Keeping Everybody Happy
in a Data Warehouse

Yasin Baskan
Product Manager, Data Warehouse Development

Nov 20, 2015

twitter.com/yasinbaskan
blogs.oracle.com/datawarehousing

This session is about keeping ALL users happy in a DW. The question is; is it possible to make everyone
happy? We will find out in this presentation.

The Nicest Database in the World

) e
Aah

[
lx.

The Oracle Database is the nicest database in the world. It treats every user equally. It is like a fantasy land,
as a user you can whatever you want. This may be OK in an OLTP system where every user accesses the
database through an application and can only perform what the application allows. But in a DW there are
lots of different kinds if users like power users, Bl users, etc...

This means any user can step on other users’ feet and make the others unhappy.

7 Simple Steps to Get Things Under Control

In this session we will talk about seven simple steps to get things under control.

System Resources, Free for All

First, let’s look at how system resources are used by users. Any resources in the system is available to any
user for free. Any user can use CPU, 10, network, memory, etc... The most important resource in a DW is
the server process, you cannot use other resources like CPU and |0 without getting processes allocated for
you. That is why we will focus on not every type of resource but only processes.

Since we are talking about DW and large data sets it is essential that multiple processes are used to
execute SQL statements, that is why this session is about parallel execution processes (PX servers) and not
about serial execution where you have only one process running the SQL statement.

Global Process Pool for All

parallel_max_servers=36

Let’s look at how PX servers are allocated to SQL statements in a default database configuration. The
database is nice to its users but it also protects itself from over-use with parameters like processes,
cpu_count, etc... The parameter it uses to limit the number of PX servers in the system is
parallel_max_servers. The database keeps a pool of processes named “PX server pool”, the number of
processes in this pool is determined by parallel_max_servers.

Global Process Pool for All

parallel_max_servers=36

Exy
]
]

DOP=8

This example shows how processes from this pool are allocated to SQL statements. We have a statement
asking for a Degree of Parallelism (DOP) of 8. We see that 16 processes are allocated from the pool to this
statement. 2 is the magic number here. Most of the statements will use 2*DOP number of processes
because of the producer/consumer model used in parallel execution. We use 2 sets of PX servers to carry
out the SQL statement, each set uses PX servers equal to the DOP. There are exceptions to this which will
be covered later in this presentation.

Global Process Pool for All

. parallel_max_servers=36
HEEEEEN
EEEEEN
EEEEEN
EEEEER
EEEEER

=y &
.

DdPZS DOP=4

What happens when another statement is submitted at this point? In this example the second statement is
asking for a DOP of 4 which means 8 processes. The database looks at the number of currently allocated
processes and the number of available processes in the pool. Since we have enough available processes
this statement gets allocated 8.

Global Process Pool for All

X

X X X
-..... parallel_max_servers=36
EEEEEN

2 =y o
: i
I

DOP=8 -
DOP=6 DOP=8 D

Now we have a third statement coming into the picture while the previous ones are still running. This
statement asks for a DOP of 8 which means 16 processes. But we only have 12 processes left in the pool. In
this case this statement will be allocated those 12 processes instead of 16. This is called a DOP downgrade,
this statement gets downgraded from DOP=8 to DOP=6. A SQL statement cannot change its DOP after it
has started, so in this case even if other queries finish and some processes become available this statement
will run with DOP=6 to the end. This means this user will get less performance than he/she needed. Even
worse the performance will be unpredictable, based on the time the statement runs it may or may not be

downgraded based on the number of available processes.

Global Process Pool for All

...... parallel_max_servers=36

jz saL A 2 S
= saL § el saL f iual
bop=8 t l -‘
DOP=1 "

DOP=6 DOP=8 DOP=4

Here we see another statement submitted with a DOP of 8. Since all processes in the pool are in-use this
statement does not get any processes allocated and runs with DOP=1 which means it runs serially. This
user will see even worse performance because the downgrade is more dramatical than the downgrade
from DOP=8 to DOP=6.

Adaptive Parallelism

. parallel_max_servers=36

Process shortage is one of the reasons of DOP downgrades. Another reason is the adaptive parallelism
feature. Here we see a statement running with a DOP of 8 and using 16 processes from the PX server pool.

10

Adaptive Parallelism

parallel_max_servers=36

\\
Qo
EEEE *)
EEEEEN
EEEEEN
ey
T
l boP-8
DOP=8 DOP=1

Q Downgraded because of system utilization

Now another statement is submitted with a DOP of 8. Even if there are enough processes in the pool we

see that the statement gets downgraded to serial. Adaptive parallelism looks at the load of the system and
may decide to downgrade statements if it think the system is over utilized. This again cause unpredictable
performance because the DOP you will get depends on if this feature kicks in or not based on system load.

11

AVOID UNINTENTIONAL DOP DOWNGRADES

The DOP downgrades we have seen so far are undesirable or unintentional DOP downgrades. There is no
way to predict if a statement will get downgraded or not, it depends on the number of available processes

and the system load when the statement is submitted.

So, the first step out of seven is to avoid these kinds of downgrades.

12

Avoid Unintentional DOP Downgrades

Disable adaptive parallelism

Causes unpredictable DOP based on system utilization

Disable with parallel_adaptive_multi_user=FALSE

The first thing to do to avoid unintentional downgrades Is to disable the adaptive parallelism feature.

13

Avoid Unintentional DOP Downgrades
Enable Parallel Statement Queuing

Queue if required > available

Check required no of PX servers

G

Dequeue and run when
required <= available

Run if required <= available

The second thing to do is to enable parallel statement queuing.

14

Effect of Parallel Statement Queuing

....-. parallel_max_servers=36
o EEEEER

£ i saL § jas .

= saL b sl saL
s Edy j
DOP=1 'I[: i B

Q4

Let’s go back to our first example to see the effect of parallel statement queuing. In that example we had 4
gueries running concurrently. Q1 and Q2 were running without downgrades, Q3 and Q4 were downgraded
to DOP=6 and DOP=1 respectively.

15

Effect of Parallel Statement Queuing

Without Queuing With Queuing
0 3040 Time 240 0 30 60 Time 240
Qll—> Ql|—> . }
. . All complete in 60 minutes
Q2 *)‘ All complete in 240 minutes Q2 b—> 4X faster, end-to-end
Q3 Q3 [>
Q4 Q4 ’—>

e

Without queuing we see that all are running at the same time, Q1 and Q2 finish in 30 minutes. Q3 finishes
in 40 minutes and Q4 finishes in 240 minutes because it ran in serial. The system utilization is about 80%
when all queries are running. After Q1, Q2 and Q3 finish the utilization is very low to the end because only

onhe process is running.

If we enable parallel statement queuing for the same workload Q3 and Q4 get queued instead of getting
downgraded. After Q1 and Q2 finish and their PX servers are released back to the pool Q3 and Q4 can start.
Since they are not downgraded they finish much faster in this case and the whole workload finishes in 60
minutes compared to 240 minutes without queuing. If we look at the system utilization in this case we see
that we use less resources and for a shorter time. This means for this workload we can increase the DOPs

so that the queries finish even faster or we can submit more concurrent queries because there is ample

CPU available.

16

Queuing Point

parallel_max_servers=72

parallel_servers_target=36

Maximum
number of
PX servers

Queuing starts
here

When do we start queuing statement? The queuing point is determined by the parameter

parallel_servers_target. When the number of in-use processes reach parallel_servers_target subsequent
parallel statement will be queued. There is a reason why there are two parameters to control the number

of processes and we will come to that later.

17

Queuing Point

Maximum
parallel_max_servers=72 number of

PX servers

Queuing starts

.. parallel_servers_target=36 here
EEEEEN

=y EEEEEE

+ HEEEEN

cors HHEEEN
L]

These few slides show how queuing works.

18

Queuing Point

parallel_max_servers=72

saL
ﬁ-. parallel_servers_target=36
o | | [| | |
ar HEEEEE
i1 HEEEEN
cor HEHEEE
L]]

Maximum
number of
PX servers

Queuing starts
here

We now have two queries running and they are using 24 processes.

19

Queuing Point

Maximum
parallel_max_servers=72 number of

PX servers

X X X X
Queuing starts

...... parallel_servers_target=36 here
EEEEEN
EEEEEE
EEEEEN
EEEEEN
L]

When a new statement comes and asks for a DOP of 6 which means 16 processes the database sees that it
will exceed parallel_servers_target.

20

Queuing Point

parallel_max_servers=72

saL
@ parallel_servers_target=36
o= HHEEEE
2 HEEEEE
%ﬁ EEEEEN

B oob
o HNEEEE
i L]]

Maximum
number of
PX servers

Queuing starts
here

This statement is not allowed to executed and is queued until 16 processes become available.

21

&______

AVOID UNINTENTIONAL DOP DOWNGRADES

22

KEEP PARALLEL_MAX_SERVERS > PARALLEL_SERVERS_TARGET

Now let’s look at why you need to always put a gap between these two parameters.

23

Keep parallel_max_servers > parallel_servers_target

Sessions can bypass the queue
parallel_max_servers

. - parallel_servers_target
EEEEEE

| EEEEEE

o ¢ AEEEEN
¥ EEEEEE
' EEEEEE

Even if you enable parallel statement queuing system-wide there may still be queries bypassing the queue.
These statements are allowed to use any process in the pool up to parallel_max_servers.

Here we see two statements running and there are only 16 processes left below parallel_servers_target.

24

Keep parallel_max_servers > parallel_servers_target

Sessions can bypass the queue
parallel_max_servers

@

J
N i EEEE
EEEEEE

ENEEEN
! ! parallel_servers_target

% EEEEEE
i EEEEEE
oy O ANEEEE

EEEEEE

Ei EEEEEN

A statement that is allowed to bypass the queue comes and asks for a DOP of 16 which means 32
processes. Since this statement is allowed to bypass the queue it goes above parallel_servers_target and
allocates 32 processes. Now parallel_servers_target is exceed and any new statement will be queued. If
more statements bypass the queue this may cause the statements in the queue wait forever.

This is why you need to prevent bypassing the queue at all. There are other ways to make sure critical users
get the processes they need without waiting, we will talk about those methods later.

25

Keep parallel_max_servers > parallel_servers_target

Sessions can bypass the queue

» parallel_degree_policy = MANUAL or LIMITED
NO_STATEMENT_QUEUING hint

» DBRM bypass queue directive

dbms_resource_manager.create_plan_directive
(plan=>"DAYPLAN’,
group_or_subplan=>"CRITICAL,
parallel_stmt_critical=>"BYPASS QUEUE’

);

These are the ways a session can bypass the queue.

26

Keep parallel_max_servers > parallel_servers_target

Statements with multiple parallelizers
parallel_max_servers

. parallel_servers_target

 EEEEEE

zy EEEEEE
e 1 HAEEEEN
oo EEEEEN
- EEEEEE

Another case when a statement can exceed parallel_servers_target is multiple parallelizers. Multiple
parallelizers are statements that use more than DOP*2 number of processes.

27

Keep parallel_max_servers > parallel_servers_target

Statements with multiple parallelizers
parallel_max_servers

saL A
£ parallel_servers_target
& EEEEEN
. EEEEEE
zr EEEEEE

e 1 HAEEEEN
¥ ooo: SEEEEE
- EEEEEE

Here we see that a statement is asking for a DOP of 4. Since this means 8 processes by default the database
will allow this statement to run because there are 8 processes available below parallel_servers_target.

28

Keep parallel_max_servers > parallel_servers_target

Statements with multiple parallelizers
parallel_max_servers

=y EEEEEE
D4 parallel_servers_target
EEEEEN

- ENEEEN

But we see that this statement used 16 processes instead of 8. This is because the plan for this statement

had multiple parallelizers and used more than DOP*2 processes.

29

Keep parallel_max_servers > parallel_servers_target
Statements with multiple parallelizers
- Statement uses more than DOP*2 PX servers
Happens in rare cases depending on the plan shape
» Multiple PX COORDINATORSs in the plan

30

Statements with multiple parallelizers

SELECT DISTINCT seller

FROM sales

WHERE amount_sold >
(SELECT AVG(amount_sold) FROM sales
);

Keep parallel_max_servers > parallel_servers_target

Operation Name
| El SELECT STATEMENT
PX SEND QC (RANDOM) TTQ20001

& El- HASH UNIQUE
& B PX RECEIVE

& B} PX SEND HASH :TQ20000
& B} HASH UNIQUE
& Bl PX BLOCK ITERATOR
& E} TABLE ACCESS FULL SALES

E) SORT AGGREGATE

g E} PX COORDINATOR
[55) B PX SEND QC (RANDOM) “TQ10000
& E} SORT AGGREGATE
i1} [PX BLOCK ITERATOR
& TABLE ACCESS FULL SALES

m Copyright © 2015, Oracke andor it afilates. All rights reservey

31

Controlling Parallel Statement Queuing

* Enabled when PARALLEL_DEGREE_POLICY=AUTO or ADAPTIVE
* Hints
To by-pass parallel statement queuing
/*+ NO_STATEMENT QUEUING */
To enable queuing for a statement without having PARALLEL_DEGREE_POLICY set to AUTO or ADAPTIVE
/*+ STATEMENT_ QUEUING */
+ V$SQL_PLAN_MONITOR shows queued statements as STATUS=‘QUEUED’
SELECT sql_id, sqgl_text
FROM [GV|V] SSQLiMONITOR
WHERE status=’'QUEUED’;
* Wait event for sessions in the queue
resmgr:pq queued

m Copyright © 2015, Oracke and/or its affliates. Al ights reserved.

32

oo

KEEP PARALLEL_MAX_SERVERS > PARALLEL_SERVERS_TARGET

33

PROTECT THE INNOCENT

34

First Come First Served

) e
Aah

()
Ak 2

The parallel statement queue acts as a first-in first-out queue. Since the database treats each user equally
any user can submit any number of statements and they will go into the queue when needed. In this
example we see that user John submitted lots of statements before user Jane. Some of these statements
are running and lots more are waiting in the queue. When Jane submits a statement it will go to the end of
the queue and will wait until all of John’s statements finish.

35

Classify Users Based on Performance Requirements
Use DBRM consumer group mappings

) e
Aah

™
dik

When you use Database Resource Manager and consumer groups each consumer group will have its own

gueue. By default DBRM will treat each queue equally and will try to pick from each queue equally. This
way Jane will not have to wait behind John and will have an equal chance of running.

36

00

PROTECT THE INNOCENT

37

LIMIT THE DOP FOR CONCURRENCY

We talked about unintentional DOP downgrades causing unpredictable performance before. You may want
to limit the DOPs intentionally to achieve concurrency in the system.

38

No of Concurrent Queries
parallel _servers target
DOP * 2

No of PX server sets,
Max allowed DOP producer/consu mer

Conservatively the number of concurrent queries you can run can be calculated by this formula. This
assume everyone is using the max DOP and there are no exceptions like multiple parallelizers.

This shows that you can test with different parallel_servers_target and max DOP limits to achieve the
concurrency you need.

No of Concurrent Queries

i B parallel_servers_target = 36
gy 7 A HEEEE
EEEEEEN
1 NN
- HEEEEE
! EEEEEE

4 queries running concurrently

40

dh
g

Ak

Limit the DOP for Concurrency

Use DBRM for granular control

parallel_degree_limit_p1=8

parallel_degree_limit=16 @

parallel_degree_limit_p1=4 de:4

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,

group_or_subplan=>"CRITICAL’,parallel_degree_limit_p1=>8);

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,

group_or_subplan=>’ADHOC’,parallel_degree_limit_p1=>4);

There are two ways to limit the DOP for users. The parameter parallel_degree_limit acts as a global limit

and limits every session that is using Auto DOP. The DBRM directive parallel_degree_limit_p1 provides
granular control over DOPs so that you can put different limits for different users.

41

2000 -

LIMIT THE DOP FOR CONCURRENCY

42

MAKE SOME USERS MORE EQUAL THAN THE OTHERS

Not every user is equal in the DW world. You need to make sure users are prioritized based on
performance and business requirements.

43

Global Queuing Point

Any user can consume all resources

JE— : . T HEEEEN

p_ .| E=aa=a
& “my BEESSS
saL EEEEEE

The queuing point set by parallel_servers_target is global. If one user grabs all processes until that point all
others users need to wait in the queue. Even if you use consumer groups and different queues you need to
wait for other user’s queries to finish. This example shows that Jane submitted several statements before
John and grabbed all processes.

44

Queuing Point per Consumer Group
User can only use a portion of resources

0

dan;
— s EEEEEE

g TTTTT
a4k =ll 1]
EREEER

ENEEEE

dbms_resource_manager.create_plan_directive
(plan=>"DAYPLAN',group_or_subplan=>’ADHOC’,parallel_server_limit=>50)

’

m Copyright © 2015, Oracke and/or its affliates. Al ights reserved.

The DBRM directive parallel_server_limit prevents a consumer group from using all processes up to
parallel_servers_target. This example shows that Jane can only user 50% of parallel_servers_target. When
she uses that many processes her subsequent statements will be queued.

45

Queuing Point per Consumer Group

User can only use a portion of resources

,,: EEEEE
.Q m -))
op B [Ei=zlz)] SEEass

dbms_resource_manager.create_plan_directive
(plan=>"DAYPLAN',group_or_subplan=>"ADHOC’,parallel_server_limit=>50)

’

m S

This way another user can come and use the remaining processes without waiting for her.

46

No of Concurrent Queries Recap
parallel_servers_target
DOP * 2

No of PX server sets,
Max allowed DOP producer/consumer

47

No of Concurrent Queries for a Consumer Group

parallel_servers_target * parallel_server_limit / 100
DOP * 2

No of PX server sets,

parallel_degree_limit_p1 Prod ucer/consumer

This slide shows how the formula change when you use parallel_servers_limit and
parallel_degree_limit_p1 for a consumer group. Basically the queuing point for the consumer group
becomes parallel_servers_target*parallel_server_limit/100.

48

Dequeue Priority
SQL in different queues has the same chance to run

a

(72}
Q
=
[72]
»)
r
[72]
o
-
%3
3]
r

(/2]
(o]
r
wl
)
r

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

The second thing you can do to make sure critical users are prioritized is to use the dequee priorities.

49

Dequeue Priority
SQL in different queues has the same chance to run

e
|
[»)
r
]
Z
]
:
8|
:
g
-5

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

50

Dequeue Priority
SQL in different queues has the same chance to run

(72}
[»)
r
wl
»)
-
mI
o
-
mI
3]
[

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

51

Dequeue Priority
SQL in different queues has the same chance to run

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

52

Dequeue Priority

SQL in different queues has the same chance to run

€ = “! Eammam
an "I EamEEm
H —| -’- =—

saL | EEmmEm

dik Lﬂ

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

By default DBRM treats each queue equally. It tries to pick statements from each queue without any

priority.

Dequeue Priority

n saL

Iy

[J—
saL

dik

Use DBRM shares to prioritize users

2]
o|
=
7]
oI
!
(7]
o|
!

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,

group_or_subplan=>'CRITICAL’,shares=>3);

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,

group_or_subplan=>'ADHOC’,shares=>1);

Copyright © 2015, Orace and

affliates. Al ig

served

The shares directive in DBRM determines the CPU allocation for consumer groups. You can use the same
directive as dequeue priority for consumer group queues. This example shows that DBRM will try to favor

Jane over John when it is picking up queries from the queues because of the shares settings.

54

Dequeue Priority
Use DBRM shares to prioritize users

T g

-~
v EN =) AEEmEE

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,
group_or_subplan=>'CRITICAL’,shares=>3);

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,
group_or_subplan=>'ADHOC’,shares=>1);

m Copyright © 2015, Oracle andfor it affiiates. All rights reserved.

) @
dqa

Dequeue Priority
Use DBRM shares to prioritize users

| EEEEEE

\ saL | |saL | | saL ENEEER

b < EEEEEE

- T
] \ —— (—

an B = s EEEEEE

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,
group_or_subplan=>'CRITICAL’,shares=>3);

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,
group_or_subplan=>'ADHOC’,shares=>1);

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

56

Dequeue Priority

Use DBRM shares to prioritize users

(72}
oI
,_

£ e
-

U)
oI
=

ll.

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,
group_or_subplan=>'CRITICAL’,shares=>3);
dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,

2]
o|
=
[
oI
!
(%2}
OI
!

7]
o|
2

@
E
[g22s28mg
<
FHEH)

“

group_or_subplan=>'ADHOC’,shares=>1);

Copyright © 2015, Oracle and/or s afflates.

Al rights reser

rved

57

Dequeue Priority

(72}
oI
o

[
g

dik

(/2]
oI
=

Use DBRM shares to prioritize users

=
.%%

2]
o|
=
[
oI
!
(%2}
oI
!

7]
o|
2

dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,
group_or_subplan=>'CRITICAL’,shares=>3);
dbms_resource_manager.create_plan_directive(plan=>"DAYPLAN’,

group_or_subplan=>'ADHOC’,shares=>1);

Copyright © 2015, Oracke andfor it affilates. All rights reserved.

58

200990

MAKE SOME USERS MORE EQUAL THAN THE OTHERS

59

EXIT

ALLOW A WAY OUT

60

Do Not Make Users Wait Forever

Time out long waiting sessions

) =
' §

dbms_resource_manager.create_plan_directive
(plan=>'DAYPLAN', group_or_subplan=>"CRITICAL’, parallel_queue_timeout=>120);

61

Q9009099 -

ALLOW A WAY OUT

62

DO NOT ALLOW USERS TO HOLD RESOURCES FOREVER

63

Release Resources if User is Away

Time out idle sessions holding resources

dbms_resource_manager.create_plan_directive
(plan=>'DAYPLAN', group_or_subplan=>'CRITICAL’, max_idle_time=>120);

When a session using PX servers becomes idle before finishing the statement it keep holding those
processes. This is a typical case when the user fetches only a few rows and waits without fetching the
remaining rows. If the user keeps holding these processes for a long time other users may wait in the
gueue because of process shortage.

64

Release Resources if User is Away
Time out idle sessions holding resources

S ? =i

dbms_resource_manager.create_plan_directive
(plan=>'DAYPLAN', group_or_subplan=>'CRITICAL’, max_idle_time=>120);

m Copyright © 2015, Oracke andfor it affilates. All rights reserved.

Q990900909

DO NOT ALLOW USERS TO HOLD RESOURCES FOREVER

66

Keep More Important Users Happier
Summary

* Disable adaptive parallelism

» Enable Parallel Statement Queuing
Do not allow bypassing the queue
Be aware of statements with multiple parallelizers
— Keep parallel_max_servers higher than parallel_servers_target

» Limit DOP for concurrency

m Copyright © 2015, Oracke and/or its affliates. Al ights reserved.

67

Keep More Important Users Happier
Summary
* Classify users into consumer groups based on performance requirements

* Prioritize users
— Limit resources with parallel_server_limit
— Set dequeue priorities using shares

* Timeout long waiting sessions using parallel_queue_timeout

* Release resources from idle sessions using max_idle_time

68

ORACLE

69

