Take Full Advantage of the
PL/SQL Compiler

Steven Feuerstein
Oracle Developer Advocate for PL/SQL
Oracle Corporation

Email: steven.feuerstein@oracle.com
Twitter: @sfonplsql

Blog: stevenfeuersteinonplsgl.blogspot.com
YouTube: Practically Perfect PL/SQL

ORACLE

Just in case | live in the future, even for a moment....

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’ s products remains at the sole discretion of Oracle.

Most referenced code is available in my demo.zip file from the
PL/SQL Learning Library: oracle.com/oll/plsql or direct download from http://v.gd/sfdemo

ORACLE

2 Copyright © 2015 Oracle and/or its affiliates. All rights reserved. |

Resources for PL/SQL developers

oracle.com/plsql — official home of PL/SQL

oracle.com/oll — Oracle Learning Library
Download demo.zip file with all scripts http://v.gd/05JIWC

plsglchallenge.oracle.com - weekly PL/SQL quizzes, and more
asktom.oracle.com — 'nuff said

livesql.oracle.com — script repository and 12/7 12c database
oracle-developer.net - great content from Adrian Billington

oracle-base.com - great content from Tim Hall

ORACLE

Page 3

Compiler Features

Automatic, transparent optimization of code

Compile-time warnings framework to help you improve the quality and
performance of your code.

Conditional compilation
You decide what code should be compiled/ignored!

ORACLE

Page 4

The Optimizing Compiler

The PL/SQL compiler now has the ability to automatically optimize your code.
The compiler rearranges your code.

Compile time increases, runtime performance improves.

You choose the level of optimization :
O No optimization
1 Smaller scale change, less impact on compile times

2 Most aggressive, maximum possible code transformations, biggest impact on compile
time. [default]

3 (Oraclel1g) In-lining of local subprograms, in addition to all the optimization
performed at level 2

Stick with the default, unless you have a clear need for an exception.

ORACLE

Page 5

The PL/SQL Optimizer: High Level View

The optimizer takes advantage of "freedoms" to optimize code.
In essence, changing the route that the runtime engine takes to get from point A to point B.

Some examples:
Unless otherwise specified, operands of an expression operator may be evaluated in any order.
Operands of a commutative operator may be commuted.

The actual arguments of a call or a SQL statement may be evaluated in any order (including
default actual arguments).

Optimization does not change the logical behavior of your code.

Optimization should not, for example, cause any of your regression tests to suddenly fail!

Check out "Freedom, Order and PL/SQL Optimizations" on oracle.com/plsql!
Also "What a surprise! Or not!" via blogs.oracle.com/plsql-and-ebr

ORACLE

Page 6

Some Optimization Examples

.A+B ... T:=TA+B’
B N = -
. A+ B ... "
A
for i in 1 .. 10 Toop
A =B + C;
end Tloop;
B + C;
e—) for iin 1 .. 10 loop
end 1oop;
FOR rec in (SELECT ...)
SELECT
Lol mmm—) "~ 5K COLLECT INTO ...
. do stuff e
END LOOP;
ORACLE page 7

T is a generated variable. We never see
it. And one operation is saved.

Automatic relocation of a loop invariant.
Avoid repetitive computations.

Execute cursor FOR loop
at BULK COLLECT
levels of performance.

10g_optimize_cfl.sql

4

Things to Keep in Mind

my_function () * NULL

The PL/SQL runtime engine will almost always execute your subprograms,
even if the optimizer detects that the results of that subprogram call are
"not needed."

Exception: function result cache

You cannot rely on a specific order of evaluation of arguments in a
subprogram call or even when package initialization takes place.

The compiler will even avoid initialization of a package if it not needed (using a TYPE
for example).

ORACLE

Page 8

In-lining optimization
ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 3;

A new level, 3, tells Oracle to automatically search out
opportunities to "inline" code for nested subprograms.

This means that a pointer to the subprogram is replaced with the
implementation of the subprogram.

Oracle's own tests have shown 10-20% performance
improvement.

Depends on how many local modules you create and how often they are
used.

Note: compile code size increases. 11g_inline*.sq

ORACLE

Page 9

Selective Inlining with PRAGMA

PRAGMA INLINE (subprogram, 'YES')

You can also keep the optimization level at 2 and request inlining explicitly for
specific subprogram invocations with a new INLINE pragma.

Inlining applies to the following statements:

Assignment, CALL, conditional, CASE, CONTINUE-WHEN, EXECUTE IMMEDIATE, EXIT-
WHEN, LOOP, RETURN

You can also request inlining for all executions of the subprogram by placing
the PRAGMA before the declaration of the subprogram.

Inlining, like NOCOPY, is a request and can be rejected by the compiler.

Under some circumstance, inlining can result in slower code.

ORACLE

Page 10

Warnings help you build better code

Your code compiles without errors. Great, you can run that program!
But does it use the PL/SQL language optimally?

PL/SQL offers a compile-time warnings feature to answer this question.

Automatically informs you of ways to improve the quality or performance of your
code.

Available warnings are documented in the Oracle Database Error
Messages document: http://docs.oracle.com/database/121/ERRMG/toc.htm

PLS prefix = PL/SQL compiler error
PLW prefix = compile-time warning

ORACLE

Page 11

Enable

and Disable Warnings

To use compiler warnings, you must turn them on for session or for a
particular program unit.

By defau
Can speci
SQL Deve

It, warnings are disabled.

fy individual warnings or categories.

loper Preferences/PL/SQL Compiler offers Ul access.

ALTER SESSION [ENABLE | DISABLE |ERROR]:
[ALL | SEVERE | INFORMATIONAL | PERFORMANCE |warning_number]

REM To enable all warnings in your session:
ALTER SESSION SET plsql_warnings = 'enable:all’;

REM If you want to enable warning message number 06002 and all warnings in
REM the performance category, and treat 5005 as a "hard" compile error:
ALTER PROCEDURE my_procedure SET plsql_warnings =

'enable:06002', 'enable:performance', 'ERROR:05005';

ORACLE

Page 12

Checking for Warnings

The USER_ERRORS data dictionary view shows both "hard" errors and
compilation warnings.

Use the SHOW ERRORS command in SQL*Plus.

IDEs will usually display warnings within the edit window.
Or run your own query against USER_ERRORS.

ORACLE

Page 13

Example: check for unreachable code

There may be lines of code that could never, ever execute.

SQL> CREATE OR REPLACE PROCEDURE unreachable_code IS
2 X NUMBER := 10;
3 BEGIN

4 IF x = 10 THEN
5 x := 20;
6
7
8

ELSE
X := 100; -- unreachable code
END IF;

9 END unreachable_code;

10 /

SP2-0804: Procedure created with compilation warnings

SQL> show err
Errors for PROCEDURE UNREACHABLE_CODE:

LINE/COL ERROR plw6002.sq|

7/7 PLW-06002: unreachable code

ORACLE

Page 14

Useful warnings added in 11.1

PLW-6017: something's going to raise an error!
Such as VARCHAR2(1) :="abc'....FINALLY!

PLW-6009: OTHERS exception handler does not re-raise an exception.

More feedback on impact of optimization
PLW-6007: Notification that entire subprograms were removed

PLW-7205: warning on mixed use of integer types
Namely, SIMPLE_INTEGER mixed with PLS _INTEGER and BINARY_INTEGER

PLW-7206: unnecessary assignments
Lots of PRAGMA INLINE-related warnings

ORACLE

plw*.sql files

Page 15

The Oracle Knows: an error will occur

CREATE OR REPLACE PROCEDURE p1w6017
IS

C VARCHAR2 (1) := 'abc';
BEGIN

One big frustration | have had with compile-time warnings is that it did
not flag code like you see above. What could be more basic?

This (and more) is finally addressed in Oraclel1g with the PLW-06017
warning.

PLW-06017: an operation will raise an exception

plw6017.sql

ORACLE

Page 16

Treating a warning as "hard" compile error

You might identify a warning that reflects such bad coding

practices, that you want to ensure it never makes its way into
production code.

Just set the warning as an error and stop the use of that program "in its
tracks."

"Function does not return value" is a prime example.

You never want this error to appear to users. Too embarrassing.

ALTER SESSION SET PLSQL_WARNINGS='ERROR:5005'

ORACLE

plw5005.sq]l
Page 17

Conclusions - Compile-time Warnings

Review the available warnings. Identify those which are of greatest
importance to you.

And with each new release of Oracle check for additions.

Consider setting up scripts to enable different sets of warnings to match
different development scenarios and to ignore those "nuisance" warnings.

Or go radical: enable ALL warnings as ERRORS, and go for a 100% clean
compile every single time!

ALTER SESSION SET PLSQL_WARNINGS='ERROR:ALL'

ORACLE

Page 18

Conditional Compilation

Compile selected parts of a program based on conditions you provide with
various compiler directives.

With conditional compilation you can:

Write code that will compile and run under different versions of Oracle (relevant for
future releases).

Run different code for test, debug and production phases. That is, compile debug
statements in and out of your code.

Expose private modules for unit testing, but hide them in production.

Page 19

ORACLE

A finely-nuanced feature of PL/SQL

Conditional compilation affects how your code is compiled and therefore
executed.
It is not something to employ casually.

This training will serve as an introduction.

Before using conditional compilation, check out Bryn Llewellyn's detailed
whitepaper on the topic.

100 pages covering all common use cases
See URL below or search for "conditional compilation white paper".

http://bit.ly/exXx39Q

ORACLE

Page 20

Three types of compiler directives

Inquiry directives: SSidentifier

Use the SSidentifier syntax to refer to conditional compilation flags. These inquiry
directives can be referenced within an SIF directive, or used independently in your
code.

Selection directives: SIF

Use the SIF directive to evaluate expressions and determine which code should be
included or avoided.

Can reference inquiry directives and package static constants.

Error directives: SERROR

Use the SERROR directive to report compilation errors based on conditions evaluated
when the preprocessor prepares your code for compilation.

ORACLE

Page 21

Example: toggle inclusion of tracing

Set up conditional compilation of debugging and tracing with special "CC"
flags that are placed into the compiler settings for a program.

Only integer and Boolean values are allowed.

ALTER SESSION SET PLSQL_CCFLAGS = 'oe_debug:true, oe_trace_level:10'

/
CREATE OR REPLACE PROCEDURE calculate_totals
IS
BEGIN
$1F $$oe_debug AND $$o0e_trace_level >= 5
$THEN
DBMS_OUTPUT.PUT_LINE ('Tracing at level 5 or higher');
$END
application_logic;
END calculate_totals; cc_debug_ﬂgcesql
/ cc_expose_private.sql

cc_max_string.sql
cc_plsqgl_compile_settings.sql

ORACLE

Page 22

Access to post-processed code

You can display or retrieve post-processed code with the
DBMS_PREPROCESSOR package.

Oracle is careful to preserve both horizontal and vertical whitespace so runtime stack
and error information correlates to your actual source code.

CREATE OR REPLACE PROCEDURE BEGIN
post_processed D?MS_PREPRO?ESSOR.PR?NT_POST_PROCES?ED_SOURCE
IS ('PROCEDURE', USER, 'POST_PROCESSED');
BEGIN ;ND’
$IF $$PLSQL_OPTIMIZE_LEVEL = 1
$THEN PROCEDURE post_processed
-- Slow and easy IS
NULL; EGIN
$ELSE i
-- Fast and modern and easy
NULL;
$END
END post_processed; -- Fast and modern and easy
/ NULL;

ORACLE Page 23 END post_processed; cc_postprocessed.sql

Error directive example

If my program has been compiled with optimization level 1 (less aggressive)
or O (disabled), then raise an error.

You can in this way add "meta-requirements" to your code definitions.

SQL> CREATE OR REPLACE PROCEDURE long_compilation
IS
BEGIN
$IF $$plsql_optimize_level < 2
$THEN
$error 'Program must be compiled with full optimization' $end
$END
NULL ;
END long_compilation;

/

ORACLE

SQVOwWwooNOOUVLTA WN

=

cc_opt_level_check.sql

Page 24

Using DBMS_DB_VERSION

This package contains a set of Boolean constants showing absolute and

relative version information.

PROCEDURE insert_rows (rows_in IN otn_demo_aat) IS
BEGIN
$IF DBMS_DB_VERSION.VER_LE_10_1
$THEN
BEGIN

FORALL indx IN 1 .. 1_dense.COUNT
INSERT INTO otn_demo VALUES 1_dense (indx);
END;
$ELSE
FORALL indx IN INDICES OF rows_in
INSERT INTO otn_demo VALUES rows_in (indx);
$END

ORACLE

Page 25

cc_bf or_number.sql
cc_version_check.sql

Conclusions — Conditional Compilation

Conditional compilation is a very powerful and useful feature.

It is not terribly difficult to learn, but it is hard for developers to be
confident of working with and maintaining code that contains "S" syntax
elements.

Keep it in mind when you encounter a clear and compelling use case, such
as writing code that must run under multiple versions of Oracle.

ORACLE

Page 26

Compiler Features - Summary

Optimizer

Go with the default and enjoy the performance!
Compile-time warnings

Turn them all on!

Make them all errors!
Well, at least give it a try. ©

Conditional compilation
Powerful feature for specific use cases

ORACLE

Page 27

ORACLE

