Chasing the optimizer,
step by step

Mauro Pagano

Mauro Pagano

Consultant/Developer/Analyst
Oracle = Enkitec = Accenture
DBPerf and SQL Tuning

Training

Tools (SQLT, SQLd360, Pathfinder)

Agenda

* Optimizer

— Introduction

— Query Blocks

— Physical Optimization

— Logical Optimization

— Common Transformations
* Real-life example

Trivia

* How many joins evaluated for this SQL? 12c

SELECT el.email, jh.job_id
FROM employees el,
job_history jh
WHERE el.employee id = jh.employee_id
AND jh.start_date >'01-JAN-01'
AND el.salary > (SELECT /*+ QB_NAME(SQ1) */ AVG(e2.salary)
FROM employees e2
WHERE el.department_id = e2.department_id)
AND el.department_id IN (SELECT /*+ QB_NAME(SQ?2) */ d.department_id
FROM departments d,
locations |
WHERE d.location_id = |.location_id
AND l.country_id ='US")

grep -c 'Join order\[' cdbl ora 5541.trc
198

A day in the life of the optimizer

* Generate an optimal plan

 Multiple challenges
— Partial knowledge of data and query (stats/binds)
— Short amount of time (ms)
— Use as little CPU and memory as possible

Hated and blamed by everybody

j_l_ H/\TE Yo U
THIS
PAICH]

How to make it out alive?

Play it smart!

Two phases optimization
— Logical and Physical

Logical phase transforms SQL
— Trying to find potentially better forms
— Open the door to better plans

Physical phase

— Identify optimal access to objects involved

(

N

®
T

Working together

* Logical opt output input for Physical opt o
 Multiple iterations back and forth

\ 4 .
Physical Optimizer |—» Ex%clzgglon

Query Block

 SQL can be complex
— Made of smaller SQLs (each is a QB)
— QBs correlate to each other
* QB is optimizer unit of optimization
— Logical opt “reshapes” query blocks
— Physical opt find optimal way to execute each QB

Before we move on

DISCLAIMER:

DON’'T TRUST MAURO
(or anybody else)

Ask for evidence or test it yourself, always!

10

How many QBs?

create table t1 as select * from dba_objects;
create table t2 as select * from dba_objects;

Registered gb: SEL$1 0x71b6df90 (PARSER)

select owner, object_name QUERY BLOCK SIGNATURE
from t1 e s B i e s
where |aSt_dd |_ti me > Registered gb: SEL$2 0x71b5e260 (PARSER)
(select median(last_ddl_time) QUERY BLOCK SIGNATURE
from t2 "Ro(0) lgos Obin-24766 hint liase- 12" G"SEL82"

where tl.owner = t2.owner);

11

How many QBs?

create table t1 as select * from dba_objects;
create table t2 as select * from dba_objects;

select *
from tl
union all

select *
from t2;

Registered gb: SEL$1 0x719d65b8 (PARSER)

signature (): gb_name=SEL$1 nbfros=1 flg=0
fro(0): flg=4 objn=24765 hint_alias="T1"@"SEL$1"

Registered gb: SET$1 0x719¢c6610 (PARSER)

signature (): gb_name=SET$1 nbfros=1 flg=0
fro(0): flg=0 objn=0 hint_alias="NULL_HALIAS"@"SET$1"

Registered gb: SEL$2 0x719c6c68 (PARSER)

signature (): gb_name=SEL$2 nbfros=1 flg=0
fro(0): flg=4 objn=24766 hint_alias="T2"@"SEL$2"

12

Physical optimizer

 Been around for a long time
— The one to always get blamed ")
— Lots of literature about it

* Goal: find optimal exec plan for QB

— The “calculator” part of the optimizer
— Identify driver table and access method for it
— Identify optimal join order and join methods

13

How does it look in 100537

 Roughly between these two text blocks

QUERY BLOCK SIGNATURE / 0)3} (i@ ©)[e s
signature (optimizer): gb_name=SELS683B0107 nbfros=1 flg=0
fro(0): flg=0 objn=24766 hint_alias="T2"@"SELS2”

Final cost for query block SELS683B0107 (#2) - All Rows Plan: (!
Best join order: 1 _ identified andicost
Cost: 80.6652 Degree: 1 Card: 20353.0000 Bytes: 284942
Resc: 80.6652 Resc_io: 79.0000 Resc_cpu: 52711834
Resp: 80.6652 Resp_io: 79.0000 Resc_cpu: 52711834

14

How does it look in 100537 (2)

 Statistics report objects in QB

* Best access path per object identified
— At this stage the objects are disconnected

BASE STATISTICAL INFORMATION

3k 3k 3k 3k 3k 3k 3k 3k 3k ok sk %k %k >k >k ok %k %k %k k k ok ok

Table Stats::
Table: T2 Alias: T2

#Rows: 20353 #Blks: 285 AvgRowlen: 90.00 ChainCnt: 0.00
Column (#1): OWNER(
Avglen: 6 NDV: 14 Nulls: 0 Density: 0.071429

Access path analysis for T2
3k sk 3k 3k 3k sk sk ok 3k 3k sk sk ok 3k 3k sk sk ok ok 3k skoskoskosk sk sk sksk sk sk ok k
SINGLE TABLE ACCESS PATH
Single Table Cardinality Estimation for T2[T2]
Table: T2 Alias: T2

Card: Original: 20353.000000 Rounded: 20353 Computed: 20353.00 Non Adjusted: 20353.00
Access Path: TableScan

Cost: 79.25 Resp: 79.25 Degree: 0

Cost_io0:79.00 Cost_cpu: 7931980
Resp__io: 79.00 Resp. cpu: 7931980 methodifor T2
Best:: AccessPath: TableScan

Cost: 79.25 Degree: 1 Resp: 79.25 Card: 20353.00 Bytes: 0

15

How does it look in 100537 (3)

* Joins evaluated and cheapest one selected

FIFSE @R
considerediml=->n2

Permutations for Starting Table :0
Join order[1]: T1[T1]#0 T2[T2]#]1 ===

3k %k %k >k 3k %k %k >k %k %k %k %k %k *k k

Now joining: T2[T2]#1

3k 3k %k 3k 3k %k %k 3k %k %k %k %k %k >k %

3k sk sk 3k 3k 3k sk sk 3k 3k 3k sk sk sk 3k ok sk sk sk sk sk sk sk

Best so far: Table#: 0 cost: 79.2506 card: 20352.0000 bytes: 936192
Table#: 1 cost: 164297.6779 card: 29587446.8571 bytes: 1775246820
sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok K ok oK ok K ok ok SeGde J®|m

Join order[2]: T2[T2]#1 T1[T1]#0 e considered m2=>ml

3k 3k %k 3k 3k 3k %k 3k 3k %k %k %k %k k k

Now joining: T1[T1]#0

sk sk sk 3k %k 3k 5k 5k K k %k %k k k % NS L ») S \

Join order aborted: cost > best plan cost

BEestjelinfsoifal

Logical Optimizer

 The “brain” of the optimizer

* Applies transformations to SQL
— Multiple transformations per QB
— MUST keep semantics of query
 Use two approaches

— Heuristic-based trans -> always beneficial
— Cost-based trans -> “it depends” beneficial

17

Working together (2)

* Heuristic-b and cost-b work together
* Physical optimizer works on their output

I_ : Heuristic-based
I uery Transformation

||

Cost-based
Transformation

| |

[Physical Optimizer J—f{ EXecution

18

Heuristic-based transformations

* Apply those changes always beneficial
— Filter and project as soon as possible
— Eliminate redundant operations
— Reduce number of QBs (merge)
* Less QBs means more permutations per QB
* Applied before cost-based
— And sometime after cost-based too

JRLKKKKL

Cost-based transformations"&

* Require costing to determine if beneficial
— Physical optimizer costs with trans ON/OFF, cheapest
wins
 CBQT Framework

— Orchestrates multiple transformations
* Interleaved (one on top of another)
e Juxtaposed (either one or another)

— Allows new transformations to be plugged in
— Time savvy (limit search space, annotations, etc)

20

A LOT!

Can change plan very little and/or very much
Dependent on coding style

Some are very common

— Subquery unnesting (heuristic and cost-based)
— View merging (heuristic and cost-based)
— Join Predicate Push Down (mostly cost-based today)

How many transformations? Q

21

Subquery Unnesting

select * select *
from t1 from t1, t2
where object_id In (where t1.object_id s=
select object _id t2.0bject_id:;
from t2); -
Easy to spot

FILTER operation is gone

| 1d | Operation | Name | | 1d | Operation | Name |

| 0| SELECT STATEMENT | | | 0| SELECT STATEMENT | |
I* 1| FILTER | I 1| HASH JOIN RIGHT SEMI| |
| 2| TABLEACCESS FULL|T1 | | 2| TABLEACCESS FULL |T2 |

[* 3] TABLEACCESS FULL| T2 | | 3| TABLEACCESS FULL |T1 |

View Merging

select t1.* select t1.*
from t1, from t1, t2
(select object_id where t1.object_id =
from t2) t2. t2.object_id;

where tl.object id = c . ;

t2.object_id; asy O.SP O'

VIEW operation is gone

-- +
| 1d | Operation | Name | | 1d | Operation | Name |
__ +
| 0| SELECT STATEMENT | | |0 | SELECT STATEMENT | |
I 1| HASH JOIN | |1 | HASH JOIN | |
| 2| VIEW | |2 | TABLEACCESS FULL|T2 |
| 3] TABLEACCESS FULL|T2 | |3 | TABLEACCESS FULL|T1 |

| 4| TABLEACCESS FULL|T1 |

Join Predicate Push Down

select t1.* select t1.*
from t1, from t1,
(select object_id (select object_id
from t2) t2 from t2
where tl.object_id = ' t1.object id =
t2.0bject_id(+): Easy to spot bbject id(+)) t2
VIEW operation shows
-------------------------------------- PUSH occurred
| 1d | Operation | Name [Td TOperation | Name |
| O| SELECT STATEMENT | | | O| SELECT STATEMENT | |
I* 1| HASH JOIN RIGHT OUTER| | | 1] NESTED LOOPS OUTER | |
| 2] VIEW . | 2| TABLEACCESSFULL |T1 |
| 3] TABLEACCESS FULL | T2 | | 3| VIEW PUSHED PREDICATE | |

| 4] TABLEACCESSFULL |T1 | * 4| TABLEACCESSFULL |T2 |

So far we learned

CBO life is tough ©

SQL is split and optimized in chunks (QBs)
Logical Optim modifies QBs (1+)

Physical Optim costs changed QBs (1)
Cheapest plan (Logical + Physical) wins
Some transformations are common

It all sounds pretty simple, right?

S

25

How does it look in 100537

This is where things get tricky
— No way out, 10053 is source of truth

Average SQL produces 100k/250k+ rows trace

— Trace not designed to be summarized
— Supposed to be READ by you

— Very very verbose (and sometimes not enough ®)

We need a plan!
Easier to show with an example

Let the fun begin

Objects from HR sample schema

SELECT el.email, jh.job id
FROM employees el,
job_history jh
WHERE el.employee id = jh.employee id
AND jh.start_date > '01-JAN-01'
AND el.salary > (SELECT AVG(e2.salary)
FROM employees e2
WHERE el.department_id = e2.department_id)
AND el.department_id IN (SELECT d.department_id
FROM departments d,
locations |
WHERE d.location_id = l.location_id
AND l.country id ='US’)

27

This is the final plan

| 0| SELECT STATEMENT | |
[* 1| FILTER | |

[2| HASH JOIN | |

| 3| TABLE ACCESS BY INDEX ROWID BATCHED| JOB_HISTORY

[4| INDEX SKIP SCAN | JHIST_EMP_ID_ST_DATE_PK |

| 5| TABLE ACCESS FULL | EMPLOYEES |

| 6| NESTED LOOPS | |

| 7| TABLE ACCESS BY INDEX ROWID | DEPARTMENTS |
I 8] INDEX UNIQUE SCAN | DEPT_ID_PK |

| 9| TABLE ACCESS BY INDEXROWID | LOCATIONS |
10| INDEX UNIQUE SCAN | LOC_ID_PK |

| 11| SORTAGGREGATE | |
| 12| TABLE ACCESS BY INDEX ROWID BATCHED| EMPLOYEES
13| INDEX RANGE SCAN | EMP_DEPARTMENT_IX |

28

No, it’s this one

| Id | Operation | Name |
__ +

|0 | SELECT STATEMENT | |

|1 | NESTED LOOPS | |

|2 | NESTED LOOPS SEMI | |

|3 | NESTED LOOPS | |

|4 | TABLE ACCESS BY INDEX ROWID BATCHED | JOB_HISTORY
5	INDEX SKIP SCAN	JHIST_EMP_ID_ST_DATE_PK
6	TABLE ACCESS BY INDEX ROWID	EMPLOYEES
7	INDEX UNIQUE SCAN	EMP_EMP_ID_PK

|8 | VIEW PUSHED PREDICATE | VW_NSO 2 |

|9 | NESTED LOOPS | |

| 10 | TABLE ACCESS BY INDEX ROWID | DEPARTMENTS |
| 11 | INDEX UNIQUE SCAN | DEPT _ID_PK |

|12 | TABLE ACCESS BY INDEX ROWID | LOCATIONS |
| 13 | INDEX UNIQUE SCAN | LOC_ID_PK |

| 14 | VIEW PUSHED PREDICATE | VW_SQ 1 |

| 15 | FILTER | |

|16 | SORTAGGREGATE | |

| 17 | TABLE ACCESS BY INDEX ROWID BATCHED | EMPLOYEES

| 18 | INDEX RANGE SCAN | EMP_DEPARTMENT_IX |

Sorry, it’s this one

| 0| SELECT STATEMENT | |
[* 1| FILTER | |

| 2| NESTED LOOPS SEMI | |

| 3| NESTED LOOPS | |

| 4| TABLE ACCESS BY INDEX ROWID BATCHED | JOB_HISTORY

I 5| INDEX SKIP SCAN | JHIST_EMP_ID_ST DATE_PK |

| 6] TABLE ACCESS BY INDEX ROWID | EMPLOYEES |

[7| INDEX UNIQUE SCAN | EMP_EMP_ID_PK |

| 8] VIEW PUSHED PREDICATE | VW _NSO 1 |

| 9| NESTED LOOPS | |

| 10| TABLE ACCESS BY INDEX ROWID | DEPARTMENTS |
11| INDEX UNIQUE SCAN | DEPT_ID_PK |

12| TABLE ACCESS BY INDEX ROWID BATCHED| LOCATIONS |
13| INDEX RANGE SCAN | LOC_COUNTRY_IX |

| 14| SORT AGGREGATE | |
| 15| TABLE ACCESS BY INDEX ROWID BATCHED | EMPLOYEES |
16| INDEX RANGE SCAN | EMP_DEPARTMENT X |

30

Ops, it’s this one, | swear!

| 0| SELECT STATEMENT | |
[* 1| FILTER | |

| 2| NESTED LOOPS
3| NESTED LOOPS
4| NESTED LOOPS

5| VIEW | VW_NSO_1 |
6| HASH UNIQUE | |
7|
8|
9

NESTED LOOPS SEMI | |

VIEW | index$_join$_004 |
* 9| HASH JOIN | |
| 10| INDEX FAST FULL SCAN | DEPT_ID_PK |
| 11| INDEX FAST FULL SCAN | DEPT_LOCATION_IX |
[* 12 | TABLE ACCESS BY INDEX ROWID BATCHED| LOCATIONS |
[* 13| INDEX RANGE SCAN | LOC_COUNTRY_IX |
| 14| TABLE ACCESS BY INDEX ROWID BATCHED | EMPLOYEES |
[* 15 | INDEX RANGE SCAN | EMP_DEPARTMENT _IX |
[*16| INDEX RANGE SCAN | JHIST_EMP_ID_ST DATE_PK||
|* 17| TABLE ACCESS BY INDEX ROWID | JOB_HISTORY |

| 18| SORT AGGREGATE | |
| 19| TABLE ACCESS BY INDEX ROWID BATCHED | EMPLOYEES |
20| INDEX RANGE SCAN | EMP_DEPARTMENT IX |

31

Recap

What did | say before?

DON’'T TRUST MAURO
(or anybody else)

Let’s look at 10053 and stop guessing!

32

Starting point

Objects from HR sample schema

SELECT el.email, jh.job id
FROM employees el,
job_history jh
WHERE el.employee id = jh.employee id
AND jh.start_date > '01-JAN-01'
AND el.salary > (SELECT AVG(e2.salary)
FROM employees e2
WHERE el.department_id = e2.department_id)
AND el.department_id IN (SELECT d.department_id
FROM departments d,
locations |
WHERE d.location_id = l.location_id
AND l.country id ='US’)

45k 10053 trace file

33

How many QBs?

Registered gbh: SEL$1 0x4cf0e098 (PARSER)
signature (): gb_name=SEL$1 nbfros=2 flg=0
fro(0): flg=4 objn=96089 hint_alias="E1"@"SEL$1"
fro(1): flg=4 objn=96093 hint_alias="JH"@"SEL$1"

Registered gb: SEL$2 0x4cf04f00 (PARSER)
signature (): gb_name=SEL$2 nbfros=1 flg=0
fro(0): flg=4 objn=96089 hint_alias="E2"@"SEL$2"

Registered gb: SEL$3 0x4cf03f60 (PARSER)
signature (): gb_name=SEL$3 nbfros=2 flg=0

fro(0): flg=4 objn=96084 hint_alias="D"@"SEL$3"
fro(1): flg=4 objn=96081 hint_alias="L"@"SEL$3”

 Think of 3 QBs as 3 pieces of LEGO
* Transformed and cost N times

Which transformations applied?

QB Registry in 10053 tells you the story

* All (most) of the trans for each QB

— Includes name of new QBs
— Indentation for parent/child relationship

— QBs part of best plan have [FINAL]
— QBs at the same level are crossroads

* Used as a map to chase CBO actions
— Enable specific searches in 10053

JP%

Query Block Registry

 Each QB dumped with transformations

Query Block Registry:
SEL$3 0x4c50a700 (PARSER) [FINAL]
SEL$8771BF6C 0x0 (SUBQUERY UNNEST SEL$1; SEL$3;)
SEL$7C12A527 0x0 (COMPLEX SUBQUERY UNNEST SEL$8771BF6C)
SEL$5DB0472E 0x0 (SPLIT/MERGE QUERY BLOCKS SEL$8771BF6C)
SEL$2AD7F9D9 0x0 (PUSHED PREDICATE SEL$291F8F59; SEL$8771BF6C; "VW_NSO_11"@"SEL$8771BF6C" 4)
SEL$2E20A9F9 0x0 (SUBQUERY UNNEST SEL$7511BFD2; SEL$3; SEL$2;)
SEL$CC348667 0x0 (COMPLEX SUBQUERY UNNEST SEL$2E20A9F9)
SEL$291F8F59 0x0 (SUBQ INTO VIEW FOR COMPLEX UNNEST SEL$3)
SEL$555A942D 0x0 (VIEW MERGE SEL$C149BB3C; SEL$291F8F59)
SEL$C149BB3C 0x0 (PROJECTION VIEW FOR CVM SEL$291F8F59)
SEL$555A942D 0x0 (VIEW MERGE SEL$C149BB3C; SEL$291F8F59)
SEL$2AD7F9D9 0x0 (PUSHED PREDICATE SEL$291F8F59; SEL$8771BF6C; "VW_NSO_11"@"SEL$8771BF6C" 4)
SEL$2 0x4c50b6a0 (PARSER)
SEL$C772B8D1 0x4c50ff78 (SUBQUERY UNNEST SEL$7511BFD2; SEL$2) [FINAL]
SEL$841DDE77 0x0 (VIEW MERGE SEL$C772B8D1; SEL$683B0107)
SEL$C6423BE4 0x0 (PUSHED PREDICATE SEL$683B0107; SEL$C772B8D1; "VW_SQ_1"@"SEL$7511BFD2" 4)
SEL$2E20A9F9 0x0 (SUBQUERY UNNEST SEL$7511BFD2; SEL$3; SEL$2;)

SEL$683B0107 0x4c5006a0 (SUBQ INTO VIEW FOR COMPLEX UNNEST SEL$2) [FINAL]
SEL$841DDE77 0x0 (VIEW MERGE SEL$C772B8D1; SEL$683B0107)
SEL$C6423BE4 0x0 (PUSHED PREDICATE SEL$683B0107; SEL$C772B8D1; "VW_SQ_1"@"SEL$7511BFD2" 4)
SEL$1 0x4c50ff78 (PARSER)
SEL$8771BF6C 0x0 (SUBQUERY UNNEST SEL$1; SEL$3;)

SEL$7511BFD2 0x4c50ff78 (VIEW ADDED SEL$1)
SEL$C772B8D1 0x4c50ff78 (SUBQUERY UNNEST SEL$7511BFD2; SEL$2) [FINAL]

SEL$2E20A9F9 0x0 (SUBQUERY UNNEST SEL$7511BFD2; SEL$3; SEL$2;)

36

Final plan is

| 1d | Operation SUl9E) Was
""""""""""""""""" unnested

|0 | SELECT STATEMENT

|1 | FILTER

|2 | NESTED LOOPS | | 2| 148| 8] 00:00:01|

|3 | NESTED LOOPS | | 17| 148| 8| 00:00:01| Vieww witth fame
|4 | HASH JOIN | | 17| 765| 7| OO:W INCY
|5 | VIEW |VW_SQ 1 | 11| 286| 4| 06700:01 | name 'showed up
|6 | HASH GROUP BY | | 11| 77| 4| 00:00:01|

|7 | TABLEACCESS STORAGE FULL | EMPLOYEES | 107| 749| 3] 00:00:01 |

|8 | TABLEACCESS STORAGE FULL |EMPLOYEES | 107| 2033| 3| 00:00:01|

|9 | INDEX RANGE SCAN | JHIST EMPLOYEE_IX| 1| | O] |

|10 | TABLEACCESS BY INDEX ROWID [JOB _HISTORY | 1| 29| 1] 00:00:01]

|11 | NESTED LOOPS | | 1] 13| 2] 00:00:01 |

|12 | TABLEACCESS BY INDEX ROWID |DEPARTMENTS | 1| 7| 1| 00:00:01|

|13 | INDEX UNIQUE SCAN IDEPT.ID PK | 1| | O] |

|14 | TABLEACCESS BY INDEX ROWID |LOCATIONS | 1| 6| 1] 00:00:01]

|15 | INDEX UNIQUE SCAN |[LOCDPK | 1| | O] |

--------------------------------- T ——t

1 filter(1S NOT NULL) 10 - filter(("JH"."START_DATE">'01-JAN-01' AND "END_DATE">'01-JAN-01'))

13 - access("D"."DEPARTMENT_ID"=:B1)
14 - filter("L"."COUNTRY_ID"='US’)
15 - access("D"."LOCATION_ID"="L"."LOCATION_ID")

4 - access("E1"."DEPARTMENT _ID"="ITEM_1")
4 - filter("E1"."SALARY">"AVG(E2.SALARY)")
9 - access("E1"."EMPLOYEE_ID"="JH"."EMPLOYEE_ID")

How to attack 100537

* Keep it simple
e Remember: multiple internal QB trans from A to B
* |gnore “noise”, focus on what you seek

>wc —| MAURRRO1 ora_ 119219 test.trc
44612 MAURRRO1_ora_119219 test.trc

> grep -nE "MA-Z){2,}:|Registe’ MAURRRO1 _ora_ 119219 test.trc | grep -v 'CBRID..." | wc -
377

* Use physical opt input QB as anchor
— Last one before big jump in 10053
— QB represent the valid status

Ok one step at a time

1930:SU: Unnesting query blocks in query block SEL$1 (#1) that are valid to unnest.
1935:SU: Considering subquery unnest on query block SEL$1 (#1).
1936:SU: Checking validity of unnesting subquery SEL$2 (#3)
1937:SU: Passed validity checks, but requires costing.

1938:SU: Checking validity of unnesting subquery SEL$3 (#2)
1939:SU: Passed validity checks, but requires costing.

1940:SU: Using search type: exhaustive .

1941:SU: Starting iteration 1, state space = (2,3) : (1,1)

1945:Registered qb: SEL$683B0107 0x96361e50 (SUBQ INTO VIEW FOR COMPLEX UNNEST SEL$2)
1952:Registered qb: SEL$7511BFD2 0x962788a8 (VIEW ADDED SEL$1)

1962:Registered qb: SEL$291F8F59 0x96276b58 (SUBQ INTO VIEW FOR COMPLEX UNNEST SEL$3)
1970:Registered qb: SEL$2E20A9F9 0x962788a8 (SUBQUERY UNNEST SEL$7511BFD2; SEL$3; SEL$2;)

2002:SU: Costing transformed query.
2003:CBQT: Looking for cost annotations for query block SEL$683B0107, key = SEL$683B0107_00002002_4
2004:CBQT: Could not find stored cost annotations.

2005:CBQT: Looking for cost annotations for query block SEL$291F8F59, key = SEL$291F8F59 00002002_4
2006:CBQT: Could not find stored cost annotations.

S~
™~

e

5151:CBQT: Saved costed qb# 3 (SEL$683B0107), key = SEL$683B0107_00002002_4
5152:CBQT: Saved costed qb# 2 (SEL$291F8F59), key = SEL$291F8F59_00002002_4
5153:CBQT: Saved costed qb# 1 (SEL$2E20A9F9), key = SEL$2E20A9F9_00000000_0

SELS2/8 valiec] &e
cost-based unnest

exhaustiverapphioach

Firstiunnest both

Unnesiacl SELS2

IInternalftran's
Unhesiecl SELSS

SELSIL Wit MnRESERE!

Rhysicali@ptimizer

w

Digging into 10053

e Use the QB name to search for costs

2160 Final cost for query block SEL$683B0107 (#3) - All Rows Plan:
2161 Bestjoin order: 1
2162 Cost: 4.002661 Degree: 1 Card: 107.000000 Bytes: 749.000000

2646 Final cost for query block SEL$291F8F59 (#2) - All Rows Plan:
2647 Bestjoin order: 1
2648 Cost: 3.218206 Degree: 1 Card: 14.000000 Bytes: 182.000000

2683 signature (optimizer): gb_name=SEL$2E20A9F9 nbfros=4 flg=0
2684 fro(0): flg=0 objn=91753 hint_alias="E1"@"SEL$1"

2685 fro(1): flg=0 objn=91757 hint_alias="JH"@"SEL$1"

2686 fro(2): flg=1 objn=0 hint_alias="VW_NSO_2"@"SEL$2E20A9F9"
2687 fro(3): flg=1 objn=0 hint_alias="VW_SQ_1"@"SEL$7511BFD2"

5140 Final cost for query block SEL$2E20A9F9 (#1) - All Rows Plan:
5141 Bestjoin order: 4
5142 Cost: 11.366818 Degree: 1 Card: 2.000000 Bytes: 174.000000

5151:CBQT: Saved costed gb# 3 (SEL$683B0107), key = SEL$683B0107_00002002_4
5152:CBQT: Saved costed gb# 2 (SEL$291F8F59), key = SEL$291F8F59 00002002_4
5153:CBQT: Saved costed qb# 1 (SEL$2E20A9F9), key = SEL$2E20A9F9 00000000 _0

Unnesiacl SELS2

Unnesiacl SELSS

SEFSISWithfnnested

i

40

First interleaved transformation

<<skipped interleaved DP>> S EjLSZ/B Valllel &
8254:SU: Considering interleaved join pred push down cost-basedIPPD
8255:SU: Unnesting subquery query block SEL$2 (#3)Subquery removal for query block SEL$2 (#3)

8258:SU: Transform an ANY subquery to semi-join or distinct.

8259:JPPD: Checking validity of push-down in query block SEL$2E20A9F9 (#1)

8260:JPPD: Checking validity of push-down from query block SEL$2E20A9F9 (#1) to query block SEL$291F8F59 (#2)
8262:JPPD: Passed validity checks

8263:JPPD: Checking validity of push-down from query block SEL$2E20A9F9 (#1) to query block SEL$683B0107 (#3)
8265:JPPD: Passed validity checks

8266:JPPD: JPPD: Pushdown from query block SEL$2E20A9F9 (#1) passed validity checks. CBOT will usz linzar
AppPLeach

8268:JPPD: Using search type: linear —
8269:JPPD: Considering join predicate push-down P _
8270:JPPD: Starting iteration 1, state space = (2,3) : (0,0) FirstinoJPPD both
<<copy QB here>>
8286:JPPD: Performing join predicate push-down (no transformation phase) from query block SEL$2E20A9F9 (#1) to query block SEL$291F8F59 (#2)
8288:JPPD: Performing join predicate push-down (no transformation phase) from query block SEL$2E20A9F9 (#1) to query block SEL$683B0107 (#3)
8312:JPPD: Costing transformed query.

11461:CBQT: Saved costed gb# 3 (SEL$683B0107), key = SEL$683B0107_00042002_4

11462:CBQT: Saved cOSteaqbF 2 (SELCSZITFSF50), Key = SELS291F8F59 00042002 4 Physicalf@ptimizelr

11463:CBQT: Saved costed gb# 1 (SEL$2E20A9F9), key = SEL$2E20A9F9_00000000_0

41

Digging into 10053

e Use the QB name to search for costs

8470 Final cost for query block SEL$683B0107 (#3) - All Rows Plan:
8471 Best join order: 1
8472 Cost: 4.002661 Degree: 1 Card: 107.000000 Bytes: 749.000000

8956 Final cost for query block SEL$291F8F59 (#2) - All Rows Plan:
8957 Best join order: 1
8958 Cost: 3.218206 Degree: 1 Card: 14.000000 Bytes: 182.000000

8993 signature (optimizer): gb_name=SEL$2E20A9F9 nbfros=4 flg=0
8994 fro(0): flg=0 objn=91753 hint_alias="E1"@"SEL$1"

8995 fro(1): flg=0 objn=91757 hint_alias="JH"@"SEL$1"

8996 fro(2): flg=1 objn=0 hint_alias="VW_NSO_6"@"SEL$2E20A9F9"
8997 fro(3): flg=1 objn=0 hint_alias="VW_SQ_5"@"SEL$7511BFD2"

11450 Final cost for query block SEL$2E20A9F9 (#1) - All Rows Plan:
11451 Best join order: 4
11452 Cost: 11.366818 Degree: 1 Card: 2.000000 Bytes: 174.000000

11461:CBQT: Saved costed gb# 3 (SEL$683B0107), key = SEL$683B0107_00042002_4
11462:CBQT: Saved costed gb# 2 (SEL$291F8F59), key = SEL$291F8F59 00042002_4
11463:CBQT: Saved costed gb# 1 (SEL$2E20A9F9), key = SEL$2E20A9F9_00000000_0
11464:JPPD: Updated best state, Cost = 11.366818

SV NP2 SELS?

SUka N0 SELSS

SELSIL wifdy SU < NO JPPD

Same’costasijust'SU

KeepingitiackioMcost

42

More JPPD iterations

11465:JPPD: Starting iteration 2, state space = (2,3) : (1,0) -
11466:JPPD: Performing join predicate push-down (candidate phase) from query block SEL$2E20A9F9 (#1) to query block SEL$291F8F SE L$ butnot'SE L$ 2
11467:JPPD: Pushing predicate "E1"."DEPARTMENT _ID"="VW_NSO_6"."DEPARTMENT _ID"
11469:JPPD: Push dest of pred 0x7fd396030c68 is gb 0x7fd396033fb8:query block SEL$291F8F59 (#2)
11471:JPPD: Performing join predicate push-down (no transformation phase) from query block SEL$2E20A9F9 (#1) to query block SEL$683B0107 (#3)
11503:JPPD: Costing transformed query.

12363:CBQT: Looking for cost annotations for query block SEL$683B0107, key = SEL$683B0107_00002002_4

12364:CBQT: Replaced cost annotations in query block SEL$683B0107. CoSt ﬁﬂ? S@ s N@
12365:CBQT: Looking for cost annotations for query block SEL$2AD7F9D9, key = SEL$2AD7F9D9 000822124 2RD) for SE LS 9 fis

12366:CBQT: Could not find stored cost annotations. —
lknow sa skipit

13907:CBQT: Saved costed qb# 3 (SEL$68380107) key SEL$68380107_00002002_4
13908:CBQT: Sa® SFO)T - — 6 Rhysicalf@ptimizen

13909:JPPD: Not update best state, Cost =13. 036576 w
High'ecostritrashed

13910:JPPD: Starting iteration 3, state space = (2,3) : (0,1)
13952:JPPD: Costing transformed query.

13953:CBQT: Looking for cost annotations for query block SEL$C6423BE4, key = SEL$C64ZSBE4 00082212 _4
13954:CBQT: Could not find stored cost annotations.

13955:CBQT: Looking for cost annotations for query block SEL$291F8F59, key = SEL$291F8F59 00002002_4
13956:CBQT: Replaced cost annotations in query block SEL$291F8F59.

_— High'eFcastitrashed

43

SELS2 [V e SELSE

15338:JPPD: Not update best state, Cost = 28.256163

° °
Done with JPPD, moving on
15339:JPPD: Will not use JPPD from query block SEL$2E20A9F9 (#1) -

15341:SU: Rejected interleaved query.

15342:SU: Finished interleaved join pred push down

15343:SU: Updated best state, Cost = 11.366818

15344:Registered gb: SEL$CC348667 0x962788a8 (COMPLEX SUBQUERY UNNEST SEL$2E20A9F9)

15354:SU: Starting iteration 2, state space = (2,3) : (1,0) -
15356:Registered gb: SEL$8771BF6C 0x9607ed38 (SUBQUERY UNNEST SEL$1; SEL$3;)
15390:SU: Costing transformed query.

Secondliteatiohiof;

parentSiY

Sical Ot
* 0
16988:SU: Considering interleaved complex view merging — ie)f Just SU
16990:CVM: Considering view merge (candidate phase) in query block SEL$8771BF6C (#1)

16993:CVM: Considering view merge (candidate phase) in query block SEL$291F8F59 (#2) ConsiclEn S CVIVI

16996:CVM: CBQT Marking query block SEL$291F8F59 (#2) as valid for CVM.

16997:CVM: Merging complex view SEL$291F8F59 (#2) into SEL$8771BF6C (#1).

17002:Registered gb: SEL$8771BF6C 0x96096420 (COPY SEL$8771BF6C)

17007:Registered gb: SEL$5DB0472E 0x96075e60 (SPLIT/MERGE QUERY BLOCKS SEL$8771BF6C)
17014:Registered gb: SEL$C149BB3C 0x96096420 (PROJECTION VIEW FOR CVM SEL$291F8F59)
17041:Registered gb: SEL$555A942D 0x96096420 (VIEW MERGE SEL$C149BB3C; SEL$291F8F59)
17075:SU: Costing transformed query.

- Rhysicali@ptimizeln

20976:SU: Interleaved cost better than best so far. —

this'parentiiteration

Flash forward

20977:SU: Finished interleaved complex view merging
20978:SU: Considering interleaved distinct placement

22396:SU: Rejected interleaved distinct placement.
22397:SU: Finished interleaved distinct placement
22398:SU: Considering interleaved join pred push down

25631:SU: Rejected interleaved query.
25632:SU: Finished interleaved join pred push down

25633:SU: Not update best state, Cost = 14.206022

25643:SU: Starting iteration 3, state space = (2,3) : (0,1)

27951:SU: Considering interleaved complex view merging

30186:SU: Considering interleaved distinct placement

30188:SU: Considering interleaved join pred push down

30200:JPPD: Starting iteration 1, state space = (3) : (0)

32118:JPPD: Updated best state, Cost = 10.133928

32119:JPPD: Starting iteration 2, state space = (3) : (1)

33561:JPPD: Not update best state, Cost = 27.023273

33562:JPPD: Will not use JPPD from query block SEL$C772B8D1 (#1)

33566:SU: Updated best state, Cost = 10.133928
33567:SU: Starting iteration 4, state space = (2,3) : (0,0)

parentSiy

45

Finally the end ©

34775:SU: Not update best state, Cost = 17.020791
34776:SU: Will not unnest subquery SEL$3 (#2) ,
34777:SU: Will unnest subquery SEL$2 (#3) WinNeris:...

34778:SU: Reconstructing original query from best state.

Summary

Logical optimizer changes QBs
Physical optimizer used to cost changes

QB Registry tracks all those changes

— Can be used to find the cost of each trans
— Find if trans expected was even considered
— Find cost of trans expected vs selected

It’s not hard but it requires practice

47

48

References

49

Contact Information

ORApeeps
* mauro.pagano@gmail.com

* http://mauro-pagano.com
* @mautro

50

