
This	session	is	about	keeping	ALL	users	happy	in	a	DW.	The	ques8on	is;	is	it	possible	to	make	everyone	
happy?	We	will	find	out	in	this	presenta8on.	

1	



The	Oracle	Database	is	the	nicest	database	in	the	world.	It	treats	every	user	equally.	It	is	like	a	fantasy	land,	
as	a	user	you	can	whatever	you	want.	This	may	be	OK	in	an	OLTP	system	where	every	user	accesses	the	
database	through	an	applica8on	and	can	only	perform	what	the	applica8on	allows.	But	in	a	DW	there	are	
lots	of	different	kinds	if	users	like	power	users,	BI	users,	etc…	

	

This	means	any	user	can	step	on	other	users’	feet	and	make	the	others	unhappy.	

2	



In	this	session	we	will	talk	about	seven	simple	steps	to	get	things	under	control.	

3	



First,	let’s	look	at	how	system	resources	are	used	by	users.	Any	resources	in	the	system	is	available	to	any	
user	for	free.	Any	user	can	use	CPU,	IO,	network,	memory,	etc…	The	most	important	resource	in	a	DW	is	
the	server	process,	you	cannot	use	other	resources	like	CPU	and	IO	without	geRng	processes	allocated	for	
you.	That	is	why	we	will	focus	on	not	every	type	of	resource	but	only	processes.	

	

Since	we	are	talking	about	DW	and	large	data	sets	it	is	essen8al	that	mul8ple	processes	are	used	to	
execute	SQL	statements,	that	is	why	this	session	is	about	parallel	execu8on	processes	(PX	servers)	and	not	
about	serial	execu8on	where	you	have	only	one	process	running	the	SQL	statement.	

4	



Let’s	look	at	how	PX	servers	are	allocated	to	SQL	statements	in	a	default	database	configura8on.	The	
database	is	nice	to	its	users	but	it	also	protects	itself	from	over-use	with	parameters	like	processes,	
cpu_count,	etc…	The	parameter	it	uses	to	limit	the	number	of	PX	servers	in	the	system	is	
parallel_max_servers.	The	database	keeps	a	pool	of	processes	named	“PX	server	pool”,	the	number	of	
processes	in	this	pool	is	determined	by	parallel_max_servers.		

5	



This	example	shows	how	processes	from	this	pool	are	allocated	to	SQL	statements.	We	have	a	statement	
asking	for	a	Degree	of	Parallelism	(DOP)	of	8.	We	see	that	16	processes	are	allocated	from	the	pool	to	this	
statement.	2	is	the	magic	number	here.	Most	of	the	statements	will	use	2*DOP	number	of	processes	
because	of	the	producer/consumer	model	used	in	parallel	execu8on.	We	use	2	sets	of	PX	servers	to	carry	
out	the	SQL	statement,	each	set	uses	PX	servers	equal	to	the	DOP.	There	are	excep8ons	to	this	which	will	
be	covered	later	in	this	presenta8on.	

6	



What	happens	when	another	statement	is	submided	at	this	point?	In	this	example	the	second	statement	is	
asking	for	a	DOP	of	4	which	means	8	processes.	The	database	looks	at	the	number	of	currently	allocated	
processes	and	the	number	of	available	processes	in	the	pool.	Since	we	have	enough	available	processes	
this	statement	gets	allocated	8.	

7	



Now	we	have	a	third	statement	coming	into	the	picture	while	the	previous	ones	are	s8ll	running.	This	
statement	asks	for	a	DOP	of	8	which	means	16	processes.	But	we	only	have	12	processes	leg	in	the	pool.	In	
this	case	this	statement	will	be	allocated	those	12	processes	instead	of	16.	This	is	called	a	DOP	downgrade,	
this	statement	gets	downgraded	from	DOP=8	to	DOP=6.	A	SQL	statement	cannot	change	its	DOP	ager	it	
has	started,	so	in	this	case	even	if	other	queries	finish	and	some	processes	become	available	this	statement	
will	run	with	DOP=6	to	the	end.	This	means	this	user	will	get	less	performance	than	he/she	needed.	Even	
worse	the	performance	will	be	unpredictable,	based	on	the	8me	the	statement	runs	it	may	or	may	not	be	
downgraded	based	on	the	number	of	available	processes.	

8	



Here	we	see	another	statement	submided	with	a	DOP	of	8.	Since	all	processes	in	the	pool	are	in-use	this	
statement	does	not	get	any	processes	allocated	and	runs	with	DOP=1	which	means	it	runs	serially.	This	
user	will	see	even	worse	performance	because	the	downgrade	is	more	drama8cal	than	the	downgrade	
from	DOP=8	to	DOP=6.	

9	



Process	shortage	is	one	of	the	reasons	of	DOP	downgrades.	Another	reason	is	the	adap8ve	parallelism	
feature.	Here	we	see	a	statement	running	with	a	DOP	of	8	and	using	16	processes	from	the	PX	server	pool.	

10	



Now	another	statement	is	submided	with	a	DOP	of	8.	Even	if	there	are	enough	processes	in	the	pool	we	
see	that	the	statement	gets	downgraded	to	serial.	Adap8ve	parallelism	looks	at	the	load	of	the	system	and	
may	decide	to	downgrade	statements	if	it	think	the	system	is	over	u8lized.	This	again	cause	unpredictable	
performance	because	the	DOP	you	will	get	depends	on	if	this	feature	kicks	in	or	not	based	on	system	load.	

11	



The	DOP	downgrades	we	have	seen	so	far	are	undesirable	or	uninten8onal	DOP	downgrades.	There	is	no	
way	to	predict	if	a	statement	will	get	downgraded	or	not,	it	depends	on	the	number	of	available	processes	
and	the	system	load	when	the	statement	is	submided.		

	

So,	the	first	step	out	of	seven	is	to	avoid	these	kinds	of	downgrades.	

12	



The	first	thing	to	do	to	avoid	uninten8onal	downgrades	Is	to	disable	the	adap8ve	parallelism	feature.	

13	



The	second	thing	to	do	is	to	enable	parallel	statement	queuing.	

14	



Let’s	go	back	to	our	first	example	to	see	the	effect	of	parallel	statement	queuing.	In	that	example	we	had	4	
queries	running	concurrently.	Q1	and	Q2	were	running	without	downgrades,	Q3	and	Q4	were	downgraded	
to	DOP=6	and	DOP=1	respec8vely.	

15	



Without	queuing	we	see	that	all	are	running	at	the	same	8me,	Q1	and	Q2	finish	in	30	minutes.	Q3	finishes	
in	40	minutes	and	Q4	finishes	in	240	minutes	because	it	ran	in	serial.	The	system	u8liza8on	is	about	80%	
when	all	queries	are	running.	Ager	Q1,	Q2	and	Q3	finish	the	u8liza8on	is	very	low	to	the	end	because	only	
one	process	is	running.	

	

If	we	enable	parallel	statement	queuing	for	the	same	workload	Q3	and	Q4	get	queued	instead	of	geRng	
downgraded.	Ager	Q1	and	Q2	finish	and	their	PX	servers	are	released	back	to	the	pool	Q3	and	Q4	can	start.	
Since	they	are	not	downgraded	they	finish	much	faster	in	this	case	and	the	whole	workload	finishes	in	60	
minutes	compared	to	240	minutes	without	queuing.	If	we	look	at	the	system	u8liza8on	in	this	case	we	see	
that	we	use	less	resources	and	for	a	shorter	8me.	This	means	for	this	workload	we	can	increase	the	DOPs	
so	that	the	queries	finish	even	faster	or	we	can	submit	more	concurrent	queries	because	there	is	ample	
CPU	available.	

16	



When	do	we	start	queuing	statement?	The	queuing	point	is	determined	by	the	parameter	
parallel_servers_target.	When	the	number	of	in-use	processes	reach	parallel_servers_target	subsequent	
parallel	statement	will	be	queued.	There	is	a	reason	why	there	are	two	parameters	to	control	the	number	
of	processes	and	we	will	come	to	that	later.	

17	



These	few	slides	show	how	queuing	works.	

18	



We	now	have	two	queries	running	and	they	are	using	24	processes.	

19	



When	a	new	statement	comes	and	asks	for	a	DOP	of	6	which	means	16	processes	the	database	sees	that	it	
will	exceed	parallel_servers_target.	

20	



This	statement	is	not	allowed	to	executed	and	is	queued	un8l	16	processes	become	available.	

21	



22	



Now	let’s	look	at	why	you	need	to	always	put	a	gap	between	these	two	parameters.	

23	



Even	if	you	enable	parallel	statement	queuing	system-wide	there	may	s8ll	be	queries	bypassing	the	queue.	
These	statements	are	allowed	to	use	any	process	in	the	pool	up	to	parallel_max_servers.	

	

Here	we	see	two	statements	running	and	there	are	only	16	processes	leg	below	parallel_servers_target.	

24	



A	statement	that	is	allowed	to	bypass	the	queue	comes	and	asks	for	a	DOP	of	16	which	means	32	
processes.	Since	this	statement	is	allowed	to	bypass	the	queue	it	goes	above	parallel_servers_target	and	
allocates	32	processes.	Now	parallel_servers_target	is	exceed	and	any	new	statement	will	be	queued.	If	
more	statements	bypass	the	queue	this	may	cause	the	statements	in	the	queue	wait	forever.	

	

This	is	why	you	need	to	prevent	bypassing	the	queue	at	all.	There	are	other	ways	to	make	sure	cri8cal	users	
get	the	processes	they	need	without	wai8ng,	we	will	talk	about	those	methods	later.	

25	



These	are	the	ways	a	session	can	bypass	the	queue.	

26	



Another	case	when	a	statement	can	exceed	parallel_servers_target	is	mul8ple	parallelizers.	Mul8ple	
parallelizers	are	statements	that	use	more	than	DOP*2	number	of	processes.	

27	



Here	we	see	that	a	statement	is	asking	for	a	DOP	of	4.	Since	this	means	8	processes	by	default	the	database	
will	allow	this	statement	to	run	because	there	are	8	processes	available	below	parallel_servers_target.	

28	



But	we	see	that	this	statement	used	16	processes	instead	of	8.	This	is	because	the	plan	for	this	statement	
had	mul8ple	parallelizers	and	used	more	than	DOP*2	processes.		

29	



30	



31	



32	



33	



34	



The	parallel	statement	queue	acts	as	a	first-in	first-out	queue.	Since	the	database	treats	each	user	equally	
any	user	can	submit	any	number	of	statements	and	they	will	go	into	the	queue	when	needed.	In	this	
example	we	see	that	user	John	submided	lots	of	statements	before	user	Jane.	Some	of	these	statements	
are	running	and	lots	more	are	wai8ng	in	the	queue.	When	Jane	submits	a	statement	it	will	go	to	the	end	of	
the	queue	and	will	wait	un8l	all	of	John’s	statements	finish.	

35	



When	you	use	Database	Resource	Manager	and	consumer	groups	each	consumer	group	will	have	its	own	
queue.	By	default	DBRM	will	treat	each	queue	equally	and	will	try	to	pick	from	each	queue	equally.	This	
way	Jane	will	not	have	to	wait	behind	John	and	will	have	an	equal	chance	of	running.	

36	



37	



We	talked	about	uninten8onal	DOP	downgrades	causing	unpredictable	performance	before.	You	may	want	
to	limit	the	DOPs	inten8onally	to	achieve	concurrency	in	the	system.	

38	



Conserva8vely	the	number	of	concurrent	queries	you	can	run	can	be	calculated	by	this	formula.	This	
assume	everyone	is	using	the	max	DOP	and	there	are	no	excep8ons	like	mul8ple	parallelizers.	

	

This	shows	that	you	can	test	with	different	parallel_servers_target	and	max	DOP	limits	to	achieve	the	
concurrency	you	need.	

39	



40	



There	are	two	ways	to	limit	the	DOP	for	users.	The	parameter	parallel_degree_limit	acts	as	a	global	limit	
and	limits	every	session	that	is	using	Auto	DOP.	The	DBRM	direc8ve	parallel_degree_limit_p1	provides	
granular	control	over	DOPs	so	that	you	can	put	different	limits	for	different	users.	

41	



42	



Not	every	user	is	equal	in	the	DW	world.	You	need	to	make	sure	users	are	priori8zed	based	on	
performance	and	business	requirements.	

43	



The	queuing	point	set	by	parallel_servers_target	is	global.	If	one	user	grabs	all	processes	un8l	that	point	all	
others	users	need	to	wait	in	the	queue.	Even	if	you	use	consumer	groups	and	different	queues	you	need	to	
wait	for	other	user’s	queries	to	finish.	This	example	shows	that	Jane	submided	several	statements	before	
John	and	grabbed	all	processes.		

44	



The	DBRM	direc8ve	parallel_server_limit	prevents	a	consumer	group	from	using	all	processes	up	to	
parallel_servers_target.	This	example	shows	that	Jane	can	only	user	50%	of	parallel_servers_target.	When	
she	uses	that	many	processes	her	subsequent	statements	will	be	queued.	

45	



This	way	another	user	can	come	and	use	the	remaining	processes	without	wai8ng	for	her.	

46	



47	



This	slide	shows	how	the	formula	change	when	you	use	parallel_servers_limit	and	
parallel_degree_limit_p1	for	a	consumer	group.	Basically	the	queuing	point	for	the	consumer	group	
becomes	parallel_servers_target*parallel_server_limit/100.	

48	



The	second	thing	you	can	do	to	make	sure	cri8cal	users	are	priori8zed	is	to	use	the	dequee	priori8es.	

49	



50	



51	



52	



By	default	DBRM	treats	each	queue	equally.	It	tries	to	pick	statements	from	each	queue	without	any	
priority.	

53	



The	shares	direc8ve	in	DBRM	determines	the	CPU	alloca8on	for	consumer	groups.	You	can	use	the	same	
direc8ve	as	dequeue	priority	for	consumer	group	queues.	This	example	shows	that	DBRM	will	try	to	favor	
Jane	over	John	when	it	is	picking	up	queries	from	the	queues	because	of	the	shares	seRngs.	

54	



55	



56	



57	



58	



59	



60	



61	



62	



63	



When	a	session	using	PX	servers	becomes	idle	before	finishing	the	statement	it	keep	holding	those	
processes.	This	is	a	typical	case	when	the	user	fetches	only	a	few	rows	and	waits	without	fetching	the	
remaining	rows.	If	the	user	keeps	holding	these	processes	for	a	long	8me	other	users	may	wait	in	the	
queue	because	of	process	shortage.	

64	



65	



66	



67	



68	



69	


