May 2009 issue of the NoCOUG
Journal and on the Web at www.nocoug.org/SQLchallenge/
FirstSQLchallenge.pdf.

The Solutions

The modus operandi was for each participant to post their
solutions on their blog or website; you can find them all with
a simple Google search. The first solution—by Laurent Schnei
der from Switzerland—used the CONNECT BY clause to join
the table to itself N times and the SYS_CONNECT_BY_PATH
and XMLQUERY functions to perform the necessary additions
and multiplications. The number of records generated by
CONNECT BY grows exponentially and hurts performance.

The second solution—by Craig Martin from the USA—
used the CONNECT BY clause to join the table to itself N
times and logarithms to perform the necessary additions and
multiplications. The number of records grows exponentially in
this case too.

The third solution—by Rob van Wijk from the Nether
lands—used the Model clause to generate records. The number
of records grows exponentially in this case too.

The fourth solution—by Vadim Tropashko from the USA
—used recursive common table expressions to generate records.
The number of records grows exponentially in this case too.
Recursive common table expressions are available in Microsoft
SQL Server and DB2 but are not presently available in Oracle
11gR1. Rumor has that they will be available in Oracle Data
base 11gR2.

The fifth and sixth solutions—by Alberto Dell’Era from
Italy—used advanced mathematical techniques such as convo-
lutions, Discrete Fourier Transforms, and Fast Fourier Transforms.
The Fast Fourier Transform method is an efficient way of cal-
culating Discrete Fourier Transforms and was implemented
using the Model clause.

The seventh solution—by Fabien Contaminard from
France—was based on the multinomial probability distribu-
tion, an extension of the binomial distribution.

The eighth solution—by a blogger named Cd-MaN from
Romania—used pipelined table functions and recursion. The
solution was demonstrated in a Postgres database but can eas-
ily be adapted for use in an Oracle Database. The use of recur-

S Q L C O R N E R

First International
NoCOUG SQL Challenge

We Have a Winner!
A News Report by Iggy Fernandez

1	Steven Feuerstein was asked the following question in an interview pub-
lished in the May 2006 issue of the NoCOUG Journal: “SQL is a set-ori-
ented non-procedural language; i.e., it works on sets and does not specify
access paths. PL/SQL on the other hand is a record-oriented procedural
language, as is very clear from the name. What is the place of a record-ori-
ented procedural language in the relational world?” Steven replied: “Its
place is proven: SQL is not a complete language. Some people can perform
seeming miracles with straight SQL, but the statements can end up looking
like pretzels created by someone who is experimenting with hallucinogens.
We need more than SQL to build our applications, whether it is the imple-
mentation of business rules or application logic. PL/SQL remains the fast-
est and easiest way to access and manipulate data in an Oracle RDBMS,
and I am certain it is going to stay that way for decades.”

15The NoCOUG Journal

sion means that this is not a pure SQL solution.
The ninth solution—by André Araujo from Australia—

used binary arithmetic and common table expressions.

Judges’ Decision

Dan Tow authored the following statement on behalf of the
judging committee:

To begin, we’d like to congratulate the contestants on find-
ing so many different and clever ways to solve this problem,
and on making the problem of picking a winner so difficult for
us, personally. Each of the solutions had major advantages to
recommend it. We were also very pleasantly surprised at the
global extent of the entries, with entries from seven nations
and three continents!

The criteria for the judging were stated in advance at www.
nocoug.org/SQLchallenge/FirstSQLchallenge.pdf. The main
criteria that separated the top scores from the rest, given that
they were all quite good as technical solutions from one per-
spective or another, were the inclusion of commentary and test
results, which were minimal or altogether lacking from most
entries. (Hey, we understand that you’re busy, so we’re not
surprised to see these missing or minimal, but they were im-
portant to getting a win here!)

There were elegant solutions using the Model clause, in-
cluding one by Alberto Dell’Era that implemented a solution
using Fast Fourier Transforms that was technically amazing,
well-documented and tested, and scaled better than any other
solution, with order N * Log(N) scaling, almost linear up to
enormous numbers of throws of the dice. However, these used
“iterate” loops that we believe violated the contest requirement
that “Solutions that use procedural loops to multiply probabil-
ities are not eligible” stated at the top of the “Judges’ Statement.”
(We know that there are wonderful, super-efficient ways to
solve this problem in procedural code like C, but the point
behind that unbendable requirement was to get contestants
“thinking in SQL,” doing the job in a set-wise manner, not just
finding ways to bend SQL into doing what we’d be better off
doing in C, procedurally.) The “procedural loop” component
in these solutions was really minimal and easy to miss, even, in
a casual examination of the code, but we think we have to stick
with the pre-stated rules here and disqualify those solutions,
even while we admire them.

Scaling almost as well (at order N * N), and also very well
documented and tested, both from the perspective of perfor-
mance and functionality, was the amazing Fourier-Transform-
based solution, www.adellera.it/investigations/nocoug_
challenge/index.html also by Alberto Dell’Era from Italy, that
we think has to be declared the winner here, with no proce-
dural loops and good-to-excellent scores in every stated judg-
ing criteria.

The runner-up choice is difficult, too, but we’d probably
have to go with André Araujo of Australia, www.pythian.com/
news/2385/nocoug-sql-challenge-entry. Of all the solutions,
his probably best combined straightforward (very clever, but
still straightforward to the reader!), portable SQL that could be
easily understood and maintained by a developer without an
advanced degree in mathematics, with fairly scalable and well-
tested SQL that ran well up to quite high numbers of throws

of the die (“N”). It is true that the SQL had a hard-coded limit
of N = 511 (a limit that André documented well, to the credit
of the solution), and that functional limit lost a few points, but
we should keep in mind that this high value of N is one that
most of the implementations (other than Alberto Dell’Era’s)
would never reach in our lifetime, anyway, owing to their com-
parative lack of scalability—being logically correct at high N is
worth nothing if the program never finishes! If we had to actu-
ally maintain one of these in a production environment, and
we didn’t anticipate needing results at very high values of N,
we’d probably go with André’s solution, just because we’d be
frightened of long-term maintenance on the high mathemat-
ics of Alberto Dell’Era’s brilliant but more complex and tech-
nically harder-to-follow solution.

Analysis of the Winning Solution

Alberto recognized that the contents of the die table define
a mathematical function and that the process of joining the
table with itself and grouping the results is the so-called convo-
lution of this function with itself. Throwing the die N times is
therefore equivalent to performing N – 1 convolutions. For
example, for N = 3, we have to perform two convolutions. This
is best expressed using common table expressions as follows.
Notice that the definition of the second convolution references
the first convolution.

WITH

first_convolution AS
(
 SELECT face_value, SUM (probability) AS probability
 FROM
 (
 SELECT
 d1.face_value + d2.face_value AS face_value,
 d1.probability * d2.probability AS probability
 FROM die d1 CROSS JOIN die d2
)
 GROUP BY face_value
),

second_convolution AS
(
 SELECT face_value, SUM (probability) AS probability
 FROM
 (
 SELECT
 d1.face_value + d2.face_value AS face_value,
 d1.probability * d2.probability AS probability
 FROM first_convolution d1 CROSS JOIN die d2
)
 GROUP BY face_value
)

SELECT face_value, probability
FROM second_convolution
ORDER BY face_value;

The most common solution of the problem requires an N-
way cross join. Convolutions have obvious advantages over an
N-way cross join because they keep the size of intermediate
results in check. The question is how to compute the required
N – 1 convolutions with a single SQL statement if the value of
N is not known in advance. One solution is to recursively in-
voke a table function as was done by the Romanian contestant;
that is, we have to resort to procedural programming. Alberto
was able to avoid procedural programming using a Fourier
transform; that is, a certain function whose definition is de-
rived from the original function. The Fourier transform has
the interesting property that the transform of the convolution

16 August 2009

of functions is the simple product of the individual trans-
forms. Therefore, the Fourier transform of the N-way convo-
lution of our function with itself is the Nth power of the
Fourier transform of the function. The Fourier transform is
straightforward to compute and—with a little mathematical
trick involving a conversion from the Cartesian coordinate
system to the polar coordinate system—the Nth power of the
Fourier transform is also straightforward to compute. At this
point, Alberto has the Fourier transform of the N-way convo-
lution. To obtain the result that he really needs, all that is left
for him to do is to compute the Inverse Fourier Transform of
the Fourier transform. An explanation of Fourier Transforms
can be found on the Web; efficient C-language implementa-
tions can also be readily found.

For readability and maintainability, Alberto uses a sequence
of common table expressions. The following is a simplified ver-
sion of his solution; the full solution handles more general
cases and uses some tricks to reduce the number of scientific
computations. Hints to guide the optimizer and improve effi-
ciency are included in the version shown below.

First Alberto creates a one-column table of sequence num-
bers using the CONNECT BY method; this table is used sev-
eral times in the rest of the solution. The number of elements
in the table is one more than the product of the number of
sides of the die and the number of throws.

sequence AS
(
 SELECT /*+ NO_MERGE */
 LEVEL - 1 AS n
 FROM dual
 CONNECT BY LEVEL <= (:N * :sides + 1)
)

Alberto then constructs a discrete function whose domain is
the numbers in the sequence table. The function is called dis-
crete because it is only defined for certain discrete values—not
for all values in a range as in the case of a continuous function.
Whenever possible, the function uses the values in the die
table. If a value is not found, the value of the function is set to
zero. This is done using an outer join.

function AS
(
 SELECT /*+ NO_MERGE */
 n,
 COALESCE(probability, 0) AS x
 FROM sequence LEFT OUTER JOIN die ON (n = face_value)
)

Alberto then computes the Fourier transform of the discrete
function. There’s some advanced math going on here but it’s
easy to take in small doses; you’ll recognize Pi as the well-
known mathematical constant. A cross join with the Sequence
table is required to calculate sums.

transform AS
(
 SELECT /*+ NO_MERGE LEADING(function) */
 sequence.n,
 SUM(x * COS(-2 * :Pi * sequence.n * function.n / (:N * :sides + 1))) AS x,
 SUM(x * SIN(-2 * :Pi * sequence.n * function.n / (:N * :sides + 1))) AS y
 FROM function CROSS JOIN sequence
 GROUP BY sequence.n
)

In another little dose of math, Alberto switches to polar
form for ease of further computation.

polar AS
(
 SELECT /*+ NO_MERGE */
 n,
 SQRT((x * x) + (y * y)) AS r,
 CASE
 WHEN ABS(y) < 0.000001 AND ABS(x) < 0.000001 THEN 0
 ELSE ATAN2(y, x)
 END AS theta
 FROM transform
)

Computing the Nth power of the Fourier transform is then
very easy.

power AS
(
 SELECT /*+ NO_MERGE */
 n,
 POWER(r, :N) AS r,
 theta * :N AS theta
 FROM polar
)

Alberto has no more use for the polar form, so he converts
back to Cartesian form.

cartesian AS
(
 SELECT /*+ NO_MERGE */
 n,
 r * COS(theta) AS x,
 r * SIN(theta) AS y
 FROM power
)

So far, Alberto has calculated the Fourier transform of the
discrete function and computed its Nth power. As explained
earlier, this is the Fourier transform of the N-way convolution
of the discrete function. To obtain the convolution itself,
Alberto computes the Inverse Fourier Transform using another
cross join with the Sequence table.

convolution AS
(
 SELECT /*+ NO_MERGE LEADING(cartesian) */
 sequence.n,
 SUM
 (
 x * COS(+2 * :Pi * cartesian.n * sequence.n / (:N * :sides + 1)) -
 y * SIN(+2 * :Pi * cartesian.n * sequence.n / (:N * :sides + 1))
) / (:N * :sides + 1) AS x
 FROM cartesian CROSS JOIN sequence
 GROUP BY sequence.n
)

Finally, Alberto can display the results. The result has more
than 30 digits of decimal precision; only 30 are displayed in the
interests of accuracy.

SELECT
 n AS face_value,
 ROUND(x, 30) AS probability
FROM convolution
WHERE n >= :N
ORDER BY n;

As you can see, Alberto’s solution used advanced mathe-
matical techniques, but it is not very long and the use of
common table expressions makes it quite readable. We have a
winner! s	 Copyright © 2009, Iggy Fernandez

17The NoCOUG Journal

	 Partitioning keys—especially with list partitions of dif-
ferent sizes

If you have critical queries that match these characteristics,
you may need to find a way to get multiple plans for the same
SQL text—and that typically involves being selective in your
use of bind variables or adding complexity to the code that
drives the queries.

So bind peeking is generally a boon for OLTP systems where
everyone does the same thing very frequently. But, almost invari-
ably, bind peeking will cause problems in a few cases because
queries that superficially look the same may need to collect dra-
matically different amounts of data using different execution
paths. s

Jonathan Lewis is well known to the Oracle community as a
consultant, author, and speaker, with more than 20 years of ex-
perience in designing, optimizing, and troubleshooting on Oracle
database systems. His latest book is Cost Based Oracle Funda
mentals, which is the first of three volumes on understanding
and using the cost-based optimizer.

(continued from page 10)

Finally, if you should want to read some Manga, I recom-
mend a series titled DeathNote. Full Metal Alchemist is also
very good. Another Manga series called Ghost in the Shell is
great, but is only available in Japanese. This series is available
in the Anime (animation) form in English. You might want to
read these, if only so that you can be slightly less un-hip than
you currently are. s

Brian Hitchcock has worked at Sun Microsystems in Newark,
California, for the past 11 years. He is a member of a DBA team
that supports 2400+ databases for many different applications at
Sun. He frequently handles issues involving tuning, character sets,
and Oracle applications. Other interests include Formula One
racing, finishing his second Tiffany Wisteria lamp, Springbok
puzzles, Märklin model trains, Corel Painter 8, and watching TV
(TiVo rules!). Previous book reviews by Brian and his contact
information are available at www.brianhitchcock.net.

Copyright © 2009, Brian Hitchcock

(continued from page 13)

(continued from page 26)

Developer supports unit testing and an integrated data mod-
eler, and we’ll review these new features. The session closes
with a brief review of new functionality planned for the next
release of SQL Developer.

Anatomy of a Database Attack
Dana Tamir, Imperva . 4:00–5:00

Corporate databases are under siege. From outside the
organization, criminals can exploit web applications to steal
confidential information for financial gain. From the inside,
databases can be compromised by employees and contractors
with malicious intent. SQL Injection, platform vulnerabilities,
buffer overflows: databases are vulnerable to a myriad of threats
and attack vectors. This presentation will use live demonstra-
tions to trace the steps involved in breaking into a database and
present a reference architecture and checklist for implement-
ing iron-clad database security measures. s

18 August 2009

S P E C I A L
F E AT U R E

More Oracle
Secrets
by Norbert Debes

My name is Norbert Debes and I’m the author of Secrets of
the Oracle Database, an Apress book that unveils undocumented
aspects of the Oracle database server. Starting with this edition
I’m going to contribute regularly to the NoCOUG Journal. My
contributions to the Journal will have the same theme as my
book—useful, undocumented features that Oracle Corp. does not
tell us about but nonetheless help us DBAs do our jobs better and
more efficiently or, better yet, solve problems that would have
been impossible to solve with documented features.

O
racle Corp. has always emphasized the fact that
their database server is very scalable. The reuse of
cursors in the shared pool that is enabled by using
bind variables in recurring statements is an im-

portant facet in attaining scalability. Frequently executed SQL
statements without bind variables have caused headaches to
numerous DBAs and resulted in far less than optimal perfor-
mance of quite a few applications. In this article, I’m going to
talk about assessing the performance impact of such state-
ments based on an undocumented feature that was intro-
duced with Oracle10g.

Terminology

According to the Oracle Concepts manual, “a cursor is a han
dle or name for a private SQL area—an area in memory in
which a parsed statement and other information for processing
the statement are kept.”1 Elsewhere the manual states: “Oracle
represents each SQL statement it runs with a shared SQL area
and a private SQL area.” Bind variables, i.e., placeholders in SQL
statements, are key to reusing the information in the shared
SQL area. Depending on the programming language, bind vari-
ables may appear as “:n” (n≥0) or “:<id>”, where id as an identi-
fier, in the SQL statement text. The former format is used in
binding by position, the latter in binding by name.2

A literal is a numeric or character constant in a SQL state-
ment. Literals defeat the reuse of cursors. In the following code
section, the first SELECT statement is reusable since it con-
tains a bind variable; the second is not, since it contains a
literal in the WHERE clause.

variable department_id number
exec :department_id:=200

SELECT department_name FROM departments
WHERE department_id=:department_id;

-- not reusable for departments other than 200
SELECT department_name FROM departments
WHERE department_id=200;

I’m going to call a cursor associated with a statement that
fails to use bind variables a non-reusable cursor. Likewise the
text of the underlying SQL statement is called non-reusable.
DDL statements are non-reusable by their very nature, but
INSERT, SELECT, UPDATE, DELETE, and MERGE are all
reusable with bind variables.

Cursors and the Shared Pool

Let’s quickly review the infrastructure for reusing cursors
offered by the Oracle DBMS. Any SQL statement executed by
a database client is represented by a cursor in the shared pool
of the database engine. Essentially a cursor is opened, the state-
ment text associated with a cursor is parsed, values are sup-
plied for bind variables (optional), and the cursor is executed.
If the statement in question is a SELECT statement, fetch may
be called on the cursor to retrieve rows. When the application
is done, it should close the cursor to release memory and avoid
exceeding the maximum number of open cursors (initializa-
tion parameter OPEN_CURSORS).

Reusing cursors helps scalabilty since it avoids the overhead
of repeatedly checking statements for correct syntax and for
access privileges to the referenced database objects. It also
makes execution plans reusable; hence the DBMS does not
repeatedly have to spend CPU cycles on trying to find the best
execution plan with cost-based optimization.

V$ Views

The cursors opened by a session are in V$OPEN_CURSOR.
Each cursor has a certain amount of memory that is private to
the session using the cursor. Another memory region associ-
ated with a cursor is reusable by other sessions. Among other
things, the reusable part comprises the execution plan
(V$SQL_PLAN). The size of the reusable memory region is
available by querying the column SHARABLE_MEM of the
fixed view V$SQL.

Norbert Debes

1	Oracle Database Concepts 10g Release 2 (10.2) B14220-02, page 24-4.

2	Binding by name is a new feature in JDBC 3.0 (Oracle10g and newer
drivers).

19The NoCOUG Journal

By default, only statements with identical SQL statement
texts are reusable. The DBMS calculates a hash value on the
statement text (V$SQL.HASH_VALUE) and uses it to search
for an already parsed cursor. If a match is found, information
on the cursor is reused and the statement executes faster. Since
Oracle10g, a new approach to uniquely identifying a SQL
statement was added—the SQL ID (V$SQL.SQL_ID). The
SQL ID is relied upon by the active workload repository
(AWR). The old hash value (V$SQL.OLD_HASH_VALUE)
that retains the algorithm used in Oracle9i is available too.
The old hash value is still used by STATSPACK.

Child Cursors

Matters are more intricate than I have described so far.
There may be multiple child cursors (V$SQL_PLAN.CHILD_
NUMBER) per cursor. Each time a statement is parsed with a
different optimizer environment (i.e., different CBO parame-
ter settings that result in a different value for V$SQL.
OPTIMIZER_ENV_HASH_VALUE), a new child cursor is
created. The new child cursor may be associated with a differ-
ent execution plan (V$SQL.PLAN_HASH_VALUE).

When a database client performs a parse call on a cursor,
the DBMS calculates a hash value on the statement text and
tries to locate existing information based on previously exe-
cuted statements with the same hash value. If the optimizer
environment matches an existing one, the plan can be reused
in addition to the other information.

CURSOR_SHARING

Oracle development recognized the need to make some of
the benefits of reusable cursors available to applications that
do not use bind variables. Hence they introduced the param-
eter CURSOR_SHARING with Oracle8i. The default value of
this parameter is EXACT, meaning that only cursors for state-
ments with identical text can be reused. The other two allowed
values are SIMILAR and FORCE. SIMILAR is the recom-
mended setting to alleviate the damage done by statements
without bind variables since—according to documentation—
literals will not be replaced by bind variables if “the degree to
which the plan is optimized” is affected.3 What happens when
CURSOR_SHARING has a non-default value is that the DBMS
rewrites statements with literals to statements with system-
generated bind variables. If you see a SQL statement with a
bind variable named SYS_Bn (n≥0) you’ll know that the state-
ment was rewritten.

Cursor sharing may be used to improve the performance
of non-sharable SQL statements. However, even with cursor
sharing, an application will not perform as well as with proper
use of bind variables. The highest scalability is attained by
enabling server-side (SESSION_CACHED_CURSORS4) and
client-side (API dependent) cursor caching along with bind
variables. This allows statements to be parsed only once as long
as the cache is large enough.

FORCE_MATCHING_SIGNATURE

Now that we have laid a foundation for cursor handling and
reuse and have a common terminology, it’s time to address the
core subject of this article—aggregating the resource con-

sumption of non-reusable cursors. In other words, measuring
the resources used by SQL statements that would be reusable
if the statements contained bind variables.

The undocumented tidbit is that the DBMS engine calcu-
lates yet another hash value on a SQL statement’s text that is
independent of literals. I imagine that this is done by using the
tokens recognized by the lexer as part of the syntactic analysis
of a statement. The tokens are then fed to a hash function, I
presume. Hence, a literal such as “Operations” would be re-
placed by a token, say STRING_LITERAL, whereas a numeric
constant such as 3000 would be matched by the token
INTEGER_LITERAL. Of course any other such literals would
be represented by the same lexer tokens. A lexer is software that
converts a sequence of characters into a sequence of tokens.5
Recognizing the reserved words (keywords) of the SQL lan-
guage is also accomplished by a lexer.
FORCE_MATCHING_SIGNATURE is a new column in

V$SQL and V$SQLAREA that was added in Oracle10g Release
2. This new column has data type NUMBER and is also present
in DBA_HIST_SQLSTAT and DBA_HIST_ACTIVE_
SESS_HISTORY, allowing customers that have a license for
the Diagnostics Pack to analyze statements that have been
captured by AWR. However, non-reusable statements are un-
likely to appear in any AWR or STATSPACK report unless they
have caused a significant load during the snapshot interval. A
typical case consists of thousands of SELECT, INSERT, or
UPDATE statements that execute quickly and never appear in
any reports because each statement is handled as separate from
the other semantically identical statements.

What the Documentation Says

According to the Oracle10g Release 2 and Oracle11g Release
1 database reference manuals, the force matching signature is
the “signature used when the CURSOR_SHARING parameter
is set to FORCE.” Not very enlightening. Unfortunately this is
the only bit of information available.

What about CURSOR_SHARING=SIMILAR? And
EXACT? Does this mean the force matching signature is avail-
able only when the parameter CURSOR_SHARING=FORCE?
What statement types have a force matching signature? Are
there any useful applications of the force matching signature
for us DBAs? Here we have another instance of mythmaking
caused by poor documentation from Oracle Corp.

The Facts

Testing reveals that the force matching signature is calcu-
lated irrespective of the parameter CURSOR_SHARING. The
value zero indicates that no force matching signature has been
calculated. I assume that the DBMS uses the signature to
match statements that have a different hash value or SQL ID
when CURSOR_SHARING is set to SIMILAR or FORCE.
When a statement with the same FORCE_MATCHING_
SIGNATURE is found, its cursor can presumably be reused.

3	Oracle Database Reference 10g Release 2 (10.2) B14237-03, pp. 1–33.

4	Since Oracle11g, the default server-side cursor cache size is 50. It was 20
in Oracle10g.

5	See en.wikipedia.org/wiki/Lexical_analysis.

20 August 2009

Statement Types

The statements we are interested in are INSERT, SELECT,
UPDATE, MERGE, and DELETE, since these would harm per-
formance if they were executed frequently without bind vari-
ables. The following query segregates statements into two
sets—one set with a valid (non-zero) signature and another
with a signature value zero. This intermediate result is then
grouped by the availability of a signature and the command
type. The query answers the question of what statements may
have a valid force matching signature.

SQL> WITH s AS (
SELECT decode(command_type,
 1, ‘CREATE TABLE’,
 2, ‘INSERT’,
 3, ‘SELECT’,
 6, ‘UPDATE’,
 7, ‘DELETE’,
 26, ‘LOCK TABLE’,
 47, ‘PL/SQL Block’,
 48, ‘SET TRANSACTION’,
 170, ‘CALL’,
 189, ‘MERGE’,
 to_char(command_type)
) AS command_name,
 decode(force_matching_signature,
 0, ‘unavailable’, ‘available’) AS availability
 FROM v$sql
)
SELECT availability, command_name, count(*) AS count
FROM s
GROUP BY availability, command_name
ORDER BY availability, command_name;

AVAILABILITY		 COMMAND_NAME	 	 COUNT
------------		 ---------------	 -----
Available		 	 CREATE TABLE	 	 2
Available		 	 DELETE	 	 	 	 173
Available		 	 INSERT	 	 	 	 59
Available		 	 MERGE		 	 	 	 1
Available		 	 SELECT	 	 	 	 4140
Available		 	 UPDATE	 	 	 	 2637
Unavailable	 	 CALL	 	 	 	 	 2
Unavailable	 	 DELETE	 	 	 	 14
Unavailable	 	 INSERT	 	 	 	 119
Unavailable	 	 LOCK TABLE	 	 	 5
Unavailable	 	 PL/SQL Block	 	 218
Unavailable	 	 SELECT	 	 	 	 84
Unavailable	 	 SET TRANSACTION	 1
Unavailable	 	 UPDATE	 	 	 	 14

The query result above shows that most of the interesting
statements do have a force matching signature most of the
time. In fact, when taking a closer look at statements that have
a signature value of zero, it turns out that most of these do have
bind variables and have been reused multiple times. Unfor
tunately, the signature of INSERT statements without bind
variables is always zero. The next query counts statements with
out a valid force matching signature that have been reused.

WITH s AS (
SELECT hash_value, sum(executions) AS count
FROM v$sql
WHERE force_matching_signature=0
AND command_type in (2, 3, 6, 7, 189)
GROUP BY hash_value
)
SELECT
reuse, count(*)
FROM (SELECT decode(count, 1, ‘not reused’, ‘reused’) AS reuse FROM s
)
GROUP BY reuse;

REUSE	 COUNT(*)
----------	 --------
not reused	 26
reused	 150

The above result shows that most statements without a
valid signature have been reused multiple times.

Semantically Identical Statements

The next example proves that semantically identical state-
ments with different literals differ in their hash values but
match on the force matching signature.

SQL> SELECT force_matching_signature AS force_match_sig,
to_char(hash_value, ‘9.9EEEE’) AS HV,
replace(sql_text, ‘* FROM departments WHERE’, ‘...’)
AS sql_text
FROM v$sql
WHERE force_matching_signature=15970513317740138009;

FORCE_MATCH_SIG	 HV	 SQL_TEXT
--------------------	 -------	 --------------------------
15970513317740138009	 3.7E+08	 SELECT ... department_id=4
15970513317740138009	 2.4E+08	 SELECT ... department_id=2
15970513317740138009	 1.6E+09	 SELECT ... department_id=1

Note that the SQL ID, which is not shown above, is also
different for statements that contain different literals. Next up
is a query that identifies non-sharable SQL statements in the
shared pool based on their signature. The query also reports
how many statements that differ merely by literals are in the
shared pool. The query may easily be extended to show how
much memory is used by those statements. Such a query is a
good starting point to persuade a software manufacturer to
use bind variables.

WITH f AS (
SELECT force_matching_signature, count(*) AS count
FROM v$sql
WHERE force_matching_signature>0
GROUP BY force_matching_signature
HAVING count(*) > 1000
)
SELECT force_matching_signature AS force_match_sig,
replace(sql_text, ‘ departments SET department_id=department_id WHERE
department_’, ‘...’) AS sql_text,
count FROM (
 SELECT f.force_matching_signature, s.sql_text, count, RANK() OVER
(PARTITION BY s.force_matching_signature ORDER BY s.hash_value) AS
rank
 FROM v$sql s, f
 WHERE s.force_matching_signature=f.force_matching_signature
)
WHERE rank <=3;

FORCE_MATCH_SIG	 SQL_TEXT	 COUNT
--------------------	 ----------------	 -----
14706988439514424098	 UPDATE...id=9455	 7630
14706988439514424098	 UPDATE...id=7361	 7630
14706988439514424098	 UPDATE...id=6348	 7630

The use of the analytic function RANK makes it possible to
show three example statements per each non-reusable state-
ment with a certain force matching signature.

Aggregation

When aggregating the resource consumption of non-reus-
able statements it is important to remember that most reus-
able statements also have a force matching signature greater
than zero. In order to look at non-reusable statements only, I
have used the predicate V$SQL.EXECUTIONS=1 in the
query below. Thus the query only considers statements that
have been executed once and then aggregates such statements
over their force matching signature. Due to space constraints I
have commented out several performance metrics such as buf-

21The NoCOUG Journal

fer gets and disk reads that are available from V$SQL in the
query below.

SQL> WITH f AS (
SELECT command_type, force_matching_signature, sum(executions) AS
exec_count FROM v$sql
WHERE force_matching_signature>0
AND executions=1
GROUP BY command_type, force_matching_signature
HAVING sum(executions) > 1000
)
SELECT decode(f.command_type,
 1, ‘CREATE TABLE’,
 3, ‘SELECT’,
 6, ‘UPDATE’,
 7, ‘DELETE’,
 189, ‘MERGE’,
 to_char(f.command_type)
) AS command_name,
f.force_matching_signature, sum(executions) exec_calls,
/*sum(parse_calls) parse_calls, sum(fetches) fetches, sum(disk_reads)
disk_reads,
sum(buffer_gets) buffer_gets, sum(rows_processed) “ROWS”,
round(sum(elapsed_time/1000000),3) elapsed_secs, */
round(sum(cpu_time/1000000),3) cpu_secs
FROM v$sql s, f
WHERE s.force_matching_signature=f.force_matching_signature
GROUP BY f.command_type, f.force_matching_signature
ORDER BY cpu_secs DESC

COMMAND_NAME	 FORCE_MATCHING_SIGNATURE	 EXEC_CALLS	 CPU_SECS
------------	 ------------------------	 ----------	 --------
DELETE	 342201937948462289	 4899	 3.572
UPDATE	 14706988439514424098	 3474	 2.6

Limitations

Thousands of SQL statements that are never reused will
quickly age out of the shared pool. This is an inherent limita-
tion of the method presented herein. Ideally, the forced match-
ing signature would be part of the SQL trace file format. Then
SQL trace profilers like TKPROF might easily aggregate the
resources consumed by non-sharable statements. Oracle has
added the SQL ID (sql_id) to the SQL trace file format in
Oracle11g version 11.1.0.6 and the plan hash value (plh) in
11.1.0.7. Why not add the force matching signature? Of course
it should also be made available for non-sharable INSERT
statements.

Alternative Solutions

As with other types of performance problems, the use of
SQL trace instead of V$ views may prove to be superior. As
stated in the preceding sections there is currently no solution
for the following two issues:

	 1.	 Non-sharable statements quickly age out of the shared
pool and hence will be removed from V$SQL.

	 2.	 There is no V$ view that has a valid force matching sig-
nature for non-sharable INSERT statements.

SQL trace solves problem 1, since it captures all statements
of a session or multiple sessions that meet certain criteria such
as a common service name and module.6

The solution for item 2 requires third-party software that is
capable of parsing the undocumented SQL trace file format as
well as the relevant SQL statements (SELECT, INSERT, etc).
According to the company websites, Hotsos and Method-R
Corporation offer this capability in their Profiler product
(www.hotsos.com; www.method-r.com).

I’m currently in the process of re-implementing my Perl-

based SQL trace profiler, which ships with Secrets of the Oracle
Database in Java, and have recently implemented the aggrega-
tion of non-sharable SQL statements as a licensable feature.
This tool—I’m calling it the MERITS Profiler since it supports
the MERITS performance optimization method that I describe
in the book—is capable of reporting the force matching signa-
ture. Additionally it uses its own lexer, parser, and hash value
to aggregate non-sharable statements, including INSERT state-
ments. Additional information on the MERITS Profiler will
soon become available on my website, www.oradbpro.com.

Summary

SQL statements without bind variables have a negative im-
pact on performance and scalability. The force matching sig-
nature, a new column in V$SQL, is presumably a hash value
that is calculated while ignoring literals. Hence statements that
are semantically identical have the same force matching signa-
ture. This article discusses how to identify such statements and
how to aggregate the resources consumed by them. In the past,
the identification of non-shareable statement was difficult to
automate. I have seen recommendations to group statements
by the first 80 characters and the like. Nothing that worked was
available out of the box. Except for INSERT, the problem is
now solved. Third-party SQL trace profiler tools that are ca-
pable of parsing SQL trace files and the SQL statements con-
tained therein provide an all-encompassing solution to the
problem. s

Norbert Debes has more than 13 years experience as an Oracle
database administrator. He holds a master’s degree in computer
science from the University of Erlangen, Germany, and is an
Oracle8, Oracle8i, and Oracle9i certified professional Oracle
database administrator. For over 6 years, he held different posi-
tions and technical roles at Oracle Germany. He was a team
leader in Oracle Support Services, and a technical account man-
ager in Strategic Alliances. In his last role at Oracle, Norbert was
responsible for promoting Real Application Clusters on a techni-
cal level. During his tenure, he contributed to the Oracle 9i SQL
Reference, the Real Application Clusters manual set, and various
Real Application Clusters training materials.

In his spare time, Norbert likes to hike, snowboard, play
basketball, and read nonfiction on topics such as the emotional
brain. Furthermore, he is a passionate analog and digital pho-
tographer. Having been intrigued by the vibrancy of stereoscopic
(i.e., three-dimensional) capture for 20 years, he rejoices in his
recent acquisition of a stereo camera.

Copyright © 2009, Norbert Debes

6	Please refer to the documentation on the package DBMS_MONITOR.

Enterprise Performance
Management

For Oracle

Validate Major Upgrades Prior to Production Deployment

Advanced Problem Identification Prior to Business Impact

Real-Time Performance Remediation

Deep-Dive Database Problem Diagnosis

(Pick all four)

TAKING THE RISK OUT OF THE DBA’S LIFE
Find out why we’re trusted by the largest enterprises

www.enteros.com
866-529-1981

23The NoCOUG Journal

			 Naren Nagtode, Treasurer

Beginning Balance
April 1, 2009		 $ 45,469.53

Revenue

Membership Dues 	 1,411.00
Meeting Fees	 800.00
Vendor Receipts 	 250.00
Advertising Fee	 –
Training Day	 –
Sponsorship	 –
Interest	 4.80
Paypal balance	 –
Total Revenue		 $ 2,465.80

Expenses

Regional Meeting	 7,664.83
Journal	 5,505.33
Membership	 –
Administration	 1,840.00
Website	 –
Board Meeting	 617.66
Marketing	 100.00
Insurance	 –
Vendors	 –
Tax	 800.00
Training Day	 –
Accounting	 –
Miscellaneous	 –

Total Expenses	 $ 16,527.82

Ending Balance
June 30, 2009 		 $ 31,407.51

Thank you!
Year 2009

Gold Vendors:

➤	 Burleson Consulting

➤	 Confio Software

➤	 Database Specialists, Inc.

➤	 Enteros

➤	 Precise Software Solutions

For information about our Gold Vendor
Program, contact the NoCOUG vendor
coordinator via email at:
vendor_coordinator@nocoug.org.

Chevron

Oracle Corp.

Long-term event sponsorship:

T R E A S U R E R ’ S   R E P O R T$

Many Thanks to Our Sponsors

SPONSORSHIP
APPRECIATION

N
oCOUG would like to acknowledge and thank our generous sponsors for their contributions.

Without this sponsorship, it would not be possible to present regular events while offering

low-cost memberships. If your company is able to offer sponsorship at any level, please

contact NoCOUG’s president, Hanan Hit, at hanan.hit@enteros.com. 

24 August 2009

Keynote

Oracle 2020: A Look at How Oracle Will Change
in the Next Decade
Donald Burleson, Burleson Consulting. 9:30–10:30

The advances in hardware and Oracle automation features
are going to have a huge impact on the job duties of the Oracle
professional. This presentation explores industry trends to
show how the job of the DBA will move beyond compartmen-
talized duties and into a broader spectrum. The Oracle Profes
sional of the 21st century will be relieved of the tedium of
monitoring and tuning and be free to concentrate on other
important database administration activities. This fun and
interesting presentation will give the attendees a look at how
their jobs are going to change, sooner than they think.

Donald K. Burleson is one of the world’s best-known Oracle authors.
A full-time DBA for more than 25 years and a retired adjunct pro-
fessor emeritus, he has authored more than 30 books on Oracle data
base management, published hundreds of articles in national maga-
zines, and is a popular lecturer at international database confer-
ences. As a corporate database consultant, Don has worked with
numerous Fortune 500 corporations creating robust database archi-
tectures for mission-critical systems. Don serves as CTO of Burleson
Consulting (www.dba-oracle.com) and offers a popular remote
DBA service (www.remote-dba.net).

Room 1220

Creating a Self-Tuning Database
Donald Burleson, Burleson Consulting. 11:00–12:00

With the release of Oracle9i, Oracle started to create the
foundation for a self-tuning database, and Oracle11g has fur-
ther enhanced the automation of many tuning actions. Using
the existing data from the Automated Workload Repository
and Automatic Session History tables, this presentation will
show you how to create sophisticated scripts to detect anoma-
lies and how to dynamically invoke the dbms_scheduler utility
to automatically repair the problem before it cripples the data-
base instance. This presentation is for Oracle professionals who
want to know how to automate their manual decision rules
within the automation framework of Oracle 11g. This presen-
tation will show working code from real-world Oracle 11g
databases.

What to Expect from the Oracle Optimizer When
Upgrading to Oracle Database 11g Release 2
Maria Colgan, Oracle Corp. 1:00–2:00

One of the most daunting tasks for a DBA is to upgrade the
database to a new version. Having to comprehend all of the
new features and deal with potential plan changes can be over-

whelming. The purpose of this session is to dispel some of the
mysteries surrounding the query optimizer by explaining in
detail the new optimizer features, including SQL Plan Manage
ment, and what you can expect when you upgrade to Oracle
Database 11g. It will also include step-by-step instructions to
help you prepare for the upgrade.

Things You Always Wanted to Know About
Oracle Partitioning
Hermann Baer, Oracle Corp.. 2:30–3:30

Partitioning is a key technology for addressing the require-
ments of large data volumes, for data warehouse as well as
OLTP environments. Benefits are not only for performance
but also increasingly for manageability and Information
Lifecycle Management. This session will reveal best practices
and designs used by successful customers. Furthermore, it will
provide insight into less-known details of how to get the best
leverage out of Oracle Partitioning.

DBA 101: Interpreting SQL Query Execution Plans
Iggy Fernandez, Database Specialists. 4:00–5:00

SQL efficiency is central to database efficiency, and the abil-
ity to interpret SQL query execution plans is a critical skill of
the database administrator. In this session, we review the pro-
cess of generating and interpreting query execution plans; the
meaning of operations such as “Merge Join,” “Hash Join,”
“Hash Group By,” and “Index Fast Full Scan”; and how to
monitor changes in query execution plans using Statspack and
AWR data. We also discuss how to generate graphical versions
of query plans, which are much easier to read than their more
common tabular counterparts.

Iggy Fernandez is an Oracle DBA with Database Specialists and
has more than ten years of experience in Oracle database admin-
istration. He is the editor of the quarterly journal of the Northern
California Oracle Users Group (NoCOUG) and the author of
Beginning Oracle Database 11g Administration, published
by Apress.

Room 1240
Running Oracle in EC2
Ahbaid Gaffoor, Amazon.com 11:00–12:00

In this session you’ll learn how to set up an Oracle database
on an EC2 instance, configure access, and have it persist across
reboots. We’ll also look at S3 (Simple Storage Service) for
RMAN-based backups in the cloud. Expect to leave this session
with the tools to deploy your next Oracle instance in the cloud.
We’ll talk a bit about Oracle licensing in the cloud, then look
at Amazon Web Services’ cloud offerings, including EC2 (Elas
tic Cloud Compute), Elastic IP, Elastic Cloud Front, and S3
(Simple Storage Service).

NoCOUG Spring Conference
Session Descriptions

For the most up-to-date information, please visit www.nocoug.org.

EDITOR’S PICK

Real-World Experience

For Oracle database consulting and support, it makes
sense to work with a company that has a proven
track record. Since 1995 our clients have relied on

us for:
n	 Performance tuning
n	 Migrations and upgrades
n	 Backup and recovery strategies
n	 Database security audits

Plus, we offer ongoing remote DBA support plans
that are tailored to your business needs and budget.

Call Us Today!
(415) 344-0500 • (888) 648-0500

www.dbspecialists.com

C E R T I F I E D
S O L U T I O N
P A R T N E R

26 August 2009

Tuning a Multi-Terabyte Database for High Performance:
An Architectural Approach
Daniel Liu, Oracle Corp. 1:00–2:00

The size of database systems has grown exponentially in the
past few decades. Do you want to know how to design and
tune a multi-terabyte database for high performance? How to
manage a hybrid database with both OLTP and OLAP data?
This session takes an architectural approach to examining the
following areas: storage layout, network pipeline, server and
system setup (memory and CPU), physical database setup,
logical database design, and application tuning. It provides
tips and tricks on tuning a database for better performance. It
also shows how to take advantage of Oracle products and fea-
tures (Enterprise Manager, Exadata, Real Application Clusters,
Real Application Testing, Partitioning, Advanced Compression,
etc.) to deliver high performance.

Daniel Liu is a principal solution architect at Oracle Corporation
and co-author of Oracle Database 10g New Features by Rampant
TechPress. A recognized Oracle expert and a frequent speaker at
various Oracle conferences, Daniel has published articles with
DBAzine, Oracle Internals, Oracle Technology Network, and
SELECT. Daniel received the SELECT Editorial Award for Best
Article in 2001 and was named Architect of the Week by the OTN
in 2004. Prior to joining Oracle Corporation, he worked as a
senior technical manager at First American, managing one of the
largest and most complex database environments in the world.

The Latest Oracle 11g Gems
Daniel Morgan, University of Washington. 2:30–3:30

Oracle ACE Director Daniel Morgan will dispense with the
PowerPoint slides and give a live demo of new and valuable
capabilities in the latest release of the Oracle database.

Daniel Morgan is the Morgan of Morgan’s Library on the Web, an
Oracle Ace Director, and the education chairman of PSOUG.
Daniel develops curricula and teaches the Oracle Basics and Ad
vanced Oracle Application Development programs at the Univer
sity of Washington. He is a member of UKOUG, the British Ameri
can Chamber of Commerce, and former leader of the Washington
Software Alliance’s Database Special Interest Group. A regular
contributor at monthly PSOUG meetings, Daniel has spoken at
Open World, UKOUG’s annual conference, and at user group
events in Canada, California, Oregon, and Minnesota.

Closing the Privacy Gap: How Safe Is Your Data?
David Alexander, IBM Optim. 4:00–5:00

Data protection and privacy continue to be a tremendous
focus and risk for the IT community today. While companies
are making great strides to protect data privacy in production
application environments, the story of implementing similar
strategies in non-production (testing, development and train-
ing) environments is often overlooked. Bridging this “privacy
gap” helps companies protect the most exploited areas of an
organization’s IT infrastructure—non-production application
environments. In this session, attendees will learn strategies
that can be deployed in the testing environment to support
compliance initiatives and how to leverage data-masking tech-
niques as part of a data management strategy.

Room 1140

Tuning PL/SQL Using DBMS_PROFILER
Tim Gorman, Evergreen Database Technologies	 11:00–12:00

Beginning in Oracle 8 v8.0, the DBMS_PROFILER package
has offered the ability to tune the performance of PL/SQL
programs themselves, outside of the SQL statements they call
(which are best tuned with SQL tracing).

Tim Gorman has worked in IT on relational databases since 1984,
as an Oracle application developer since 1990, and as an Oracle
DBA since 1993. Tim is an independent consultant (www.EvDBT.
com) specializing in performance tuning, database administration
(particularly availability), PL/SQL development, and data ware-
housing. He has been an active member of RMOUG since 1992 and
has been a board member since 1995, holding most of the positions,
including president. He has co-authored three books, Oracle8i Data
Warehousing, Essential Oracle8i Data Warehousing (both from
John Wiley & Sons) and Oracle Insights: Tales of the OakTable
(from Apress). Tim has presented at Oracle Open World, Collaborate,
UKOUG, Miracle Database Forum, and Master Classes, as well as
local Oracle user groups in North America and the Caribbean.

Introducing Database Modeling and Design with Oracle
SQL Developer Data Modeler
Kris Rice, Oracle Corp. 1:00–2:00

Oracle SQL Developer Data Modeler supports logical and
physical data modeling for Oracle, Microsoft SQL Server, and
IBM DB2. This addition to the Oracle SQL Developer family
of tools provides forward and reverse engineering of database
structures for all who work with graphical data models. In this
session, see how to create a logical entity relationship diagram,
with a choice of Barker or Bachman notations, and forward
engineer the design to one or more relational schema diagrams.
The session reviews various diagramming options and the set
of Design Rules provided to help ensure that your models
comply with a set of standards. You hear about the implemen-
tation-specific physical models and review the DDL generated
for the models designed.

Kris Rice is the architect and director for Oracle SQL Developer.
He joined Oracle Corporation in 1998 and has worked in various
groups, including consulting, Oracle Applications development,
and Application Express development. He has been using Oracle
database since 7.1.3 and has been a Linux user as long, starting
with SuSE 4.0.

Everyday Tasks with Oracle SQL Developer
John McGinnis, Oracle Corp. 2:30–3:30

Oracle SQL Developer provides database developers with a
powerful tool for database tasks. With too many features to
demonstrate, this session demonstrates one scenario that data-
base developers might encounter, touching many areas of the
tool to illustrate the diversity and features it offers. The high-
lights include the SQL Worksheet, with its code insight, snip-
pets, and templates; Reports; Oracle APEX integration; general
schema copy and compare; and the integrated file navigator
and source code control support. The latest release of SQL

(continued on page 17)

NoCOUG
P.O. Box 3282
Danville, CA 94526

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP online at www.nocoug.org/rsvp.html

NoCOUG Spring Conference Schedule
August 20, 2009, at Chevron, San Ramon, CA

Please visit www.nocoug.org for updates and directions, and to submit your RSVP.
Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

8:00 a.m.–9:00	 Registration and Continental Breakfast—Refreshments served
9:00–9:30	 Welcome: Hanan Hit, NoCOUG president
9:30–10:30	 Keynote: Oracle 2020: A Look at How Oracle Will Change in the Next Decade

—Donald Burleson, Burleson Consultation
10:30–11:00	 Break
11:00–12:00	 Parallel Sessions #1
	 Room 1220: Creating a Self-Tuning Database—Donal Burleson, Burleson Consulting
	 Room 1240: Running Oracle in EC2—Ahbaid Gaffoor, Amazon.com
	 Room 1140: Tuning PL/SQL Using DBMS_PROFILER—Tim Gorman, Evergreen Database
12:00–1:00 p.m.	 Lunch
1:00–2:00	 Parallel Sessions #2
	 Room 1220: What to Expect from the Oracle Optimizer When Upgrading to Oracle Database 11g Release 2

—Maria Colgan, Oracle Corp.
	 Room 1240: Tuning a Multi-Terabyte Database for High Performance: An Architectural Approach
	 —Daniel Liu
	 Room 1140: Introducing Database Modeling and Design with Oracle SQL Developer Data Modeler

—Kris Rice, Oracle Corp.
2:00–2:30	 Break and Refreshments
2:30–3:30	 Parallel Sessions #3
	 Room 1220: Things You Always Wanted to Know About Oracle Partitioning—Hermann Baer, Oracle Corp.
	 Room 1240: The Latest Oracle 11g Gems—Daniel Morgan, University of Washington
	 Room 1140: Everyday Tasks with Oracle SQL Developer—John McGinnis, Oracle Corp.
3:30–4:00	 Raffle
4:00–5:00	 Parallel Sessions #4
	 Room 1220: DBA 101: Interpreting SQL Query Execution Plans—Iggy Fernandez, Database Specialists
	 Room 1240: Closing the Privacy Gap: How Safe Is Your Data?—David Alexander, IBM Optim
	 Room 1140: Anatomy of a Database Attack—Dana Tamir, Imperva
5:00–	 NoCOUG Networking and No-Host Happy Hour at Izzy’s Steaks and Chops, 200 Montgomery Street,

San Ramon

EDITOR’S PICK

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Fr
on

t c
ov

er
 p

ho
to

: W
he

at
 fi

el
d

in
 S

ou
th

er
n

Ca
lif

or
ni

a.
 P

ho
to

 b
y

Ti
m

 M
cC

ab
e,

 U
SD

A
N

at
ur

al
 R

es
ou

rc
es

 C
on

se
rv

at
io

n
Se

rv
ice

.

	NoCOUG200908-Cover-fyi.pdf
	NoCOUG200908-Inside-fyi.pdf

