
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

New PL/SQL Capabilities
 in
Oracle Database 12c

Bryn Llewellyn,
Distinguished Product Manager,
Database Server Technologies Division
Oracle HQ

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Agenda

§  Improved client <> PL/SQL <> SQL interoperability

§  A new security capability

§  Improved programmer usability

§  Miscellaneous

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

Performance improvement for
PL/SQL functions called from SQL

select PK,
 Print(n1) "n1",
 Print(n2) "n2",
 Print(n3) "n3"
from t

 1 1 K 1 G 566 G
 2 1 K 157 M 416 G
 3 2 K 1 G 971 G
 4 578 byte 1 G 1 T
 5 2 K 1 G 220 G
 6 1 K 2 G 1 T
 7 48 byte 1 G 2 T
 8 992 byte 42 M 3 T
 9 794 byte 2 G 1 T
10 2 K 302 M 672 G

§ Example: pretty-print an integer

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

The “algorithm”

function Print(n in integer) return varchar2 authid Definer is
 K constant number not null := 1024;
 M constant number not null := K*K;
 G constant number not null := M*K;
 T constant number not null := G*K;
begin
 return
 case
 when n <= K-1 then To_Char(n, '999999')||'byte'
 when n/K <= K-1 then To_Char(n/K, '999999')||'K'
 when n/M <= K-1 then To_Char(n/M, '999999')||'M'
 when n/G <= K-1 then To_Char(n/G, '999999')||'G'
 else To_Char(n/T, '999999')||'T'
 end;
end Print;

§ Pretty-print an integer as a multiple of an
appropriate power of 1024: plain, K, M, B, or T

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Try it in pure SQL!
select

PK,
 case
 when n1 <= 1023 then To_Char(n1, '999999')||' byte'
 when n1/1024 <= 1023 then To_Char(n1/1024, '999999')||' K'
 when n1/1048576 <= 1023 then To_Char(n1/1048576, '999999')||' M'
 when n1/1073741824 <= 1023 then To_Char(n1/1073741824, '999999')||' G'
 else To_Char(n1/1099511627776, '999999')||' T'
 end

"n1",
 case
 when n2 <= 1023 then To_Char(n2, '999999')||' byte'
 when n2/1024 <= 1023 then To_Char(n2/1024, '999999')||' K'
 when n2/1048576 <= 1023 then To_Char(n2/1048576, '999999')||' M'
 when n2/1073741824 <= 1023 then To_Char(n2/1073741824, '999999')||' G'
 else To_Char(n2/1099511627776, '999999')||' T'
 end

"n2",
 case
 when n3 <= 1023 then To_Char(n3, '999999')||' byte'
 when n3/1024 <= 1023 then To_Char(n3/1024, '999999')||' K'
 when n3/1048576 <= 1023 then To_Char(n3/1048576, '999999')||' M'
 when n3/1073741824 <= 1023 then To_Char(n3/1073741824, '999999')||' G'
 else To_Char(n3/1099511627776, '999999')||' T'
 end

"n3"
from t

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

Get the performance of SQL with the
clarity and reusability of PL/SQL
function Print(n in integer) return varchar2 authid Definer is

 K constant number not null := 1024;
 M constant number not null := K*K;
 G constant number not null := M*K;
 T constant number not null := G*K;
begin
 return
 case
 when n <= K-1 then To_Char(n, '999999')||'byte'
 when n/K <= K-1 then To_Char(n/K, '999999')||'K'
 when n/M <= K-1 then To_Char(n/M, '999999')||'M'
 when n/G <= K-1 then To_Char(n/G, '999999')||'G'
 else To_Char(n/T, '999999')||'T'
 end;
end Print;

 pragma UDF;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

Declare the PL/SQL function
in the subquery’s with clause

 function Print(n in integer) return varchar2 is
 K constant number not null := 1024;
 M constant number not null := K*K;
 G constant number not null := M*K;
 T constant number not null := G*K;
 begin
 return
 case
 when n <= K-1 then To_Char(n, '999999')||' byte'
 when n/K <= K-1 then To_Char(n/K, '999999')||' K'
 when n/M <= K-1 then To_Char(n/M, '999999')||' M'
 when n/G <= K-1 then To_Char(n/G, '999999')||' G'
 else To_Char(n/T, '999999')||' T'
 end;
 end Print;

select PK,
 Print(n1) "n1",
 Print(n2) "n2",
 Print(n3) "n3"
from t

with

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

Performance comparison

§ Pure SQL
is fastest

§ Schema-level function with pragma UDF
is close

§ Function in the with clause
is similar

§ Pre-12.1 ordinary schema-level function
is very much the slowest

1.0 – the baseline

3.8x

3.9x

5.0x

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

Binding values of PL/SQL-only datatypes
into SQL statements

§ Before 12.1, you could bind only values of SQL
datatypes

§  In 12.1, you can bind PL/SQL index-by-pls_integer
tables (of records) and booleans

§ from client-side programs – OCI or both flavors
of JDBC – and from PL/SQL

§ to anonymous blocks, statements using
functions, or statements using the table operator

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

Binding a PL/SQL index-by table to SQL
§ Before 12.1, you could invoke a function with a

collection actual, or select from a collection, but

•  The type had to be defined at schema-level

•  Therefore it had to be a nested table or a varray

•  A non-scalar payload had to be an ADT

§ New in 12.1
•  The type can be defined in a package spec – can be

 index by pls_integer table

•  The payload can be a record – but the fields
 must still be SQL datatypes

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

The collection

package Pkg authid Definer is
 type r is record(n integer, v varchar2(10));
 type t is table of r index by pls_integer;
 x t;
end Pkg;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Example:
binding an IBPI to a PL/SQL function in SQL
function f(x in Pkg.t) return varchar2 authid Definer is
 r varchar2(80);
begin
 for j in 1..x.Count() loop
 r := r||...;
 end loop;
 return r;
end f;

procedure Bind_IBPI_To_Fn_In_SQL authid Definer is
 v varchar2(80);
begin
 select f(Pkg.x) into v from Dual;
 ...
 execute immediate 'select f(:b) from Dual' into v
 using Pkg.x;
end Bind_IBPI_To_Fn_In_SQL;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Example:
binding to the operand of the table operator

procedure Select_From_IBPI authid Definer is
 y Pkg.t;
begin
 for j in (select n, v from table(Pkg.x)) loop
 ...
 end loop;

 execute immediate 'select n, v from table(:b)'
 bulk collect into y
 using Pkg.x;
 for j in 1..y.Count() loop
 ...
 end loop;
end Select_From_IBPI;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

Example:
binding an IBPI to an anonymous block
procedure p1(x in Pkg.t) authid Definer is
begin
 for j in 1..x.Count() loop
 ...;
 end loop;
end p1;

procedure Bind_IBPI_To_Anon_Block authid Definer is
begin
 execute immediate 'begin p1(:b); end;' using Pkg.x;
end Bind_IBPI_To_Anon_Block;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

Example:
binding a boolean to an anonymous block
procedure p2(b in boolean) authid Definer is
begin
 DBMS_Output.Put_Line(case b
 when true then 'True'
 when false then 'False'
 else 'Null'
 end);
end p2;

procedure Bind_Boolean_To_Anon_Block authid Definer is
 Nil constant boolean := null; -- workaround for existing bug
begin
 execute immediate 'begin p2(:b); end;' using true;
 execute immediate 'begin p2(:b); end;' using false;
 execute immediate 'begin p2(:b); end;' using Nil;
end Bind_Boolean_To_Anon_Block;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

Binding PL/SQL types in JDBC

§ Before 12.1

•  Generate a schema level object type to mirror the
structure of the non-SQL package type

•  Populate and bind the object into a custom PL/SQL
wrapper around the desired PL/SQL subprogram

•  Convert the object to the package type in the wrapper
and call the PL/SQL subprogram with the package type

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

Binding PL/SQL types in JDBC

§ New in 12.1

•  PL/SQL package types supported as binds in JDBC

•  Can now execute PL/SQL subprograms with non-SQL
types

•  Supported types include records, index-by tables,
nested tables and varrays

•  Table%rowtype, view%rowtype and package defined
cursor%rowtype also supported. They’re technically
record types

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

Example 1: Bind a single record from Java
into a PL/SQL procedure, modify it,
and bind it back out to Java

package Emp_Info is
 type employee is record(First_Name Employees.First_Name%type,
 Last_Name Employees.Last_Name%type,
 Employee_Id Employees.Employee_Id%type,
 Is_CEO boolean);

 procedure Get_Emp_Name(Emp_p in out Employee);
end;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

Example 1:
§ Use the EmpinfoEmployee class, generated by

JPub, to implement the Employee formal parameter
{ …
 EmpinfoEmployee Employee = new EmpinfoEmployee();

 Employee.setEmployeeId(new java.math.BigDecimal(100)); // Use Employee ID 100

 // Call Get_Emp_Name() with the Employee object

 OracleCallableStatement cstmt =
 (OracleCallableStatement)conn.prepareCall("call EmpInfo.Get_Emp_Name(?)");
 cstmt.setObject(1, Employee, OracleTypes.STRUCT);

 // Use "PACKAGE.TYPE NAME" as the type name

 cstmt.registerOutParameter(1, OracleTypes.STRUCT, "EMPINFO.EMPLOYEE");
 cstmt.execute();

 // Get and print the contents of the Employee object
 EmpinfoEmployee oraData =
 (EmpinfoEmployee)cstmt.getORAData(1, EmpinfoEmployee.getORADataFactory());
 System.out.println("Employee: " + oraData.getFirstName() + " " + oraData.getLastName());
 System.out.println("Is the CEO? " + oraData.getIsceo());
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

Example 2: populate a collection of table%rowtype
using a bulk collect statement, and pass the collection
as an out parameter back to the caller

package EmpRow is
 type Table_of_Emp is table of Employees%Rowtype;
 procedure GetEmps(Out_Rows out Table_of_Emp);
end;

package Body EmpRow is
 procedure GetEmps(Out_Rows out Table_of_Emp) is
 begin
 select *
 bulk collect into Out_Rows
 from Employees;
 end;
end;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Example 2:
{ …
 // Call GetEmps() to get the ARRAY of table row data objects
 CallableStatement cstmt = conn.prepareCall("call EmpRow.GetEmps(?)");

 // Use "PACKAGE.COLLECTION NAME" as the type name

 cstmt.registerOutParameter(1, OracleTypes.ARRAY, "EMPROW.TABLE_OF_EMP");
 cstmt.execute();

 // Print the Employee Table rows
 Array a = cstmt.getArray(1);
 String s = Debug.printArray ((ARRAY)a, "",
 ((ARRAY)a).getSQLTypeName () +"(", conn);
 System.out.println(s);
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Binding PL/SQL-only datatypes into SQL statements:
restrictions

§ The PL/SQL-only datatypes must be declared in a
package spec

§ The record fields of the IBPI must be SQL datatypes

§ Only IBPI, not index-by-varchar2

§ Cannot bind into insert, update, delete, or merge

§ Cannot bind using DBMS_Sql

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Agenda

§  Improved client <> PL/SQL <> SQL interoperability

§  A new security capability

§  Improved programmer usability

§  Miscellaneous

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Granting a role to a PL/SQL unit
§ Consider this best practice

•  Give access to an application’s data only via PL/SQL
subprograms

•  Reinforce this by having end-user sessions authorize
as a different database owner than the one that owns the
application’s artifacts

•  Arrange this by using definer’s rights units in a single schema or
a couple of schemas. Then grant Execute on these to end-users
– but don’t grant privileges on the tables to end-users

§ This means that each unit can access very many tables
because the owner of the units can

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

Granting a role to a PL/SQL unit
§ 12.1 lets us have a fine-grained scheme where each unit

with the same owner can have different privileges on the
owner’s tables

•  The end-user is low-privileged, just as in the old scheme

•  The units are invoker’s rights, so “as is” would not allow end-
users to access the data

•  The privilege for each unit is elevated for exactly and only that
unit’s purpose by granting a role that has the appropriate
privileges to the unit. Such a role cannot be disabled.

•  The unit’s owner must already have that same role (but it need
not be enabled)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Granting a role to a PL/SQL unit
§ This scenario lets us illustrate the idea

•  There are two users App and Client

•  There are two tables App.t1 and App.t2

•  There are two IR procedures App.Show_t1 and App.Show_t2 to
run select statements against the tables

•  Client has Execute on App.Show_t1 and App.Show_t2

•  App creates two roles r_Show_t1 and r_Show_t2

•  App grants Select on App.t1 to r_Show_t1 – and similar for ~2

•  App grants r_Show_t1 to App.Show_t1 – and similar for ~2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Granting a role to a PL/SQL unit
create procedure Show_t1 authid Current_User is
begin
 for j in (select Fact from App.t1 order by 1) loop -- Notice the schema-qualification
 ...
 end loop;
end Show_t1;
/
grant Execute on App.Show_t1 to Client
/
-- this has the side-effect of granting the role to App with Admin option
-- other non-schema object types like directories and editions behave the same
create role r_Show_t1
/
grant select on t1 to r_Show_t1
/
grant r_Show_t1 to procedure Show_t1
/

select Object_Name, Object_Type, Role
from User_Code_Role_Privs
/

.......
SHOW_T1 PROCEDURE R_SHOW_T1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

Granting a role to a PL/SQL unit
§ When Client invokes App.Show_t1, then no matter what

careless mistakes the programmer of the procedure might
later make, its power is limited to just what the role confers.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

Granting a role to a PL/SQL unit
§ This new feature has no effect on static references

at PL/SQL compilation time

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

Agenda

§  Improved client <> PL/SQL <> SQL interoperability

§  A new security capability

§  Improved programmer usability

§  Miscellaneous

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Improved call stack introspection

§ Before 12.1, you used three functions in the
DBMS_Utility package

•  Format_Call_Stack()

•  Format_Error_Stack()

•  Format_Error_Backtrace()

§ New in 12.1

•  The package UTL_Call_Stack solves the
same problem properly

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Code to be introspected
package body Pkg is
 procedure p is
 procedure q is
 procedure r is
 procedure p is
 begin
 Print_Call_Stack();
 end p;
 begin
 p();
 end r;
 begin
 r();
 end q;
 begin
 q();
 end p;
end Pkg;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

Pre 12.1 Print_Call_Stack()
procedure Print_Call_Stack authid Definer is

begin
 DBMS_Output.Put_Line(DBMS_Utility.Format_Call_Stack());
end;

----- PL/SQL Call Stack -----
 object line object
 handle number name
0x631f6e88 12 procedure USR.PRINT_CALL_STACK
0x68587700 7 package body USR.PKG
0x68587700 10 package body USR.PKG
0x68587700 13 package body USR.PKG
0x68587700 16 package body USR.PKG
0x69253ca8 1 anonymous block

§ See bug 2769809 filed by BLLEWELL Jan 2003

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 36

12.1 Print_Call_Stack()
procedure Print_Call_Stack authid Definer is
 Depth pls_integer := UTL_Call_Stack.Dynamic_Depth();
begin
 for j in reverse 2..Depth loop
 DBMS_Output.Put_Line(
 (j - 1)||
 To_Char(UTL_Call_Stack.Unit_Line(j), '99')||
 UTL_Call_Stack.Concatenate_Subprogram(UTL_Call_Stack.Subprogram(j)));
 end loop;
end;

5 1 __anonymous_block
4 16 PKG.P
3 13 PKG.P.Q
2 10 PKG.P.Q.R
1 7 PKG.P.Q.R.P

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 37

Improved call stack introspection

§ Symmetrical subprograms for error stack and
backtrace

§ Plus

•  Owner(Depth)

•  Current_Edition(Depth)

•  Lexical_Depth(Depth)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 38

Whitelist

§ You can declare that a particular unit may be
referenced only by other listed units

§ You cannot list the anonymous block and so a
whitelisted unit cannot be called dynamically and
cannot be invoked from outside of the database

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 39

accessible by clause
package Helper authid Definer accessible by (Good_Unit, Bad_Unit)
is
 procedure p;
end Helper;

package body Good_Unit is
 procedure p is
 begin
 Helper.p();
 ...
 end p;
end Good_Guy;

package body Bad_Unit is
 procedure p is
 begin
 Helper.p();
 ...
 end p;
end Bad_Guy;

PLS-00904: insufficient privilege to access object HELPER

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 40

Agenda

§  Improved client <> PL/SQL <> SQL interoperability

§  A new security capability

§  Improved programmer usability

§  Miscellaneous

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 41

Other enhancements brought by 12.1
§ You can now result-cache an invoker’s rights function

(the current user becomes part of the cache lookup key)

§ Safe callouts (implemented via extproc) are faster
(motivated by Oracle R Enterprise – which saw a 20x
speedup)

§ Edition-based redefinition can now be adopted without
needing to change how objects are disposed among
schemas – so no reason at all for you not to use EBR for
every patch that changes only PL/SQL, views, or synonyms

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 42

Other enhancements brought by 12.1
§ pga_aggregate_limit – exceeding, e.g. by allowing a

collection to become too big, it causes a fatal error

§ DBMS_Scheduler has new Job_Types:

§ Sql_Script

§ Backup_Script

§ Controlled by a new use of a credential

§ encapsulates database username, password,
and role – e.g. AS SYSDBA, AS SYSBACKUP

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 43

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 44

