

Scaling ETL with Hadoop

Gwen Shapira @gwenshap gshapira@cloudera.com

Should DBAs learn Hadoop?

- Hadoop projects are more visible
- 48% of Hadoop clusters are owned by DWH team
- Big Data == Business pays attention to data
- New skills from coding to cluster administration
- Interesting projects

No, you don't need to learn Java

Beginner Projects

- Take a class
- Download a VM
- Install 5 node Hadoop cluster in AWS
- Load data:
 - Complete works of Shakespeare
 - Movielens database
- Find the 10 most common words in Shakespeare
- Find the 10 most recommended movies
- Run TPC-H
- Cloudera Data Science Challenge
- Actual use-case:
 XML ingestion, ETL process, DWH history

Books

A Guide for Developers and Administrators

O'REILLY*

Eric Sammer

More Books

Data Warehouse and Query Language for Hadoop

Programming

O'REILLY®

Edward Capriolo, Dean Wampler & Jason Rutherglen Unlocking Hadoop for Your Relational Database

O'REILLY°

Kathleen Ting & Jarek Jarcec Cecho

ETL is...

- Extracting data from outside sources
- Transforming it to fit operational needs
- Loading it into the end target
- (Wikipedia: http://en.wikipedia.org/wiki/Extract,_transform,_load)

Hadoop Is...

- HDFS Massive, redundant data storage
- Map-Reduce Batch oriented data processing at scale

The Ecosystem

- High level languages and abstractions
- File, relational and streaming data integration
- Process Orchestration and Scheduling
- Libraries for data wrangling
- Low latency query language

Data Has Changed in the Last 30 Years

Volume, Variety, Velocity Cause Problems

Got unstructured data?

Traditional ETL:

- Text
- CSV
- XLS
- XML

Hadoop:

- HTML
- XML, RSS
- JSON
- Apache Logs
- Avro, ProtoBuffs, ORC, Parquet
- Compression
- Office, OpenDocument, iWorks
- PDF, Epup, RTF
- Midi, MP3
- JPEG, Tiff
- Java Classes
- Mbox, RFC822
- Autocad
- TrueType Parser
- HFD / NetCDF

Replace ETL Clusters

- Cheaper
- MUCH more flexible
- Faster?
- More scalable?
- You can have both

Data Warehouse Offloading

- Reduce storage costs
- Release CPU capacity
- Scale
- on the cheap
- Better tools

What I often see

ETL Cluster

ETL Cluster with some Hadoop

Moving your transformations from the DWH to Hadoop?

Lets do it right.

We'll Discuss:

	Technologies	Speed & Scale	Tips & Tricks
Extract			
Transform			
Load			
Workflow			

Let me count the ways

- 1. From Databases: **Sqoop**
- 2. Log Data: Flume + CDK
- 3. Copy data to HDFS

Sqoop – The Balancing Act

Scale Sqoop Slowly

- Balance between:
 - Maximizing network utilization
 - Minimizing database impact
- Start with smallish table (1-10G)
- 1 mapper, 2 mappers, 4 mappers
- Where's the bottleneck?
- vmtat, iostat, mpstat, netstat, iptraf

When Loading Files:

Same principles apply:

- Parallel Copy
- Add Parallelism
- Find Bottlenecks
- Resolve them
- Avoid Self-DDOS

Scaling Sqoop

- Split column match index or partitions
- Compression
- Direct drivers
- Incremental import

OraOOP

- Connection Manager by Quest/Cloudera
- Free! Open Source!
- https://github.com/QuestSoftwareTCD/OracleSQOOPconnector
- Lots of optimizations:
 - Block-wise or Partition-wise
 - Avoids full table scans where possible
 - Disable parallel full-table scans
 - No Logging, parallel direct path writes
- Limitations:
 - Does not support "incremental" jobs

Ingest Tips

- Use file system tricks to ensure consistency
- Directory structure:

```
/intent
/category
/application (optional)
/dataset
/partitions
/files
```

Examples:

```
/data/fraud/txs/2011-01-01/20110101-00.avro
/group/research/model-17/training-tx/part-00000.txt
/user/gshapira/scratch/surge/
```


Ingest Tips

- External tables in Hive
- Keep raw data
- Trigger workflows on file arrival

Endless Possibilites

- Map Reduce

 (in any language)
- Hive (i.e. SQL)
- Pig
- R
- Shell scripts
- · Plain old Java

Prototype

Parallelism –Unit of Work

- · Amdahl's Law
- Small Units
- That stay small

- One user?
- One day?
- Ten square meter?

Partitioning

- Hive
- Directory Structure
- Pre-filter
- Adds metadata

Tune Data Structures

- Joins are expensive
- Disk space is not
- De-normalize
- Store same data in multiple formats

Remember the Basics

- X reduce output is 3X disk IO and 2X network IO
- Less jobs = Less reduces = Less IO = Faster and Scalier
- Know your network and disk throughput
- Have rough idea of ops-per-second

Instrumentation

- Optimize the right things
- Right jobs
- Right hardware
- 90% of the time –
 its not the hardware

Fault and Rebuild

- Tier 0 raw data
- Tier 1 cleaned data
- Tier 2 transformations, lookups and denormalization
- Tier 3 Aggregations

Few words about Real Time ETL

- What does it even mean?
- Fast reporting?
- No delay from OLTP to DWH?
- Micro-batches make more sense:
 - Aggregation
 - Economy of scale
- Late data happens
- Near-line solutions

Map-Reduce

- Assembly language of data processing
- Simple things are hard, hard things are possible
- Use for:
 - Optimization: Do in one MR job what Hive does in 3
 - Optimization: Partition the data just right
 - GeoSpatial
 - Mahout Map/Reduce machine learning

Technologies

- Sqoop
- Fuse-DFS
- Oracle Connectors
- NoSQLs

Oracle Connectors

- SQL Connector for Hadoop
- Oracle Loader for Hadoop
- ODI with Hadoop
- OBIEE with Hadoop
- R connector for Hadoop

You don't need BDA

Oracle Loader for Hadoop

- Kinda like SQL Loader
- Data is on HDFS
- Runs as Map-Reduce job
- Partitions, sorts, converts format to Oracle Blocks
- Appended to database tables
- Or written to Data Pump files for later load

Oracle SQL Connector for HDFS

- Data is in HDFS
- Connector creates external table
- That automatically matches Hadoop data
- Control degree of parallelism

You know External Tables, right?

How not to Load

- Most Hadoop customers don't load data in bulk
- History can stay in Hadoop
- Load only aggregated data
- Or computation results recommendations, reports.
- Most queries can run in Hadoop
- BI tools often run in Hadoop

Tools

- Oozie
- Azkaban

- Pentaho Kettle
- TalenD

Kinda Open Source

Informatica

Scaling Challenges

- Keeping track of:
 - Code Components
 - Metadata
 - Integrations and Adapters
 - Reports, results, artifacts
- Scheduling and Orchestration
- Cohesive System View
- Life Cycle
- Instrumentation, Measurement and Monitoring

My Toolbox

- Hue + Oozie:
 - Scheduling + Orchestration
 - Cohesive system view
 - Process repository
 - Some metadata
 - Some instrumentation
- Cloudera Manager for monitoring

... and way too many home grown scripts

Hue + Oozie

Writing a workflow engine is the software engineering equivalent of getting involved in a land war in Asia.

— Josh Wills

