12 Things Every Oracle DBA and
Developer Should Know About SQL

Introduction

e Editor of the NoCOUG Journal (Archive)
* Presentation based on “The Twelve Days of

SQL” series of blog posts

http://nocoug.wordpress.com/nocoug-journal-archive/
http://iggyfernandez.wordpress.com/2011/11/30/the-12-days-of-sql-day-1/
http://iggyfernandez.wordpress.com/2011/11/30/the-12-days-of-sql-day-1/
http://iggyfernandez.wordpress.com/2013/12/25/the-twelve-days-of-nosql-day-one-disruptive-innovation/
http://iggyfernandez.wordpress.com/2013/12/25/the-twelve-days-of-nosql-day-one-disruptive-innovation/

Top Tips

* Buy every book by Steven Faroult
— The Art of SQL
— Refactoring SQL Applications
— SQL Success

* Follow my ToadWorld blog
— Hitchhiker’s Guide to the EXPLAIN PLAN

* |nstall the OTN Developer Day virtual machine
on your desktop.

http://www.toadworld.com/members/iggy_5f00_fernandez/blogs/default.aspx
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

“Those who are in love with practice without
knowledge are like the sailor who gets into a
ship without rudder or compass and who never
can be certain where he is going. Practice must
always be founded on sound theory.”

—The Discourse on Painting
by Leonardo da Vinci

#1 SQL IS A NON-PROCEDURAL
LANGUAGE

Patron Saints of Databases

3 p

Charles Bachman r Codd
1973 Turing Award Winner 1981 Turing Award Winner

HR Schema

III'IIE.'!EF',ll'!'u.I"-P.'!'I"u"lEI“»I'I'E (—LDGATIDNSW
department_id location_id
——————— -— clepartment_r?ame - = = L Street address
manager_id postal code
location_id city
state_province
| L‘ country _id)
II"'-_...l'li.f'.-'E_H|ET"-':ZI'I"-P."l"_wq : N
employee_id B - — — ((EMPLOYEES) !
end date Albbiealy .
juE id first_name
- last_name COUNTRIES
_ Jepartmentid email country _id
Y phone_number country_name
hir&_d.ﬂtﬂ — = region_id
I job _id -
| salary V
commission_pct |
JOBS - manager_id |
_ gab__ﬁ department_id _)
oD
rr!in_EaIary IREGICINS
max_salary el

region_name

Network Model
Chains

-

-

OWNER
RECORD

MEMBER \ .- MEMBER
RECORD 3 : RECORD 1

MEMBER
RECORD 2

~~ o -

Employee record
EMPLOYEE_ID =3
DEPARTMENT_ID =1
JOB_ID=2

Department record
DEPARTMENT_ID =1

Employee record
EMPLOYEE_ID =1
DEPARTMENT _ID =1
JOB ID=1

Employee record
EMPLOYEE_ID =2
DEPARTMENT_ID =1
JOB_ID=2

Job record
JOB ID=1

Employee record
EMPLOYEE_ID =4
DEPARTMENT_ID =2
JOB_ ID=1

Employee record
EMPLOYEE_ID =5
DEPARTMENT_ID = 2
JOB_ID=1

Al

The Programmer as Navigator

Sequential access
ROWID access
Primary key access
Secondary key access

Starting from the owner record, get all the
records in a chain

Starting from any record, get the prior and next
in a chain

Starting from any record, get the owner record

“Each of these access methods is interesting in itsel,
and all are very useful. However, it is the synergistic
usage of the entire collection which gives the
programmer great and expanded powers to come
and go within a large database while accessing only
those records of interest in responding to inquiries
and updating the database in anticipation of future
inquiries.”
—Charles Bachman
ACM Turing Award Lecture, 1973

Relational Model

“In the choice of logical data structures that a system is to
support, there is one consideration of absolutely
paramount importance — and that is the convenience of
the majority of users. ... To make formatted data bases
readily accessible to users (especially casual users) who
have little or no training in programming we must
provide the simplest possible data structures and almost
natural language. ... What could be a simpler, more

universally needed, and more universally understood data
structure than a table?”

—Dr. Edgar Codd
Normalized Data Base Structure: A Brief Tutorial (1971)

The intended audience for SQL

“There is a large class of users who, while they are
not computer specialists, would be willing to learn
to interact with a computer in a reasonably high-
level, non-procedural query language. Examples of
such users are accountants, engineers, architects,
and urban planners. It is for this class of users that
SEQUEL is intended.”

—Donald Chamberlin and Raymond Boyce
Sequel: A Structured English Query Language (1974)

What can you expect from a non-
procedural query language?

The query runs slowly.
The query ran fast yesterday but is running slowly today.

The query ran fast a few minutes ago but is running slowly
Now.

The query runs fast in the QA database but runs slowly in
the production database.

The query runs fast in other production databases but not
in this production database.

Oracle is not using the indexes we created.
The query plan is not the one we expected.
The query runs slower after a database upgrade.

Query Plan Stability

Hints
Stored Outlines

SQL Plan Management (Oracle Database 12c
Enterprise Edition only)

Don’t refresh statistics?
Don’t use bind variable peeking?

#2 SQL IS BASED ON RELATIONAL
CALCULUS AND RELATIONAL ALGEBRA

Definition of a relational database

“A relational database is a database in which:
The data is perceived by the user as tables (and
nothing but tables) and the operators available
to the user for (for example) retrieval are
operators that derive “new” tables from “old”
ones.”

—Chris Date

An Introduction to Database Systems

Relational Operators
(Fundamental and sufficient)

Selection

Projection

Union

Difference

Join (Cartesian Join)

The Employees table

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST NAME VARCHAR2(20)
LAST NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)

DEPARTMENT _ID NUMBER (4

The Job History table

EMPLOYEE_ID
START_DATE
END_DATE
JOB_ID
DEPARTMENT ID

NOT NULL NUMBER(6)

NOT NULL DATE

NOT NULL DATE

NOT NULL VARCHAR2(10)
NUMBER(4)

The Jobs table

Name Null? Type

JOB_ID NOT NULL VARCHAR2(10)
JOB_TITLE NOT NULL VARCHAR2(35)
MIN_SALARY NUMBER(6)

MAX_SALARY NUMBER (6)

Employees who have held all
accounting jobs (job_id like 'AC%')

WITH
-- Step 1: Projection
all employees 1 AS
(SELECT employee id FROM employees
)
-- Step 2: Projection
all employees 2 AS
(SELECT employee id FROM employees
)
-- Step 3: Projection
all jobs AS
(SELECT job_id FROM jobs

)

-- Step 4: Selection

selected jobs AS

(SELECT * FROM all jobs WHERE job id LIKE 'AC%’
)

-- Step 5: Join

selected pairings AS

§ SELECT * FROM all employees 2 CROSS JOIN
selected jobs

)

-- Step 6: Projection

current_job titles AS

(SELECT employee id, job id FROM employees

)

-- Step 7: Projection
previous job titles AS

(SELECT employee id, job_id FROM job_history
)5

-- Step 8: Union
complete job history AS

(SELECT * FROM current job_ titles
UNION

SELECT * FROM previous_job titles
)5

-- Step 9: Difference
nonexistent_pairings AS

(SELECT * FROM selected pairings
MINUS

SELECT * FROM complete job history

)

-- Step 10: Projection
ineligible employees AS
(SELECT employee_id FROM nonexistent pairings
)
-- Step 11: Difference
SELECT * FROM all employees 1

MINUS
SELECT * FROM ineligible_employees

Employees who have held all
accounting jobs (Compact version)

SELECT employee _id FROM employees
MINUS
SELECT employee id
FROM
(SELECT employees.employee id,
jobs.job id
FROM employees
CROSS JOIN jobs
WHERE jobs.job id LIKE 'AC%’
MINUS
(SELECT employee id, job_id FROM job_history
UNION
SELECT employee id, job_id FROM employees

)
)

Employees who have held all
accounting jobs (Relational calculus)

SELECT employee id
FROM employees e
WHERE NOT EXISTS
(SELECT job_id
FROM jobs j
WHERE job_id LIKE 'AC%'
AND NOT EXISTS

(SELECT *
FROM
(SELECT employee id, job _id FROM job_history
UNION
SELECT employee _id, job _id FROM employees
)
WHERE employee id = e.employee id
AND job_id = j.job_id
)

)

Additional Relational Operations
(Derivable from the fundamental set)

Intersection
Natural join
Equi-join
Theta-join
Left outer join
Right outer join
* Full outer join
* Semi-join

* Anti-join

* Division

#3 THERE ISN’T ALWAYS A SINGLE
OPTIMAL QUERY PLAN FOR A SQL
QUERY

It depends on what the meaning of
the word “is” is

select * from employees
where first name like 'Lex’
and last name like 'De Haan'

select * from employees
where first name like :b1
and last name like :b2

#4 THE TWELVE DAYS OF SQL: THE WAY
YOU WRITE YOUR QUERY MATTERS

The Personnel table

CREATE TABLE personnel
(
empid CHAR(9),
Iname CHAR(15),
fname CHAR(12),
address CHAR(20),
city CHAR(20),
state CHAR(2),
ZIP CHAR(5)

);

The Payroll table

CREATE TABLE payroll
(
empid CHAR(9),
bonus INTEGER,
salary INTEGER

);

Solution #1
Relational algebra method

SELECT DISTINCT per.empid, per.lname
FROM personnel per JOIN payroll pay ON (per.empid = pay.empid)
WHERE pay.salary = 199170;

Plan hash value: 3901981856

SELECT STATEMENT | |
HASH UNIQUE | |
NESTED LOOPS | |
NESTED LOOPS | |
TABLE ACCESS BY INDEX ROWID| PAYROLL |
INDEX RANGE SCAN | PAYROLL I1 |
INDEX UNIQUE SCAN | PERSONNEL U1 |
TABLE ACCESS BY INDEX ROWID | PERSONNEL |

* %

Solution #2
Uncorrelated subquery

SELECT per.empid, per.lname

FROM personnel per

WHERE per.empid IN (SELECT pay.empid
FROM payroll pay

WHERE pay.salary = 199170);

Plan hash value: 3342999746

Id	Operation	Name
0	SELECT STATEMENT	
1	NESTED LOOPS	
2	NESTED LOOPS	
3	TABLE ACCESS BY INDEX ROWID	PAYROLL
* 4	INDEX RANGE SCAN	PAYROLL I1
* 5	INDEX UNIQUE SCAN	PERSONNEL U1
6	TABLE ACCESS BY INDEX ROWID	PERSONNEL

Solution #3
Correlated subquery

SELECT per.empid, per.lname
FROM personnel per
WHERE EXISTS (SELECT *
FROM payroll pay
WHERE per.empid = pay.empid
AND pay.salary = 199170);

Plan hash value: 864898783

SELECT STATEMENT |
NESTED LOOPS |
NESTED LOOPS |
SORT UNTQUE |
TABLE ACCESS BY INDEX ROWID| PAYROLL
INDEX RANGE SCAN | PAYROLL_I1
INDEX UNIQUE SCAN | PERSONNEL_U1
TABLE ACCESS BY INDEX ROWID | PERSONNEL

* %

Solution #4
Scalar subquery in the WHERE clause

SELECT per.empid, per.lname
FROM personnel per
WHERE (SELECT pay.salary FROM payroll pay WHERE pay.empid = per.empid) = 199170;

Plan hash value: 3607962630

Id	Operation	Name
0	SELECT STATEMENT	
* 1	FILTER	
2	TABLE ACCESS FULL	PERSONNEL
3	TABLE ACCESS BY INDEX ROWID	PAYROLL
* 4	INDEX UNIQUE SCAN	PAYROLL U1

1 - filter(=199170)
4 - access("PAY"."EMPID"=:B1)

Solution #5
Scalar subquery in the SELECT clause

SELECT DISTINCT pay.empid, (SELECT lname FROM personnel per WHERE per.empid = pay.empid)
FROM payroll pay
WHERE pay.salary = 199170;

Plan hash value: 750911849

Id	Operation	Name
0	SELECT STATEMENT	
1	TABLE ACCESS BY INDEX ROWID	PERSONNEL
* 2	INDEX UNIQUE SCAN	PERSONNEL U1
3	HASH UNIQUE	
4	TABLE ACCESS BY INDEX ROWID	PAYROLL
* 5	INDEX RANGE SCAN	PAYROLL I1

2 - access("PER"."EMPID"=:B1)
5 - access("PAY"."SALARY"=199170)

Solution #6
Aggregate function to check existence

SELECT per.empid, per.lname
FROM personnel per

WHERE (SELECT count(*) FROM payroll pay WHERE pay.empid = per.empid AND pay.salary =
199170) > 0;

Plan hash value: 3561519015

Id	Operation	Name
0	SELECT STATEMENT	
* 1	FILTER	
2	TABLE ACCESS FULL	PERSONNEL
3	SORT AGGREGATE	
* 4	TABLE ACCESS BY INDEX ROWID	PAYROLL
* 5	INDEX UNIQUE SCAN	PAYROLL U1

1 - filter(>0)
4 - filter("PAY"."SALARY"=199170)
5 - access("PAY"."EMPID"=:B1)

Solution #7
Correlated subquery (double negative)

SELECT per.empid, per.lname
FROM personnel per
WHERE NOT EXISTS (SELECT *
FROM payroll pay

WHERE pay.empid = per.empid
AND pay.salary != 199170);

Plan hash value: 103534934

0 | SELECT STATEMENT | |
|* 1| HASH JOIN RIGHT ANTI| |
* 2 | TABLE ACCESS FULL | PAYROLL |

3 | TABLE ACCESS FULL | PERSONNEL |

1 - access("PAY"."EMPID"="PER"."EMPID")
2 - filter("PAY"."SALARY"<>199170)

Solution #8
Uncorrelated subquery (double negative)

SELECT per.empid, per.lname

FROM personnel per

WHERE per.empid NOT IN (SELECT pay.empid
FROM payroll pay

WHERE pay.salary != 199170);

Plan hash value: 2202369223

0 | SELECT STATEMENT | |
|* 1 | HASH JOIN RIGHT ANTI NA| |
* 2| TABLE ACCESS FULL | PAYROLL |

3 | TABLE ACCESS FULL | PERSONNEL |

1 - access("PER"."EMPID"="PAY"."EMPID")
2 - filter("PAY"."SALARY"<>199170)

Comparison (11g Release 2)

METHOD Plan Hash Elapsed Buffer Gets
(us)
Uncorrelated subquery 3342999746 129 17
Correlated subquery 864898783 405 16
Relational algebra method 3901981856 426 16
Scalar subquery in the SELECT clause 750911849 701 16
Uncorrelated subquery (double negative) 2202369223 7702 241
Correlated subquery (double negative) 103534934 14499 241
Scalar subquery in the WHERE clause 3607962630 195999 10549

Aggregate function to check existence 3561519015 310690 10554

#8 STATISTICS ARE A DOUBLE-
EDGED SWORD

“Oh, and by the way, could you please stop
gathering statistics constantly? | don’t
know much about databases, but | do
think | know the following: small tables
tend to stay small, large tables tend to stay
large, unique indexes have a tendency to
stay unique, and non-unique indexes often
stay non-unique.”
—Dave Ensor
(as remembered by Mogens Norgaard)
Statistics: How and When?

November 2010 issue of the NoCOUG
Journal

http://nocoug.wordpress.com/nocoug-journal-archive/
http://nocoug.wordpress.com/nocoug-journal-archive/

“Monitor the changes in execution plans
and/or performance for the individual SQL
statements ... and perhaps as a
consequence re-gather stats. That way,
you’d leave stuff alone that works very
well, thank you, and you’d put your efforts
into exactly the things that have become
worse.”
—Mogens Norgaard
Statistics: How and When?
November 2010 issue of the NoCOUG
Journal

http://nocoug.wordpress.com/nocoug-journal-archive/
http://nocoug.wordpress.com/nocoug-journal-archive/

“There are some statistics about your data
that can be left unchanged for a long time,
possibly forever; there are some statistics
that need to be changed periodically; and
there are some statistics that need to be
changed constantly. ... The biggest
problem is that you need to understand

the data.”
—Jonathan Lewis

Statistics: How and When?
November 2010 issue of the NoCOUG
Journal

http://nocoug.wordpress.com/nocoug-journal-archive/
http://nocoug.wordpress.com/nocoug-journal-archive/

“It astonishes me how many shops
prohibit any un-approved production
changes and yet re-analyze schema stats
weekly. Evidently, they do not understand
that the [possible consequence] of
schema re-analysis is to change their
production SQL execution plans, and they
act surprised when performance
changes!”
—Don Burleson
Statistics: How and When?
November 2010 issue of the NoCOUG
Journal

http://nocoug.wordpress.com/nocoug-journal-archive/
http://nocoug.wordpress.com/nocoug-journal-archive/

#9 PHYSICAL DATABASE DESIGN
MATTERS

“If a schema has no I0Ts or clusters, that is a
good indication that no thought has been given
to the matter of optimizing data access.”

—Tom Kyte (quoting Steve Adams)
Effective Oracle by Design (page 379)

The NoSQL complaint

“Using tables to store objects is like driving your car home and
then disassembling it to put it in the garage. It can be
assembled again in the morning, but one eventually asks
whether this is the most efficient way to park a car.”

—incorrectly attributed to Esther Dyson
Editor of Release 1.0

“You can keep a car in a file cabinet because you can file the
engine components in files in one drawer, and the axles and
things in another, and keep a list of how everything fits
together. You can, but you wouldn’t want to.”

—Esther Dyson
September 1989 issue of Release 1.0

Demonstration
(Refer to Physical Database Design.txt)

Based on the blog post The Twelve Days of
NoSQL: Day Six: The False Premise of NoSQL

http://iggyfernandez.wordpress.com/2013/12/30/the-twelve-days-of-nosql-day-six-the-false-premise-of-nosql/
http://iggyfernandez.wordpress.com/2013/12/30/the-twelve-days-of-nosql-day-six-the-false-premise-of-nosql/
http://iggyfernandez.wordpress.com/2013/12/30/the-twelve-days-of-nosql-day-six-the-false-premise-of-nosql/
http://iggyfernandez.wordpress.com/2013/12/30/the-twelve-days-of-nosql-day-six-the-false-premise-of-nosql/

#10 SOMETIMES THE OPTIMIZER
NEEDS A HINT

Who Said That?

“No optimizer is perfect and directives such as Oracle’s
hints provide the simplest workaround [in] situations in
which the optimizer has chosen a suboptimal plan. Hints
are useful tools not just to remedy an occasional
suboptimal plan, but also for users who want to
experiment with access paths, or simply have full control
over the execution of a query.”

1. Homer Simpson (star of The Simpsons TV show)

2. Oracle white paper

3. Tom Kyte (today’s keynote speaker)

4. Dr. Edgar Codd (the inventor of relational database
theory)

Suggestions from Dan Tow

Oracle’s Cost-based Optimizer (CBO) does a perfectly good job on most
SQL, requiring no manual tuning for most SQL.

The CBO must parse quickly, use the data and indexes that it has, make
assumptions about what it does not know, and deliver exactly the result
that the SQL calls for.

On a small fraction of the SQL, the constraints on the CBO result in a
performance problem.

Find SQL worth tuning, ignoring the great majority that already performs
just fine.

Find the true optimum execution plan (or at least one you verify is fast
enough), manually, without the CBO’s constraints or assumptions.

Compare your manually chosen execution plan, and its resulting
performance, with the CBO’s plan and consider why the CBO did not select
your plan, if it did not.

Choose a solution that solves the problem.

#11 AWR AND STATSPACK ARE A
GOLDMINE OF HISTORICAL
PERFORMANCE DATA

Demonstration

52 Weeks In the Life of a Database Graphs.pdf

e 52 Weeks in the Life of Another Database
Graphs.pdf

e Contact Iggy for performance monitoring tool

#12 READERS DO NOT BLOCK WRITERS;
WRITERS DO NOT BLOCK READERS

Serializability

“To describe consistent transaction behavior
when transactions run at the same time,
database researchers have defined a transaction
isolation model called serializability. The
serializable mode of transaction behavior tries
to ensure that transactions run in such a way
that they appear to be executed one at a time,
or serially, rather than concurrently.”

—Oracle documentation up to 11g Release 1

Demonstration
(Refer to Serializability.txt)
Based on the blog post Day 12: The Twelve Days

of SQL: Readers do not block writers: writers do
not block readers

http://iggyfernandez.wordpress.com/2011/12/20/the-twelve-days-of-sql-day-12/
http://iggyfernandez.wordpress.com/2011/12/20/the-twelve-days-of-sql-day-12/
http://iggyfernandez.wordpress.com/2011/12/20/the-twelve-days-of-sql-day-12/

THROW AWAY THAT EXECUTION
PLAN!

Demonstration
www.youtube.com/watch?v=ZVisY-fEoMw

http://www.youtube.com/watch?v=ZVisY-fEoMw
http://www.youtube.com/watch?v=ZVisY-fEoMw
http://www.youtube.com/watch?v=ZVisY-fEoMw

#7 EXPLAIN PLAN LIES

Demonstration
(Refer to EXPLAIN PLAN lies.txt)

Based on the blog post Day 7: The Twelve Days
of SQL: EXPLAIN PLAN lies

http://iggyfernandez.wordpress.com/2011/12/08/the-twelve-days-of-sql-day-7/
http://iggyfernandez.wordpress.com/2011/12/08/the-twelve-days-of-sql-day-7/

#5 THE QUERY COST IS ONLY AN
ESTIMATE

#6 THE EXECUTION PLAN IS A TREE

How to read EXPLAIN PLAN output
(Not!)

“The execution order in EXPLAIN PLAN output
begins with the line that is the furthest indented
to the right. The next step is the parent of that
line. If two lines are indented equally, then the
top line is normally executed first.”

—OQOracle documentation

The real scoop

An Oracle EXPLAIN PLAN is a “tree” structure
corresponding to a relational algebra expression.
It is printed in “pre-order” sequence (visit the
root of the tree, then traverse each subtree—if
any—in pre-order sequence) but should be read
in “post-order” sequence (first traverse each
subtree—if any—in post-order sequence, then
only visit the root of the tree).

@ Difference
C o D
=

Frojectian

all_emplayees_1 ineligible_employees

employees nanexistent_pairings

selected pairings camplete_job_histary

all_ emplayees 2

employees employees @

selected jobs

current_job titles previous job titles

0	SELECT STATEMENT	
1	MINUS	
2	SORT UNIQUE NOSORT	
3	INDEX FULL SCAN	EMP_EMP_ID PK
4	SORT UNIQUE	
5	VIEW	
6	MINUS	
7	SORT UNIQUE	
8	MERGE JOIN CARTESIAN	
9	INDEX RANGE SCAN	J0B_ID PK
10	BUFFER SORT	
11	INDEX FAST FULL SCAN	EMP_EMP_ID PK
12	SORT UNIQUE	
13	UNION-ALL	
14	VIEW	index$ join$ 006
15	HASH JOIN	
16	INDEX FAST FULL SCAN	JHIST EMP_ID ST DATE PK
17	INDEX FAST FULL SCAN	JHIST JOB_IX
18	VIEW	index$ join$ 007
19	HASH JOIN	
20	INDEX FAST FULL SCAN	EMP_EMP ID PK
21	INDEX FAST FULL SCAN	EMP_JOB_IX

Id 0
SELECT STATEMEMT

Il 4
SORT UNIQUE MOSORT SORT UNIGUE

Id 3

o5

INDEX FULL SCAN

EMP_EMP_ID_PK VIBA
A

Il 7 ld12
SORT UNIGUE SORT UMIGUE

I 13

Ied
MERGE JOIN CARTESIAN LIMION-2LL

-

K]
INDEX RANGE SCAN
JOB_ID_PK

Id 10 Il 14
BUFFER SORT WIEW

Id 11
15 419

INDEX FAST FULL SCAN
EMP_EMP_ID_Fk(HASH JoIn HASH Jom

1d 20
INDEX FAST FULL SCAN
EMP_EMP_ID_PH

1417
INDEX FAST FULL SCAN
JHIST_JOB_%

1d 16
INDEX FAST FULL SCAN
JHIET_EMP_D_ST_DATE_PK

d 21
IMDEX FAST FULL SCAN
EMP_JOB_I¥

Id 9 (Sequence #3)
INDE¥ RANGE SCAN
JOB_ID_PK

SORT UNIGUE MOSORT

Id 0 (Sequence #2220
SELECT STATEMENT

Id 1 (Sequence #21)
MINUS

Id 2 (Sequence #2)

I 3 (Sequence #1)
INDEX FULL SCAN
EMP_EMP_ID_PK.

Id 7 (Sequence #7)
SORT LMIGLE

Id 8 (Sequence #6)
MERGE JOIN CARTESIAN

Id 10 (Seqguence #5)
BUFFER SORT

Ich 11 (Sequence #4)
INDEX FAST FULL SCAN
EMP_EMP_ID'_PK

Id 16 (Sequence #3)
INDEX FAST FULL SCAN
JHIST_EMP_ID_ST_DATE_PK

Id & [Secqu

Id 6 [Sequence #15)
MINUS

SORT UNIGLUE

ence #20)

1d 5 (Sequence #19)
WVIEW

I 12 (Sequence #17)
SORT UNIGUE

Id 13 (Seqguence #16)
UMIORN-ALL

Id 14 (Seqguence #1171
WIEW

Id 15 (Sequence #1100
HASH JOIN

I 17 (Seguence #3)

JHET_JOB_X

INDEX FAST FULL SCAN

Id 18 (Sequence #15)
WIEW

1d 19 (Sequence #14)
HASH JOIR

Idd 20 (Seqguence #12)
IMDEX FAST FLULL SCAN
EMP_EMP_ID_PK

I 21 (Sequence #13)
INDEX FAST FULL SCAN
EMP_JCB_IX

SELECT
e.first_name, e.last_name, e.salary,
.job_title,
.department_name,
.city, l.state_province,
.country name,
¥.region_name

N = Q .

FROM employees e, jobs j, departments d, locations 1, countries c, regions r
WHERE

e.department_id = 90

AND j.job_id = e.job_id

AND d.department_id = e.department_id
AND 1.location_id = d.location_id

AND c.country id = l.country id

AND r.region_id = c.region_id;

Hints for Deep Left Tree

LEADING (e j d 1 c 1)
USE _NL(j)
USE_NL(d)
USE NL(1)
USE NL(c)
USE NL(1)

Deep Left Tree

Id	Operation	Name
0	SELECT STATEMENT	
1	NESTED LOOPS	
2	NESTED LOOPS	
3	NESTED LOOPS	
4	NESTED LOOPS	
5	NESTED LOOPS	
6	NESTED LOOPS	
7	TABLE ACCESS BY INDEX ROWID	EMPLOYEES
* 8	INDEX RANGE SCAN	EMP_DEPARTMENT IX
9	TABLE ACCESS BY INDEX ROWID	JOBS
* 10	INDEX UNIQUE SCAN	JOB_ID PK
11	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS
* 12	INDEX UNIQUE SCAN	DEPT_ID PK
13	TABLE ACCESS BY INDEX ROWID	LOCATIONS
* 14	INDEX UNIQUE SCAN	LOC_ID PK
* 15	INDEX UNIQUE SCAN	COUNTRY C_ID PK
* 16	INDEX UNIQUE SCAN	REG_ID PK
17	TABLE ACCESS BY INDEX ROWID	REGIONS

16 7 (Secuence #2)
TABLE ACCESS BY INDEX RCWID BATCHED
EMPLOYEES

Id & (Sequence #1)
IMNDEX RANGE SCAM
EtP_DEPARTMENT _Ix

Id B (Sequence #5)
MESTED LOCPS

It 9 (Seruence #4)
TAELE ACCESS BY INDEX ROWID
JOBS

Ied 10 (Sequence #3)
IMDEX, UMIGLE SCAN
JOB_ID_PK

Id 5 (Sequence #3)
MESTED LOOPS

Id 11 (Secquence #7)
TABLE ACCESS BY INDEX ROWAD
DEPARTMENTS

1612 (Sequence #5)
INDEX UNIGUE SCAR
DEPT_ID_PK

Id 4 (Sequence #11)
MESTED LOCPS

Idd O (Sequence #18)
SGL Id Todojkargfhzd
Plan Hash “alue 1703224338

I 1 (Sequence #17)
MESTED LOCPS

Id 17 (Secuence #16)
TABLE ACCESS BY INDEX RCWID
REGIONS

Id 2 (Sequence #15)
MESTED LOOPS

Id 16 (Sequence #14)
INDEX UMIGLE SCAN
REG_ID_PK

Id 3 (Sequence #13)
NESTED LOOPS

Id 15 (Secquence #12)
IMDEX UMIGILUE SCAN
COUNTRY_C_ID_PK

Id 13 (Secquence #1107
TABLE ACCESS BY INDEX RCWID
LOCATIONS

Id 14 (Seguence #9)
IMDEX UMIQUE SCAR
LOC_ID_PK

Hints for Deep Right Tree

LEADING (e j d 1 c 1)
USE _HASH(j) SWAP JOIN INPUTS(7j)

USE_HASH(d) SWAP JOIN INPUTS(d)

USE HASH(1) SWAP JOIN INPUTS(1)

USE HASH(c) SWAP JOIN INPUTS(c)

USE HASH(r) SWAP JOIN INPUTS(r)

Deep Right Tree

Id Operation Name

0 | SELECT STATEMENT
* 1 | HASH JOIN

2 TABLE ACCESS FULL REGIONS
* 3 HASH JOIN

4 INDEX FAST FULL SCAN COUNTRY_C_ID PK
* 5	HASH JOIN	
6	TABLE ACCESS FULL	LOCATIONS
1* 7	HASH JOIN	
8	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS
1* 9	INDEX UNIQUE SCAN	DEPT_ID PK
* 10	HASH JOIN	
11	TABLE ACCESS FULL	JOBS
12	TABLE ACCESS BY INDEX ROWID	EMPLOYEES
* 13	INDEX RANGE SCAN	EMP_DEPARTMENT IX

Id 0 (Sequence #14)
SEL I ghtfojSyglcs2
Plan Hash Yalue 4155492133

Id 1 (Sequence #13)
HASH Joir

Id 2 (Sequence #1)
TABLE 8CCESS FULL
REGIOMS

Id 4 (Sequence #2)
INDEX FULL SCAM
COUMTRY _C_ID_PK

Ied 3 (Sequence #12)
HASH JOIM

Id & (Sequence #3)
TABLE &CCESS FULL
LOCATIONS

Id 5 (Sequence #1111
HASH JOIM

Id & (Secquence #3)
TABLE ACCESS BY INDEX, RCWID
DEPARTMENTS

Id 9 (Sequence #4)
IMDEX UMIGUE SCAM
DEPT_ID_PK

Id 7 (Sequence #10)
HAaSH Jioin

Id 10 (Sequence #3971
HASH JOIM

I 11 (Sequence #8)
TABLE &CCESS FULL
JOBS

Id 12 (Sequence #5)
TABLE &CCESS BY INDEX ROWAD BATCHED
EMPLOYEES

Id 13 (Sequence #7)
INDEX RAMGE SCAN
EMP_DEPARTMEMT _I¥

/)

\J

\J

SE
SE
SE
SE
SE

AS
AS
AS
AS
AS

Hints for Zig-Zag Tree

LEADING (e j d 1 c 1)

(3) SWAP JOIN INPUTS(J)
(d) NO SWAP JOIN INPUTS(d)
(1) SWAP JOIN INPUTS(1)
(c) NO SWAP JOIN INPUTS(c)
(r) SWAP JOIN INPUTS(r)

EXPLAIN PLAN for Zig-Zag Tree

Id	Operation	Name
0	SELECT STATEMENT	
* 1	HASH JOIN	
2	TABLE ACCESS FULL	REGIONS
* 3	HASH JOIN	
1* 4	HASH JOIN	
5	TABLE ACCESS FULL	LOCATIONS
* 6	HASH JOIN	
1* 7	HASH JOIN	
8	TABLE ACCESS FULL	J0BS
9	TABLE ACCESS BY INDEX ROWID	EMPLOYEES
* 10	INDEX RANGE SCAN	EMP_DEPARTMENT IX
11	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS
* 12	INDEX UNIQUE SCAN	DEPT_ID PK
13	INDEX FAST FULL SCAN	COUNTRY C_ID PK

Id 0 (Seqguence #14)
SGL Id 81 jymzypm3xcy
Plan Hazh %alue 3694551497

Id 1 (Sequence #13)
HASH JOIM

Id 2 (Sequence #1]
TABLE ACCESS FULL
REGIONS

Id 3 (Sequence #12)
HASH JOIM

I 13 (Sequence #1131
IMDEX FIULL SCAN
COUNTRY _C_ID_PK

Id 4 (Sequence #10)
HASH JOIM

Id 5 (Sequence 2]
TABLE ACCESS FULL
LOCATIONS

Id B (Sequence #9)
HASH JOIM

Id 11 (Sequence #3)
TABLE ACCESS BY INDEX ROWID
DEPARTMENTS

Id ¥ (Sequence #E6)
HASH JOIN

Id & (Sequence #3)
TABLE ACCESS FULL
JOBS

Id 9 (Sequence #3)
TABLE ACCESS BY INDEX RCWAD BATCHED
EMPLOYEES

Id 12 (Sequence #7)
INDEX UNIGILIE SCAR
DEPT_ID_Pk

Id 10 (Sequence #4)
INDEX RANGE SCAN
EMP_DEPARTMENT _IX

Bushy Tree (Inline view with NO_MERGE)

SELECT /*+ LEADING(e j d) USE_NL(j) USE_NL(d) */
e.first name, e.last name, e.salary,
j.job_title,
d.department_name, d.city, d.state province, d.country name, d.region name
FROM
employees e,
jobs j,
(
SELECT /*+ NO_MERGE */
d.department_id, d.department_name,
l.city, l.state_province,
c.country name,

Y.region_name
FROM departments d, locations 1, countries c, regions r

WHERE 1.location_id = d.location_id
AND c.country id = l.country id
AND r.region id = c.region_id
) d
WHERE e.department_id = 90
AND j.job id = e.job_id
AND d.department_id = e.department_id;

Id 3 (Sequence g2

TABLE ACCESS BY INDEX ROWAD BATCHED

EMPLOYEES

Id 4 (Seguence #1)

INDEX RAMGE SCAN
EnP_DEPARTHMEMT _IX

Id 11 (Sequence #7)
TABLE ACCESS BY INDEX RCWID
DEPARTMENMTS

Id 12 (Sequence #E6)
INDEX UMIGUE SCAN
DERT_ID_PK

Id 2 (Sequence #5)
MESTED LOOPS

Id 5 (Sequence #47
TABLE ACCESS BY INDEX ROWID
JOoBS

Id 6 (Sequence &3]
INDEX UMIQIUE SCAM
JOB_ID_PK

Id 10 [Sequence #100
MESTED LOOPS

Id 0 (Seguence #13)
SGL Id 2j=n944jcfIss
Plan Hazh %alue 1049656196

Id 1 (Sequence #17)
MESTED LOOPS

Id 13 (Sequence #9)
TABLE ACCESS BY INDEX RCWAD
LOCATIONS

Id 14 (Sequence #5)
INCEX UMIQUE SCAN
LOC_|D_PH,

Id 7 (Sequence #16)
WIEWY

Id 5 (Sequence #13)
MESTED LOOPS

Id 9 (Sequence #12)
MWESTED LOGCPS

Id 15 (Seqguence #11)
INDEX UMIGIE SCAN
COUNTRY _C_ID_PK

Id 16 (Sequence #14)
TABLE ACCESS BY INDEX ROWAD
REGICNS

Id 17 (Seqguence #13)
INDEX UMIGILE SCAN
REG_ID_PH,

PN SN

Total Number of Trees

NG FACTORIAL(N) Bl CATALAN(N-1) @ Total trees @
2 1 2

2

3 6 2 12

4 24 5 120

5 120 14 1,680

6 720 42 30,240

7 5,040 132 665,280

3 40,320 429 17,297,280

9 362,880 1,430 518,918,400
10 3,628,300 4,862 17,643,225,600

Thank you for listening!

iggy fernandez@hotmail.com
The Hitchhiker’s Guide to the
EXPLAIN PLAN
NoCOUG Journal Archive

http://www.toadworld.com/members/iggy_5f00_fernandez/blogs/default.aspx
http://www.toadworld.com/members/iggy_5f00_fernandez/blogs/default.aspx
nocoug.wordpress.com/nocoug-journal-archive/

