

Wresting control of your Oracle data with Heat Map and ILM in Oracle DB 12c

John Kanagaraj Member of Technical Staff, PayPal Database Engineering, An eBay Inc. company

Agenda

- Data challenges in the real world
- Introducing ILM
- Various methods to contain growth
- Introduction to Oracle Database 12c ILM
 - Oracle Database 12c Heat Map
 - Automatic Data Optimization
 - Partitioning techniques
- Leveraging storage vendor optimizations
- Rolling your own ILM
- Next steps
- Q & A

Related IOUG Sessions

- Download these papers/PPT from IOUG Website
- Helps understand functionality, syntax and usage
 - 185: How Hot Is My Data? Leveraging Automatic Database Optimization (ADO) Features in Oracle 12c Database For Dramatic Performance Improvements
 - 187: Something Old, Something New: Leveraging Oracle 12c's Information Lifecycle Management (ILM) Features for Improved Database Performance
 - 14761: Exploring 11g/12c Partitioning New Features and Best Practices

Speaker Qualifications

- Currently Database Engineer @ PayPal
- Has been working with Oracle Databases and UNIX for too many years ©
- Author and Technical editor
- Frequent speaker at OOW, IOUG
 COLLABORATE and regional OUGs
- Oracle ACE
- Contributing Editor, IOUG SELECT Journal
- Loves to mentor new speakers and authors!
- http://www.linkedin.com/in/johnkanagaraj

Housekeeping

- Check the font sizes
 - Can you read this at the back of the room?
 - Can you read this at the back of the room?
 - Just kidding!
- Silence your Phones!
- Q & A : Ask as we go along (and I will repeat the question)
 - Keep it relevant to the slide at hand
 - I might defer the question to a later slide or to the end
- It is a long day, so if you nod off it is ok (hopefully no snoring!)
- Survey: Challenges with DB size, Partitioning, 12c, Global Indexes

Data Challenges in the real world

So what is ILM

- ILM "Information Lifecycle Management"
- Fancy word for understanding, purging and archiving data
 - Strategy, guided by business needs and rules
 - Results in policies, processes and tools to manage data lifecycle
- Policies need to come first: defined by business
 - Usually defined by compliance; users want "retain forever"!
 - Needs cataloging and understanding of data assets
- Processes define how to handle ILM
 - Defines what should be purged/archived/stored forever
 - Classifies and sets retention for data
- Tools Used by techies to implement ILM policies

Data Challenges in the real world

- Data structured/unstructured is exploding
- Compliance requires longer data retention
- "Keep forever" policies for legacy data and programs
- Unable to segregate data by access and by retention easily
- Storage tiering requires ability to <u>physically</u> segregate data
- Database manageability constrained by size
- No accepted standards to manage data lifecycle
 - External standards lacking
 - Internal standards usually missing
- "Do More with Less" mantra from Business

Typical approaches to data challenges

- "Do Nothing" / "Do no harm" / (Let sleeping dogs lie)
 - When storage cost is lesser than cost of throwing away data
 - Legacy data that no one understands
 - Data needs to be kept forever (research, health, "master" data)
- Compression
 - Reduce cost of storing data
 - Transparent access (almost)
 - Still not a good solution for all types of data
 - Can leverage "tiered storage" approach
- Archive to another store
 - Typically not accessible "online"
 - Still need to purge at some point in time

Types of data: "classify before you kill"

- Master
 - Typically long-lived data: User details/credentials
 - Evolves slowly Active/Inactive patterns
- Transactions
 - Produced by interactions related to master data
 - Usually voluminous: Sales records, Cart details
 - Typically has a defined lifecycle
 - Changes master data's state
- Saga
 - Typically records changes to master
 - Shorter life than Transactions
 - E.g. Error logs, external state change events

Never purge

Aggressively purge

ILM Compliance Policies

- Data Retention Consider the data being handled: Is it possible to purge/archive?
- Immutability Does the data change in any way, and how can you prove it did not change since it was "frozen"
- Privacy Who controls access to archives and how do we protect it?
- Auditing How do we track who requested this data?
- Expiration How do we ensure that data is purged as per agreed policies, both external and internal?
- Restoration How do we store/restore this data in a manner that allows access even past the technology's "sell-by" date?

Typical Data Access Patterns

Typical Data Access Patterns

Typical Data Access Patterns

Tools you need to implement ILM

HeatMap / SegStats / Roll-your-own

- Ability to understand data access patterns
 - What parts are being Inserted, Updated, Deleted or Read?
 - What is the rate at which this is being done?

Partitioning

- How are they (and Who is) performing these activities? and ADO
- Ability to segregate data by these access patterns
 - Needs physical separation at lowest level possible
 - A method to divide (or "partition") this data by access
 - Typically driven by Time (or Date/Time)
- Ability to handle disposition of data
 - Automatic, enforceable means of segregating data
 - Application transparency
 - Provide ability to access offline or near-line archived data

A.K.A. Carving Up A Large Object Into Manageable Pieces

Partitioning enables <u>efficient</u> data purging/archiving

- Partitioning enables <u>efficient</u> data purging/archiving
- IN1 Local index partitioned by part_key: single partition probe

- Partitioning enables <u>efficient</u> data purging/archiving
- IN1 Local index partitioned by part_key: single partition probe
- IN2 Local index not accessed by part_key: multi-partition probe

- Partitioning enables <u>efficient</u> data purging/archiving
- IN1 Local index partitioned by part_key: single partition probe
- IN2 Local index not partitioned by part_key: multi-partition probe
- Global index: Index rows deleted during partition maintenance

- Partitioning enables <u>efficient</u> data purging/archiving
- IN1 Local index partitioned by part_key: single partition probe
- IN2 Local index not partitioned by part_key: multi-partition probe
- Global index: Index rows deleted during partition maintenance
 - Index row deletes async'ed in Oracle DB 12c

- Partitioning enables <u>efficient</u> data purging/archiving
- IN1 Local index partitioned by part_key: single partition probe
- IN2 Local index not partitioned by part_key: multi-partition probe
- Global index: Index rows deleted during partition maintenance
 - Index row deletes async'ed in Oracle DB 12c
- Range partitioning by Time, sub-partitioning by hash is a typical pattern
 - Choice of partitioning key is key to creating the right type of indexes
 - Surrogate Key can be Time/Date based

- ILM needs ability to segregate data by these access patterns
 - Needs physical separation at lowest level possible
 - A method to divide (or "partition") this data by access
 - Typically driven by Time (or Date/Time)
- Table and Index partitioning is a must for ILM:
 - Partitioned objects have physically distinct segments
 - Difference shown in OBJECT_ID and DATA_OBJECT_ID
 - Local indexes preferred!
- Most objects have Time-oriented lifecycle
 - Range partitioning by Time is most normal pattern
 - Ideal if partitioning key is a number representing time (or date)
 - Time + Sequence = A Key unique and partitionable by time

create table TEST_TIMEDID (TIMEDID NUMBER not null,

VCOL1 VARCHAR2(100) not null,
VNUM1 NUMBER not null,
STATUS CHAR(1),
CREATED_EPOCH_TIME NUMBER not null,
UPDATED_EPOCH_TIME NUMBER)

- Create a Sequence Start 1 Max 4294967295, CYCLE
- Get EpochTime (using V\$TIMER) Div by 100 for secs
- Shift up 32 bits Multiply by 1000000000
- Add the NEXTVAL

partition by RANGE (TIMEDID) -- Partition Width is 6 months (partition lc_2013_01_01 values less than (97137729145405440), -- 2013/01/01 00:00:00 partition lc_2013_06_30 values less than (98250984668528640), -- 2013/06/30 00:00:00 partition lc_2013_12_27 values less than (99364240191651840), -- 2013/12/27 00:00:00 partition lc_pmax values less than (maxvalue));

- TIMEDID = Epoch Second + Running Oracle Sequence
- Epoch Sec = No. of seconds since Jan 1, 1970 midnight UTC
- http://www.epochconverter.com
 - Epoch time convertor: Epoch to Date/Time and vice versa
- Time model is extensible for multiple sources just insert a number representing source: TIMEID + Source + Sequence

Understanding data access patterns

- New in Oracle Database 12c : Heat Map
 - DB level heat map showing tables/partitions being used
 - Block/Extent level last modification
 - Detailed statistics of access
 - Low overhead (no cost for object level, <5% for block level)
 - Combined with other licensed options to be effective
- Object (and partition) level tracking pre Database 12c
 - High level usage map in V\$SEGMENT_STATISTICS
 - Persisted in AWR (DBA_HIST_SEG_STAT/STAT_OBJ)
 - Partial key/bind values in V\$SQL_BIND_CAPTURE
 - Derive approximate change time from SCN_TO_TIMESTAMP(ORA_ROWSCN)

Oracle Database 12c: Heat Map

Oracle Database 12c: Heat Map

- Set HEAT_MAP = ON to enable in-memory tracking
- Setup heat map using DBMS_* programs
 - DBMS_ILM_ADMIN to setup tracking parameters
- View in-memory stats using V\$HEAT_MAP_SEGMENT
- Flushed to DBA_HEAT_MAP_SEGMENT and DBA_HEAT_MAP_SEG_HISTOGRAM
- Use DBMS_HEAP_MAP package to view as well
- Sets you up to implement ADO (Automatic Data Optimization)
 - Possible to create rules to implement data retention and other policies

Oracle Database 12c: ADO

- Automates compression and movement of data
- Uses Heat Map data collected prior
- Implemented using DBMS_ILM package
- Creates "in-database" archiving using compression
 - Needs license
 - Does NOT go across databases
- Exposed via DBA_ILM% views
 - DBA_ILMDATAMOVEMENTPOLICIES: Data movement related attributes
 - DBA_ILMEVALUATIONDETAILS: Evaluation of ADO poliicies
 - DBA_ILMOBJECTS: Mapping of ILM policies to objects
 - DBA_ILMPARAMETERS: Parameters defined by DBMS_ILM* packages
 - DBA_ILMPOLICIES: Details of ADO policies
 - DBA ILMRESULTS: ADO Execution details
 - DBA_ILMTASKS: ADO Execution details

Oracle Database 12c: ADO Examples

/* Add a row-level compression policy after 30 days of no modifications */
ALTER TABLE sales MODIFY PARTITION sales_q1_2002
ILM ADD POLICY ROW STORE COMPRESS ADVANCED ROW
AFTER 30 DAYS OF NO MODIFICATION;

/* Add a segment level compression policy for data after 6 months of no changes */
ALTER TABLE sales MODIFY PARTITION sales_q1_2001
ILM ADD POLICY COMPRESS FOR ARCHIVE HIGH SEGMENT
AFTER 6 MONTHS OF NO MODIFICATION;

/* Add a segment level compression policy for data after 12 months of no access */
ALTER TABLE sales MODIFY PARTITION sales_q1_2000
ILM ADD POLICY COMPRESS FOR ARCHIVE HIGH SEGMENT
AFTER 12 MONTHS OF NO ACCESS;

/* Add storage tier policy to move old data to a different tablespace */
/* that is on low cost storage media */
ALTER TABLE sales MODIFY PARTITION sales_q1_1999
ILM ADD POLICY
TIER TO my_low_cost_sales_tablespace;

ADO and Heat Map Restrictions

- ADO and Heat Map not supported in a CDB database
- Row-level policies for ADO are not supported for Temporal Validity
- Partition-level ADO and compression supported if partitioned on the end-time columns
- ADO does not perform checks for storage space in a target tablespace when using storage tiering
- ADO is not supported on tables with object types, materialized views,
 IOTs and Clustered tables
- ADO concurrency (the number of simultaneous policy jobs for ADO) depends on the concurrency of the Oracle scheduler.
- ADO Policies are only run in the maintenance windows
- Supplemental logging restrictions
- "ADO has restrictions related to moving tables and table partitions"??

Oracle DB 11g: "Back-porting"

- Some high level information available 10g+ and 11g
 - V\$SEGMENT_STATISTICS: Tracks access
 - Stats such as "physical reads" & "db block changes"
 - Persisted in AWR (DBA_HIST_SEG_STAT/STAT_OBJ) with timestamp
 - May not be recorded for all objects in a busy database
 - Derive row-level access using bind values
 - Stored in V\$SQL_BIND_CAPTURE/DBA_HIST_SQLBIND
 - Manual work to derive access patterns
 - Changed blocks record time in ORA_ROWSCN
 - Derive approximate change time from SCN_TO_TIMESTAMP(ORA_ROWSCN)

Segment Level Stats – AWR (Global/Single)

(use STATSPACK in case you don't have License for AWR!)

Segment Statistics (Global) DB/Ir st: TEST/TEST_2 Snaps: 94734-94735

-> % Total shows % of statistic for each segment compared to the global cluster-wide total
(logical reads, physical reads, gc [cr/cu] blocks [recv/serv])

> % Capture shows % of statistic for each segment compared to the total captured
by AWR for all segments during the snapshot interval
-> Captured Segments account for 84.3% of Total Logical Reads: 311,580,725

-> Captured Segments account for 94.0% of Total Physical Reads: 14,995,258

snip> -- Other stats include "Physical Read Requests", "UnOptimized Read Requests", "Optimized Read Requests"

ksnip> -- "Direct Physical Reads", "Physical Writes", "Physical Write Requests", "CR Blocks Served/Received"

Direct Physical Writes", "Table Scans", and "Current Blocks Served/Received"

Tablespace Object			Subobject Obj.						
Statistic	Owner	Name	Name	Name	Type	Value %T	otal %Capture		
db block chai	naes TF	STDBA	TST DATA	I TST LMTN:	SCHDAC	TIONS TION	S_Q_18 TABLE	1.985.760 V/A	32.2
ab blook ona	TESTDBA						3 INDEX 1,151,4		02.2
	TESTDBA	TS_TX	N_DAT TS	_LMTNSCHDA	CTIONS_	_ IONS_DM_1	8 INDEX 1,126	5,832 N/A 8.2	
	TESTDBA	TEST_	FLOW4 TES	STMENT_FLOV	V T_F	FLOW_P18 TA	ABLE 1,047,792	2 N/A 17.0	
	TESTDBA	TST_D	ATA_L TST	_LMTNSCHDA	CTIONS_	TABL	E 863,600 N	/A 14.0	
gc cr blocks i	received TE	STDBA	TST_DATA	_L TST_LMTN	SCHDAC	MONS_	TABLE 570,	409 10.9 37.7	
	TESTDBA	TST_M	IAP TST_N	ЛАР	TAB	LE 356,468	8 6.8 23.6		
	TESTDBA	TEST_	FLOW4 TES	STMENT_FLOV	V T_F	FLOW_P18 TA	ABLE 253,758	4.9 16.8	
	TESTDBA	TESTT	ABL_I TEST	TABL_INFO		TABLE 20	4,984 3.9 13.	.6	
	TESTDBA	TS_TX	N_DAT PAY	MENT_FLOW.	_RISK _	TEST_P342	ΓABLE 126,94	9 2.4 8.4	
gc cr blocks	served TE	STDBA	TST_DATA	_L TS7_LMTNS	SCHDAC	TIONS_	TABLE 570,	409 10.9 37.7	
<snipped td="" unt<=""><td>til end></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></snipped>	til end>								

- Table/Index/Partition names are truncated.... ⊗ Access the data directly!
- DBA_HIST_SEG_STAT and DBA_HIST_SEG_STAT_OBJ

Storage Tiering: An essential component

- Most Storage vendors provide some form of tiered storage
 - SAN Array tiers should be mapped to ASM diskgroups (DG's)
 - Create "Compressed", "Archive" tablespaces on these DG's
 - Use ADO to compress/move the required partitions
 - In pre-12c, use available compression methods
 - HCC in Exadata, ZFS Storage Appliance and Pillar Axiom

Off-database: "Transparent Online archive"

- Move archived data to another database
 - Implemented using third-party archive tools
 - E.g. HP RIM, IBM InfoSphere Optim, etc.
 - Most originated from OuterBay (HP acquired 2006 => RIM)
 - Essentially for Oracle E-Business Suite; Now for XML as well
- Main issue: Reduced availability (dependent on >1 database)
 - Essentially based on Database links
 - Separate access path for archived data
 - Mitigates availability concern for critical access paths
 - Not suitable for chatty applications; Low use cases only
- Needs to keep up with the main (DDL, changes, formats, etc.)
- May be built in-house with some effort

Please fill in your feedback form
Link up with me on LinkedIn
John Kanagaraj, PayPal, an eBay Inc. Company

