
Why NoSQL and Big Data Have Momentum

http://www.youtube.com/watch?v=fXc-QDJBXpw

http://www.youtube.com/watch?v=fXc-QDJBXpw
http://www.youtube.com/watch?v=fXc-QDJBXpw
http://www.youtube.com/watch?v=fXc-QDJBXpw

 The origins of NoSQL

 The NoSQL product landscape

 What makes Relational so sacred?

 The mistakes of the relational camp

 Learning resources

 Bonus questions
◦ Performance, scalability, and reliability without

NoSQL?

◦ What about that CAP theorem?

◦ Should I study NoSQL?

 Installation and operation of NoSQL products

The Origins of NoSQL

1. Customers should be able to view and add
items to their shopping cart even if disks
are failing, network routes are flapping, or
data centers are being destroyed by
tornados. Therefore, the service responsible
for managing shopping carts requires that it
can always write to and read from its data
store, and that its data needs to be available
across multiple data centers.

2. There are many services on Amazon’s platform
that only need primary-key access to a data
store. For many services, such as those that
provide best seller lists, shopping carts,
customer preferences, session management,
sales rank, and product catalog, the common
pattern of using a relational database would
lead to inefficiencies and limit scale and
availability. Dynamo provides a simple primary-
key only interface to meet the requirements of
these applications.

3. Since each service uses its distinct instance of
Dynamo, its initial design targets a scale of up
to hundreds of storage hosts [only].

3. Experience at Amazon has shown that data
stores that provide ACID guarantees tend to
have poor availability. … Dynamo targets
applications that operate with weaker
consistency (the “C” in ACID) if this results
in high availability.

4. Dynamo is used only by Amazon’s internal
services. Its operation environment is
assumed to be non-hostile and there are no
security related requirements such as
authentication and authorization.

1. Extreme performance

2. Extreme scalability

3. Extreme availability

 Best seller lists, shopping carts, customer
preferences, session management, sales rank,
and product catalog

 Increases overall site availability by avoiding a
single point of failure

 No distributed transactions

 employee (employee#, name, birthdate)

 jobhistory (employee#, jobdate, title)

 salaryhistory (employee#, jobdate,
salarydate, salary)

 children (employee#, childname, birthyear)

 Multi-master replication

 Eventual consistency

 Shopping carts are stored as binary objects
(i.e., blobs) identified by unique keys. No
operations span multiple data items and
there is no need for relational schema.

 “Using tables to store objects is like driving
your car home and then disassembling it to
put it in the garage. It can be assembled
again in the morning, but one eventually asks
whether this is the most efficient way to park
a car”—attributed to Esther Dyson

 Functional segmentation

 Sharding

 Asynchronous replication

 BLOBs

 No SQL

 Primary-key access

 Autocommit

 No distributed transactions

 Eventual consistency

 Oracle

 SQL

 Functional segmentation

 Sharding

 Local transactions with ACID

 No distributed transactions

 Middle-tier caching

 Middle-tier constraint checking

 Asynchronous replication for search

 “There are, of course, several possible ways in which
a system can detect inconsistencies and respond to
them. In one approach the system checks for possible
inconsistency whenever an insertion, deletion, or key
update occurs. Naturally, such checking will slow
these operations down. If an inconsistency has been
generated, details are logged internally, and if it is
not remedied within some reasonable time interval,
either the user or someone responsible for the
security and integrity of the data is notified. Another
approach is to conduct consistency checking as a
batch operation once a day or less frequently” —
Codd, E. F. “A relational model of data for large
shared data banks.” (1970).

 “Nonatomic values can be discussed within the relational
framework. Thus, some domains may have relations as
elements. These relations may, in turn, be defined on
nonsimple domains, and so on. For example, one of the
domains on which the relation employee is defined might be
salary history.”

 employee (

 employee#,

 name,

 birthdate,

 jobhistory (jobdate, title, salaryhistory (salarydate, salary)),

 children (childname, birthyear)

)

 employee' (employee#, name, birthdate)

 jobhistory' (employee#, jobdate, title)

 salaryhistory' (employee#, jobdate,
salarydate, salary)

 children' (employee#, childname, birthyear)

 Data from multiple tables stored in the same
block

 Hash clusters

 Indexed clusters

 Clustered tables can be indexed

Oracle Table Clusters—Demonstration
Refer to clusters.sql and clusters.log
Insructions available at
http://iggyfernandez.wordpress.com/2013
/07/28/no-to-sql-and-no-to-nosql/

http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/

The NoSQL Landscape

 Key-Value Stores—Dynamo, Riak, Oracle
NoSQL

 Document Stores—Mongodb

 Column Stores—Cassandra, HBase

 Graph Databases—Neo4J

 Big Data—Hadoop

{
 "_id": ObjectId("4efa8d2b7d284dad101e4bc9"),
 "Last Name": "DUMONT",
 "First Name": "Jean",
 "Date of Birth": "01-22-1963"
},
{
 "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
 "Last Name": "PELLERIN",
 "First Name": "Franck",
 "Date of Birth": "09-19-1983",
 "Address": "1 chemin des Loges",
 "City": "VERSAILLES"
}

{

 "_id":
ObjectId("4efa8d2b7d284dad101e4bc7"),

 "Last Name": "PELLERIN",

 "First Name": "Franck",

 "Date of Birth": "09-19-1983",

 "phoneNumber": [

 {

 "type": "home",

 "number": "212 555-1234"

 },

 {

 "type": "fax",

 "number": "646 555-4567",

 "verified": false

 }

],

 "Address": {

 "Street": "1 chemin des Loges",

 "City": "VERSAILLES"

 },

 "Months at Present Address": 37

}

Map Reduce

Map

(

 String key,

 String value

):

// key: document name

// value: document
contents

for each word w in value:

 EmitIntermediate(w, "1");

Reduce
(
 String key,
 Iterator values
):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(AsString(result));

 “Dirty secret of Big Data is you can not able
deploy if you not have SQL expert on staff.”—
DevOps Borat

 Pig, Hive, Tenzing, Impala

 Seven Databases in Seven Weeks by Eric
Redmond and Jim R. Wilson

 NoSQL Distilled by Pramod Sadalage and
Martin Fowler

 KVLite for Windows (single-process version of
Oracle NoSQL Database)

 Cloudera VM (Sun VirtualBox)

 nosql-database.org (your ultimate guide to
the non-relational universe)

What makes relational so
sacred?

 Future users of large data banks must be protected from having
to know how the data is organized in the machine (the internal
representation).—Codd, E. F. “A relational model of data for large
shared data banks.” (1970).

 Surely, in the choice of logical data structures that a system is to
support, there is one consideration of absolutely paramount
importance - and that is the convenience of the majority of
users. … To make formatted data bases readily accessible to
users (especially casual users) who have little or no training in
programming we must provide the simplest possible data
structures and almost natural language. … What could be a
simpler, more universally needed, and more universally
understood data structure than a table? Why not permit such
users to view all the data in a data base in a tabular way?—Codd,
E. F. “Normalized data base structure: a brief tutorial.” (1971).

 There is a large class of users who, while they
are not computer specialists, would be willing
to learn to interact with a computer in a
reasonably high-level, non-procedural query
language. Examples of such users are
accountants, engineers, architects, and urban
planners. It is for this class of users that
SEQUEL is intended.—Chamberlin, Donald,
and Raymond Boyce. “SEQUEL: A Structured
English Query Language.” (1974).

 Codd gave a seminar and a lot of us went to listen to him.
This was as I say a revelation for me because Codd had a
bunch of queries that were fairly complicated queries and
since I’d been studying CODASYL, I could imagine how
those queries would have been represented in CODASYL
by programs that were five pages long that would
navigate through this labyrinth of pointers and stuff.
Codd would sort of write them down as one-liners. These
would be queries like, “Find the employees who earn more
than their managers.” He just whacked them out and you
could sort of read them, and they weren’t complicated at
all, and I said, “Wow.” This was kind of a conversion
experience for me, that I understood what the relational
thing was about after that.—Donald Chamberlin, the
creator of the SQL language in The 1995 SQL Reunion:
People, Projects, and Politics

 The large, integrated data banks of the future will contain
many relations of various degrees in stored form. It will
not be unusual for this set of stored relations to be
redundant. Two types of redundancy are defined and
discussed. One type may be employed to improve
accessibility of certain kinds of information which happen
to be in great demand. When either type of redudnancy
exists, those responsible for control of the data bank
should know about it and have some means of detecting
any “logical” inconsistencies in the total set of stored
relations. Consistency checking might be helpful in
tracking down unauthorized (and possibly fraudulent)
changes in the data bank contents.—Codd, E. F.
“Derivability, Redundancy and Consistency of Relations
Stored in Large Data Banks.” (1969).

 A pilot may fly a certain type of aircraft only if
(1) he has flown this type of aircraft
previously or (2a) he has attended an
appropriate classroom training course and
(2b) his instructor is one of the co-pilot.

 If this is the first time the pilot is going to be
flying this type of aircraft then, prior to the
flight date, one of the co-pilots must have
led the classroom training course mandated
for this type of aircraft and the pilot must
have attended and passed the course.

CREATE ASSERTION employees_a1

AS CHECK

(

 (SELECT COUNT(*) FROM employees) >= 50

)

CREATE ASSERTION employees_departments_fk
AS CHECK
(
 NOT EXISTS
 (
 SELECT * FROM employees e
 WHERE NOT EXISTS
 (
 SELECT * FROM departments d
 WHERE d.department_id = e.department_id
)
)
)

THE RELATIONAL MODEL IS SACRED BECAUSE IT GIVES
APPLICATION SOFTWARE DEVELOPERS THE ABILITY TO

ASSERT AND ENFORCE CONSISTENCY OF DATA IN
DATABASES.

The mistakes of the relational
camp

Future users of large data banks must be
protected from having to know how the data is
organized in the machine (the internal
representation).—Codd, E. F. “A relational
model of data for large shared data banks.”
(1970).

 There is a large class of users who, while they
are not computer specialists, would be willing
to learn to interact with a computer in a
reasonably high-level, non-procedural query
language. Examples of such users are
accountants, engineers, architects, and urban
planners. It is for this class of users that
SEQUEL is intended.—Chamberlin, Donald,
and Raymond Boyce. “SEQUEL: A Structured
English Query Language.” (1974).

Normalized Set Normalized set

 employee (man#,
name, birthdate,
jobhistory (jobdate,
title, salaryhistory
(salarydate, salary)),
children (childname,
birthyear))

 employee (man#,
name, birthdate,
jobhistory, children)

 jobhistory (man#,
jobdate, title,
salaryhistory)

 salaryhistory (man#,
jobdate, salarydate,
salary)

 children (man#,
childname, birthyear)

 A relation whose domains are all simple can be
represented in storage by a two-dimensional column-
homogeneous array of the kind discussed above. Some
more complicated data structure is necessary for a relation
with one or more nonsimple domains.

 The simplicity of the array representation which becomes
feasible when all relations are cast in normal form is not
only an advantage for storage purposes but also for
communication of bulk data between systems which use
widely different representations of the data.

 The second-order predicate calculus (rather than first-
order) is needed because the domains on which relations
are defined may themselves have relations as elements.

 “Using [flat] tables to store objects is like
driving your car home and then
disassembling it to put it in the garage. It can
be assembled again in the morning, but one
eventually asks whether this is the most
efficient way to park a car.”—Dyson, Esther.
Review 1.0, September 1988.

 … each stored table should occupy one
physical file

 … data should be stored in row-major order
 … stored tables have only one storage

representation each
 … data should be stored in normalized form

only
 … a single data block only contain data from

a single table
 … data should not be stored in compact

forms

 “Clearly, the majority of users should not
have to learn either the relational calculus or
algebra in order to interact with data bases.
However, requesting data by its properties is
far more natural than devising a particular
algorithm or sequence of operations for its
retrieval. Thus, a calculus-oriented language
provides a good target language for a more
user-oriented source language.”

Relational Calculus Relational Algebra

SELECT
 first_name,
 last_name
FROM employees mgr
WHERE EXISTS (
 SELECT *
 FROM employees emp
 WHERE emp.manager_id =
mgr.employee_id
 AND emp.salary >
mgr.salary
)

SELECT DISTINCT
 mgr.first_name,
 mgr.last_name
FROM employees mgr
INNER JOIN employees
emp
ON emp.manager_id =
mgr.employee_id
WHERE emp.salary >
mgr.salary

 “Normalization is a step-by-step reversible
process of replacing a given collection of
relations by successive collections in which
the relations have a progressively simpler and
more regular structure. The objectives of
normalization are … To free the collection of
relations from undesirable insertion, update
and deletion dependencies” —Codd, E. F.
“Normalized data base structure: a brief
tutorial.” (1971).

 “I became interested in the CBO’s selectivity
calculations trying to understand why it
comes up with some of the ridiculously low
cardinality estimates (like 1 when in reality
there are 80,000+) which then lead to
disastrous access plans that take hours,
provided they finish at all, instead of minutes
or seconds.”—Wolfgang Breitling, author of
“Tuning by Cardinality Feedback”

 Codd, E. F. “Is your DBMS really relational?”
ComputerWorld, October 14, 1985.

 Codd, E. F. “Does your DBMS run by the
rules?” ComputerWorld, October 32, 1985.

 Unavailable in Oracle Database, SQL Server,
DB2, MySQL, PostgreSQL

 Limited support in Oracle Rdb
◦ The predicate in a CHECK table constraint can refer

directly to any column in the table and can refer to
columns in other tables in the database through
column select expressions in the predicate.

“We don’t use databases. We don’t use indexes.
We store all our data in compressed text files.
Each compressed text file contains one year of
data for one location. There is a separate
subdirectory for each year. We have a terabyte
of data going back to 1901 so we currently
have 113 subdirectories. The performance is
just fine, thank you.”—
http://iggyfernandez.wordpress.com/2013/01/22/w
e-dont-use-databases-we-dont-use-indexes/

http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/

We Don’t Use Databases—Demonstration

Refer to WeDontUse12c.sql and
WeDontUse12c.log

Instructions available at
http://iggyfernandez.wordpress.com/2013/01/22
/we-dont-use-databases-we-dont-use-indexes/

http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/

 Shared-nothing cluster (sharded)

 Each shard is replicated K times (“K safety”)

 For maximum speed, only one transaction
operates in a shard at a time (no locking, no
latching, no concurrency)

 Works well only for shardable schemas

 Limited subset of SQL only

 SQL procedures compiled linked into the
execution engine

 Performance, scalability, and reliability
without NoSQL?

 What about that CAP theorem?

 Should I study NoSQL?

 Can I make a career transition?

 Amazon requirements: Extreme performance,
scalability, and availability

 Amazon solution: Functional segmentation,
Sharding, Multi-master replication, BLOBs

 eBay has the same goals as Amazon but uses
Oracle and SQL for it’s e-commerce platform

 Clusters

mailto:iggy_fernandez@hotmail.com
http://iggyfernandez.wordpress.com/
mailto:iggy_fernandez@hotmail.com
http://iggyfernandez.wordpress.com/

