
2
Oracle NoSQL Database

ORACLE NOSQL DATABASE

HANDS-ON WORKSHOP

Elastic Expansion and Rebalancing

3
Oracle NoSQL Database

Oracle NoSQL Database Hands on Workshop

Lab Exercise 1 – Configure and deploy a single instance topology (1x1)

In this exercise, we are going to deploy a single instance (1 shard x 1 replica) of Oracle NoSQL database. Instead of using

KVLite for the purpose, we will run step by step commands to create a topology and deploy it from the command line

interface (CLI). Please note all the configuration steps listed bellow can be scripted as well.

Instructions:

Bring up a command prompt (terminal window) and go to your KVHOME directory

1. Open a terminal window

2. Echo KVHOME to check the directory structure where product (Oracle NoSQL Database) binaries are installed.

echo $KVHOME

3. Make sure that the parent directory that we are going to use as KVROOT doesn’t contain anything from previous

deployments.

rm –rf /u02/kvroot

4. Create a directory (as KVROOT) where storage-node running on the physical host is going to write data files as

well as config files.

mkdir -p /u02/kvroot/sn1

5. Now that we have the KVROOT directory created let’s bootstrap the storage-node by setting the capacity (i.e.

how many replication nodes it can host), ports utilized for inter as well as intera node communication.

java -jar $KVHOME/lib/kvstore.jar makebootconfig -root /u02/kvroot/sn1 -capacity 1 -harange

5010,5020 -admin 5001 -port 5000 -host localhost

Note:

� Use IP (or the hostname) address assigned to your physical (or the VM) host as the value to -host.

� The capacity=1 is used for this storage-node. This means only one replication node will be hosted on this

storage node.

� Port 5000 is used as the listening address, 5001 for the admin instance and for HA communication, port

range 5010 – 5020 is used.

4
Oracle NoSQL Database

6. Start the storage-node agent.

java -jar $KVHOME/lib/kvstore.jar start -root /u02/kvroot/sn1 &

Configure the Store

7. Next we are going to configure the database using CLI commands. In order to do that let’s open another

terminal window (xterm).

xterm &

8. To perform store configuration, you use the runadmin utility, which provides a command line interface (CLI).

java -jar /u01/nosql/kv-2.0.26/lib/kvstore.jar runadmin -port 5000 -host localhost

Note: Use the IP (or the hostname) assigned to your physical (or the VM) host as the value to -host.

This is what you should see after you successfully connect to the storage node.

kv->

9. Give a name to your store. We are using mystore as the name of our store.

Kv-> configure -name mystore

10. Create a datacenter.

Kv-> plan deploy-datacenter -name "Boston" -rf 1 -wait

Note:

� Replication factor used in this example is 1 which mean only one replication node is going to be created

per shard.

� The count of shards depends on the capacity of storage-node. In our case we have only one SN (so far)

with Capacity=1.

11. Deploy a storage-node and assign it to Boston datacenter

kv-> plan deploy-sn -dc dc1 -port 5000 -wait -host localhost

Note: Use the IP (or the hostname) assigned to your physical (or the VM) host as the value to -host.

5
Oracle NoSQL Database

12. Deploy admin instance so we can host the admin console as well and can manage other distributed resources

which may be hosted on a different node.

kv-> plan deploy-admin -sn sn1 -port 5001 -wait

Create a Topology

13. Create a topology by name 1x1 and assign the storage-node pool AllStorageNodes. We are going to create 30

partitions which as a rule of thumb could be 10x of the max number of shards you anticipate. In our lab we are

going to grow our cluster to have 3 shards.

kv-> topology create -name 1x1 -pool AllStorageNodes -partitions 30

14. Deploy topology

kv-> plan deploy-topology -name 1x1 -wait

Check topology

15. To find the details about the topology we just deployed use show topology command.

kv-> show topology

kv-> show topology

store=mystore numPartitions=30 sequence=34

 dc=[dc1] name=Boston repFactor=1

 sn=[sn1] dc=dc1 10.140.223.232:5000 capacity=1 RUNNING

 [rg1-rn1] RUNNING

 No performance info available

 shard=[rg1] num partitions=30

 [rg1-rn1] sn=sn1

6
Oracle NoSQL Database

16. Also start the admin console from the browser.

http://localhost:5001

If you get the above output from your admin-console as well, it means you have successfully deployed 1x1 (1 shard, 1

replication-node) Oracle NoSQL Database cluster.

Remember: All this can be achieved by a single kvlite command but it is also important to know what goes behind that

command ☺

7
Oracle NoSQL Database

Oracle NoSQL Database Hands on Workshop

Lab Exercise 2 – Increase data capacity of the cluster (3x1)

In this exercise, we are going to grow the cluster to three shards keeping the replication factor as 1 only (i.e. 3x1 cluster).

In production environment you are highly recommended to at least have physical nodes equal to the count of shards so

that there is no single point of failure. In our case we don’t have three physical nodes so we are going to create three

separate storage-nodes on the same physical nodes.

Instructions:

Bring up a command prompt (terminal window)

1. Open a terminal window

2. Create a directory (as KVROOT) where storage-node 2 and 3 is going to write data files as well as config files.

mkdir -p /u02/kvroot/sn2

mkdir -p /u02/kvroot/sn3

3. Now that we have the KVROOT directories created let’s bootstrap two more storage-nodes by setting the

capacity (i.e. how many replication nodes it can host), ports utilized for inter as well as intera node

communication.

java -jar $KVHOME/lib/kvstore.jar makebootconfig -root /u02/kvroot/sn2 -capacity 1 -harange 6010,6020

-admin 6001 -port 6000 -host localhost

java -jar $KVHOME/lib/kvstore.jar makebootconfig -root /u02/kvroot/sn3 -capacity 1 -harange 7010,7020

-admin 7001 -port 7000 -host localhost

Note:

� Use IP (or the hostname) address assigned to your physical (or the VM) host as the value to -host.

� The capacity=1 is used for this storage-node. This means only one replication node will be hosted on

each storage node.

4. Start the storage-node agent.

java -jar $KVHOME/lib/kvstore.jar start -root /u02/kvroot/sn2 &

java -jar $KVHOME/lib/kvstore.jar start -root /u02/kvroot/sn3 &

8
Oracle NoSQL Database

5. From admin prompt (CLI), deploy two new storage-nodes on newly started SN agents and assign it to Boston

datacenter

kv-> plan deploy-sn -dc dc1 -port 6000 -wait -host localhost

kv-> plan deploy-sn -dc dc1 -port 7000 -wait -host localhost

Note: Use the IP (or the hostname) assigned to your physical (or the VM) host as the value to -host.

6. Check the topology in admin console (http://localhost:5001)and you would notice that two new storage-nodes

are added to Boston datacenter but there is no replication node running on them yet.

7. In order to add two new shards to the online database, we are going to clone the current state of the topology

and then make changes to the new topology:

kv-> topology clone -current -name 3x1

8. Once we have cloned the topology, we are going to run the redistribution so that based on the available

capacity and replication-factor requirements set by admin, the count of new shards can be calculated.

kv-> topology redistribute -name 3x1 -pool AllStorageNodes

Note: Redistribution command does not deploy new topology but only stage it and you need to explicitly deploy

the new topology to make it effective. Unless that command is run no changes would be made to the topology.

9
Oracle NoSQL Database

9. Before we deploy the new topology let’s check what steps are going to executed to utilize the resources in the

best possible manner. In our case we have added two new storage-node with capacity=1 and our store is still

using replication-factor=1. So let’s review the steps of execution:

kv-> topology preview -name 3x1

kv-> topology preview -name 3x1

Topology transformation from current deployed topology to 3x1:

Create 2 shards

Create 2 RNs

Migrate 20 partitions

shard rg2

 1 new RN : rg2-rn1

 10 partition migrations

shard rg3

 1 new RN : rg3-rn1

 10 partition migrations

10. If you see the above output then everything is what was expected, so we should go ahead with our deployment.

kv-> plan deploy-topology -name 3x1 -wait

Wait for a minute or two and when done the topology should look like this from the admin console:

11. Notice that now we have three shards each running one replication and hence we have increase the data

capacity of our database to 3X.

10
Oracle NoSQL Database

Oracle NoSQL Database Hands on Workshop

Lab Exercise 3 – Increase data availability of the cluster (3x3)

In this exercise, we are going to increase the replication factor of the cluster to three, which would mean that each shard

is going to have three replication-nodes (one master and two replicas). By duplicating the data we are going to make our

cluster resilient to any single node failure because if one RN will fail there would be two other to service the data for

that very shard.

To recap, we begun with single shard store that had only one replication node (i.e. 1x1 cluster), then we added two

more storage nodes with capacity=1 each and ran the redistribution that gave us three shards (one shard running on

each shard) with still one replication-node on each shard (i.e. 3x1 cluster). We got the 3X the data capacity but our

cluster is not HA yet and that is what we are going to do next by increasing the replication-factor=3.

Instructions:

Bring up a command prompt (terminal window)

1. Because we desire to have 3 replicas on each shard, admin need to make sure that he has enough capacity on all

the SNs to host 9 replication nodes in total.

a. Currently the combined capacity of all three SN is 3 (3 SN x 1 C/each SN = 3 Grand Capacity),

b. So either 6 more SNs are created with capacity=1

c. Or the capacity of each SN is raised to 3 (3 SN x 3 C/each SN = 9 Grand Capacity).

And we are going to do c) to increase the combined capacity of the cluster:

kv-> plan change-parameters -service sn1 -params capacity=3

kv-> plan change-parameters -service sn2 -params capacity=3

kv-> plan change-parameters -service sn3 -params capacity=3

2. As we did before we need to create a new topology to make any changes to the current state of topology. To do

that we will clone the current topology:

kv-> topology clone -current -name 3x3

3. Now that we have the enough capacity available to host 9 RNs in total and new topology clone ready (i.e. 3x3),

let’s change the replication factor of the cluster to 3.

Kv-> topology change-repfactor -name 3x3 -pool AllStorageNodes -rf 3 -dc dc1

11
Oracle NoSQL Database

4. Let’s review the changes before executing it.

kv-> topology preview -name 3x3

kv-> topology preview -name 3x3

Topology transformation from current deployed topology to 3x3:

Create 6 RNs

shard rg1

 2 new RNs : rg1-rn2 rg1-rn3

shard rg2

 2 new RNs : rg2-rn2 rg2-rn3

shard rg3

 2 new RNs : rg3-rn2 rg3-rn3

Note: Preview command is telling us that 3 new RNs are going to be created with 2 RNs on each SN. This is what

we expected so things look all good.

5. Next deploy topology 3x3.

kv-> plan deploy-topology -name 3x3 -wait

12
Oracle NoSQL Database

6. Notice what happens to the topology view in the admin console. It will tell you as the new RNs are joined to

each SN in real time and once everything is done then this is how it should look like:

As you can see we have successfully scaled-out our 1x1 cluster to 3x3 cluster (i.e. 3 shards with 3 replication-nodes

each shard). This cluster has not only higher data capacity (because of more shards) but also higher availability with

no single point of failure.

