
Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.

Andrew V. Zitelli
Thales-Raytheon Systems
zitelli@raytheon.com

NoCOUG Fall Conference 2011  –  November 9, 2011
Computer History Museum  –  Mountain View, California

Four Things Every Developer 
(and DBA) Should Know about Oracle  



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Who Am I

• Bay Area native & UC Berkeley grad.

• Software developer for 35 years. 

• Member of the OakTable Network.
 www.oaktable.net

• ACM member since 1974.

• Working with Oracle database products since 1992.
– 10 other relational database products since 1982.

• With Thales-Raytheon Systems, Fullerton, CA since 2001.
– Joint venture of aerospace firms Thales (France) and Raytheon (USA).

• Primarily working on new development of large multi-tier 
applications with complex Oracle databases.

2



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.

Regarding Knowledge

Being ignorant is not so much a shame as 
being unwilling to learn. Benjamin Franklin

A person who won't read has no advantage 
over one who can't read. Mark Twain 

An investment in knowledge pays the best 
interest. Benjamin Franklin



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Contents

• Introduction  5 – 6

• Why use Databases?  7

• Oracle Instrumentation 8

• Topic #1: Commits,
Rollbacks & Transactions 9 – 21

• Database Agnostic Code  22 – 23

• Topic #2:  Unique 
Identifiers & Sequences 24 – 35

• Topic #3:  Critical 
Sections & DBMS_LOCK 36 – 41

• Topic #4:  "Filter Early" 42 – 47 

• Conclusion 48 – 49

• References  51

• 10046 Analysis Tools 52

4



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Introduction (1)

• Modern high performance software must typically support 
high throughput or low response times, or both.

• A key technology used to support high performance is 
concurrency, running multiple applications or application 
threads in parallel.

• One idea propounded by many developers is that software 
should be allowed to freely access data without any regard 
for how or where data is stored.

• This overlooks the need to minimize contention and 
resource consumption systemwide, to support high levels 
of concurrency.

5



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Introduction (2)

• This presentation will discuss four key Oracle topics directly 
influencing contention, throughput and response times. 

• Although this presentation focuses on Oracle, many key 
points also apply to other database products.

• Major topics include:
– A consideration of transactions, commits and rollbacks.
– Mistakes related to the use of unique identifiers in data.
– Application use of Oracle's internal lock manager.
– The importance of filtering data early.

6



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Why Use Databases?

• Proper use of databases should simplify the development and 
maintenance of application code.

• Some of the key features databases support are:
– Data integrity, assuring data contents are valid based on defined rules.

– Data consistency, assuring data is synchronized in time.

– Data security against damage, loss, and theft.

– Managing the concurrent use of data by various users & applications.

– Efficient execution of complex queries.

– Deadlock detection and resolution.

– Hiding new data requirements from existing code.

7



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Oracle Instrumentation

• This presentation makes reference to measurements collected 
using Oracle's Extended SQL Trace Data, also know as 
10046 Trace Data.

• This trace data is collected for individual Oracle processes, loosely 
equating to client connections (e.g., JDBC connections).

• Trace data contains details and elapsed times (in ms), regarding 
Oracle's internal activities and wait times for external activities. 

• 10046 trace data records the exact sequence, timing and contents 
of SQL commands being received by the database, along with I/O 
details, network round trips and other pertinent details.

• Many times developers assume they understand how their code 
interacts with Oracle but are wrong in their assumptions.  
10046 trace data can be used to verify or refute one's assumptions.

8



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Topic #1: 
Commits, Rollbacks & Transactions

• Excessive COMMITs and ROLLBACKs by applications are 
one of the leading causes of Oracle performance problems.

• Transactions are one of the mechanisms Oracle uses to 
protect data integrity and consistency.

• COMMIT statements are used to make a given transaction's 
changes permanent.

• ROLLBACK statements are used to permanently remove all 
pending changes made within a transaction.

• Transactions assure that multiple related changes to data are 
guaranteed to be completed together, or not made at all.

• Transactions also assure one user cannot modify data in the 
process of being changed by another user.

9



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Transaction Example

10

Savings Checking

$$$$
Time

Savings

$$

Savings

$$
Time

Crash Reboot

• As an example, the actions of transferring money out of one account 
and into another account must always be completed together.

• With transactions, any 
incomplete transactions are 
automatically rolled back 
following a failure.

• Without transactions, data 
changes may be 
interrupted, leaving data 
in an inconsistent state.

Savings

$$

Time

Crash

$$



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

COMMITs: Background Information (1)

• Oracle stores data (e.g., tables and indexes) inside 
"database blocks."

• Database blocks are permanently stored on disk.

• Blocks which are currently in use are also cached in memory.

• As data is modified and blocks are changed in memory, the 
modified blocks are not immediately written to disk.

• Instead, Oracle records sufficient information in "Redo Logs" 
to reconstruct the contents of every modified block, in the 
case of a database crash or failure.

• Modified blocks are eventually flushed to disk by one or 
more DBWR (Database Writer) background processes.

11



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

COMMITs: Background Information (2)

• When a COMMIT or ROLLBACK is performed, it is the 
corresponding Redo vectors, stored in memory, which are 
immediately flushed to the Redo Logs on disk. 

• When this happens, the user's foreground process hands off 
control to a background process named LGWR (Log Writer) 
which is responsible for writing the buffered Redo to disk.

• The chart on the following page illustrates a simplified flow as 
a user process waits for LGWR to complete a physical write.

– During a commit or rollback, 10046 trace data reports a foreground 
process's WAIT as a "Log File Sync," as shown below.  

WAIT #7: nam='log file sync' ela=7680 buffer#=5081 sync scn=30860007 p3=0
   obj#=71617 tim=8345312529752

12

Elapsed time = 7680 microseconds



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Idealistic Overview of COMMIT 
and "Log File Sync" Flow

13 Chart © 2009-2010 Tanel Põder
Used by Permission

Log File Parallel Write Wait

Log File Sync Wait

Foreground
(User) Process

LGWR
Process

I/O

1) User issues a  
    COMMIT.

2) Foreground 
    process posts 
    LGWR.

3) LGWR issues
    a physical 
    write syscall.

4) The physical 
    write syscall
    completes.

5) LGWR posts 
    foreground   
    process.

6) COMMIT
    complete.

TIME



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Log File Sync Performance: Scheduling 
Latency during CPU Saturation

14

TIME

Chart © 2009-2010 Tanel Põder
Used by Permission

Log File Sync Wait

Foreground
Process

LGWR
Process

I/O

1) User issues a  
    COMMIT.

2) LGWR waits in  
    CPU run queue.

3) LGWR 
submits the I/O 
and goes to 
sleep.

4) I/O completes; 
OS puts LGWR in 
CPU run queue.

5) LGWR gets 
onto CPU; posts 
foreground 
process.

7) COMMIT
    complete.

6) Foreground process 
gets posted and placed 
onto CPU run queue.



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Measuring Commit Durations

• Under load, duration of Commits and Rollbacks can vary widely.
– CPU saturation and I/O contention can contribute to very long log file sync times.

– The following analysis of a 10046 trace file was generated using the tool mrskew.  
Log file syncs in the trace file averaged 8.49 ms, ranging from 295 ms to 720 ms.

$ mrskew --nam='log file sync' ardbeg_ora_29335.trc

Matched event names:
        log file sync

Options: group   = ''
         name    = 'log file sync'
         where   = '1'

 RANGE {min <= e < max}                  DURATION       CALLS         MEAN          MIN          MAX
   0.000000    0.000001           0.000000   0.0%           0
   0.000001    0.000010           0.000000   0.0%           0
   0.000010    0.000100           0.000000   0.0%           0
   0.000100    0.001000           0.351132   1.6%         496     0.000708     0.000295     0.000998
   0.001000    0.010000           6.756450  31.1%        1987     0.003400     0.001000     0.009940
   0.010000    0.100000           0.847260   3.9%          42     0.020173     0.010035     0.077274
   0.100000    1.000000          13.754531  63.4%          32     0.429829     0.156393     0.719534
   1.000000   10.000000           0.000000   0.0%           0
  10.000000  100.000000           0.000000   0.0%           0
 100.000000 1000.000000           0.000000   0.0%           0
1000.000000    Infinity           0.000000   0.0%           0
              TOTAL (4)          21.709373 100.0%        2557     0.008490     0.000295     0.719534 

15

2557 waits averaging 8.49 milliseconds



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Behavior of Simultaneous COMMITs

• If LGWR is already writing Redo when a COMMIT is 
executed, the user process must wait for LGWR's current 
write to complete, before LGWR can begin writing the user 
process's Redo.

• When multiple database sessions commit at the same time, 
the LGWR process flushes the Redo vectors for all pending 
commits and rollbacks.

• On the next slide, note that user FG (foreground) processes 
1, 2 and 3 must all wait for completion of the Commit 
previously initiated by FG process 4.

16



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Simplified Example of 
Multiple Concurrent COMMITs

17

TIME

FG PROC 2
WAITING

FG PROC 4
WAITING

FG PROC 3
WAITING

FG PROC 1
WAITING

LGWR PROC
WAITING

KEY: COMMIT CPU Run 
QueueExecuting Log File Sync Wait Other WaitsI/O Waits



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Simplified Example Showing Throughput 
of Frequent vs. Infrequent COMMITs

18

TIME

FG PROC 2
WAITING

FG PROC 4
WAITING

FG PROC 3
WAITING

FG PROC 1
WAITING

LGWR PROC
WAITING

KEY: COMMIT CPU Run 
QueueExecuting Log File Sync Wait Other WaitsI/O Waits

Start of SQL 
Statement



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Commit/Rollback Types & Sources (1)

• The frequency of COMMITs which Oracle receives may be far 
different than developers expect.

• Developers of high performance applications should assess 
the actual frequency of COMMITs emitted by their software. 

• COMMITs can be initiated from a variety of places.  These 
include but are not limited to:
– COMMITs or ROLLBACKs explicitly executed by an application.
– Enabled JDBC Autocommit feature (turned ON by default).
– Frameworks like Hibernate and Enterprise Java Beans (EJBs).
– PL/SQL procedures and functions executed by the client.
– DDL commands like CREATE TABLE which force an implicit Commit.
– Database triggers never perform any Commits or Rollbacks.

• When COMMITs emanate from multiple sources, they are all 
executed by Oracle.

19



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Commit/Rollback Types & Sources (2)

• COMMIT and ROLLBACK both require a log file sync, unless 
the current transaction is READ-ONLY.

• The most detailed source for determining COMMIT 
frequency and durations is Oracle's 10046 trace data.

– This may require tracing multiple database sessions simultaneously.

• Each XCTEND line records a transaction end.  These are 
COMMITs or ROLLBACKs and include a Read-Only flag. 
XCTEND rlbk=0, rd_only=0, tim=2291112322964  <- COMMIT
XCTEND rlbk=0, rd_only=1, tim=2291112475829  <- COMMIT, READ-ONLY

XCTEND rlbk=1, rd_only=0, tim=2291112639472  <- ROLLBACK
XCTEND rlbk=1, rd_only=1, tim=2291112928475  <- ROLLBACK, READ-ONLY

• Oracle's ASH and AWR utilities automatically collect 
summarized runtime data which can be helpful in assessing 
the past frequency and average durations of COMMITs.

20



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Summary of Transactions, 
Commits and Rollbacks

• As stated earlier, excessive COMMITs and ROLLBACKs are 
one of the leading causes of Oracle performance problems.

• Use of transactions is critical to protecting data integrity, 
therefore commits needed to maintain data integrity should 
not be removed.

• Developers should attempt to identify and remove 
unnecessary commits.  Poor application design may force 
more frequent commits than are genuinely necessary.

• Developers of high throughput and low response time 
applications must not ignore the frequency of COMMITs 
being performed throughout their software stack.

21



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Regarding Database Agnostic Code (1)

• Commit frequency provides a good example of why "database 
agnostic" code often leads to poor application performance.

• Many database products support transactions but use 
significantly different mechanisms to implement them.

• Consider Oracle where Writers never block Readers.
– This is supported by an architecture with fairly high Commit overhead.
– Oracle performance tends to improve as Commit frequency goes down.

• In contrast, within many other databases, Writers do block 
Readers.  Blocked readers wait for transactions to Commit.
– Commits in these databases tend to incur a lower amount of overhead.
– In these databases, performance tends to improve as Commit 

frequency goes up.

22



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Regarding Database Agnostic Code (2)

• A recent web posting reads:  One of the main reasons I use 
Hibernate is that it provides the flexibility to switch to another 
database without having to rewrite any code.
(1) Is flexibility to easily switch between databases an actual project 

 requirement?  Often not, and it comes with a very high price.
(2) How hard is it to actually port your application between databases?

 Vendors of popular databases provide migration tools in efforts to
 capture each other's business.  Migration is often not difficult!

(3) Is this flexibility worth the mediocre performance incurred? You decide.

• If developers choose to use a database agnostic approach, 
they risk poor throughput and response times on all databases. 

• This can add to hardware costs which also increases software 
licensing costs related to the use of larger hardware. 

23



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

TOPIC #2: 
Unique Identifiers & Sequences (1)

• Most applications rely on a unique identifier for every object 
being retrieved from or manipulated in a database.

• Rather than relying on natural keys found in data as identifiers, 
it is a common practice to use surrogate keys.
– Natural keys are unique identifiers derived from data's natural contents.  

They may consist of one or more columns, of varying data types.
– Surrogate keys are artificial identifiers added to provide unique ids 

which never change.  These most often consist of a single numeric 
column, typically a positive integer.

• Surrogate keys can help simplify application code.
– They normally consist of a single attribute which always uses the same 

datatype, across all object classes.

• In Oracle, sequences are a built-in mechanism for generating 
unique numbers, often used to generate surrogate key values.

24



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Unique Identifiers & Sequences (2)

• Three mistakes related to sequences and surrogate keys are 
commonly made by architects and developers.

(1)  They impose a requirement that unique key values be 
 generated in exact chronological order.

(2)  They impose a requirement that there be no gaps 
 between key values.

(3) Their code makes an explicit call to Oracle for each key
 value being generated.

• Chronological Ordering and No Gaps increase contention 
between threads, as key values are being generated.

• Explicit calls to Oracle for every key value can incur 
significant delays and overhead on high throughput systems.

25



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: Chronological Ordering (1)

• Required chronological ordering of surrogate key values 
increases contention between concurrent threads.

• Consider the example of a high throughput system using 
application servers on 3 machines, with Oracle on a 4th. 

26

Application
Server A

Application
Server C

Application
Server B

Database
Server

• Chronological ordering precludes individual application servers 
from assigning their own key values locally.

• It requires a single source (Oracle or a designated app server) be 
used to dispense all values, increasing contention.

• This can require a network round trip to retrieve each key value.



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: Chronological Ordering (2)

• One strong alternative is to have Oracle dispense values using an 
increment larger than 1, perhaps 100 or 1000. 

• In this case, an application, using local single-threaded code, generates the 
unique key values between those values provided by Oracle.

• As applications utilize values at different rates, key values are not assigned 
in chronological order.  Contention for unique keys is reduced.

27

• Network round trips to retrieve values become much less frequent.
• This approach scales well as volume increases.

11 12 13 14 15 16 17 18 19 50 5110

21 22 23 24 25 26 27 28 29 40 41 42 43 44 45 46 47 48 49 60 61 6220

31 32 33 34 3530

App Server 1

App Server 2

App Server 3

Chronological Ordering:  10, 20, 30, 21, 11, 22, 23, 12, 24, 31, 25, 13, 26, 27, 14, 28, 32, 29, 15, 40, 41, . . .  

Sequence Value from Oracle Value Assigned Locally on each App Server

Time



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: Chronological Ordering (3)

• By default, Oracle sequences do not guarantee their values 
will be dispensed in the exact order requested.

• Oracle does provide an ORDERED option, which forces 
sequences to be dispensed in the exact order requested.
– Under nominal loads, on single node databases, ordered and 

unordered sequences, have nearly the same response times.
– Under heavy loads, CPU saturation can cause processes retrieving 

ordered sequence values to wait in the CPU run queue, 
subsequently blocking other processes also requesting values.

– ORDERED sequences can cause serious contention issues when 
Oracle RAC (clustering) is in use.

• A better solution might be to use a timestamp for ordering.
– A second column can be used as a tie-breaker, when needed.

28



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: No Gaps (1)

• A requirement to have No Gaps between key values can 
introduce serious response time and throughput issues.

• This requirement precludes the use of Oracle sequences 
because Oracle sequences never guarantee No Gaps.
– Once a sequence value has been dispensed, it cannot be put back.
– If a transaction using a sequence value is rolled back, the sequence 

value is not reused.
– If a sequence is defined to cache values in memory, and Oracle 

crashes, the unused cached values will never be used.

• The requirement for No Gaps forces all threads generating 
keys, to serialize when generating the gapless key values.

• Furthermore, each transaction assigning gapless key values 
must COMMIT or ROLLBACK, before any other transaction 
can be allowed to assign gapless key values. 

29



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: No Gaps (2)

• To assure no gaps are present when assigning new values, the 
existing high value must be read by each new transaction.

• Following is an example of logic required for multi-threading:
(1) Allocate a lock to protect the critical section assigning the next key.
(2) Read the current high value.
(3) Insert data setting the new key value to the latest high value + 1, 

 for each new row.
(4) COMMIT the changes and release the lock.

• Simple tests of this gapless algorithm vs. gap prone sequences 
found the gapless version at least 30% slower.
- The gapless version is prone to I/O, network and commit delays.
- Commits like those profiled earlier could easily make the gapless 

algorithm tens or hundreds of times slower, raising contention issues.

30



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: 
Extraneous Calls and Caching

• A poor but frequent practice is for applications to retrieve a 
sequence value, then use it in a subsequent SQL command.

• Where possible, the two statements should be combined into 
one, eliminating the extra network round trip and overhead.

insert into mytab values (my_seq.nextval, name, dob, . . .

• Internally, Oracle sequence high values are stored in a 
database table, to assure they survive reboots and crashes.

• Cache size in Oracle can be set separately for each sequence.

• Increasing the cache size above the default of 20 will make it 
more efficient, at the risk of losing more values during a crash.

• Setting cache size to NOCACHE does not remove the risk of 
gaps in sequence values.

31



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences:
Index Risks from Ascending Values (1)

Use of sequence generated surrogate keys incurs at least two 
common risks associated with indexes used to enforce key 
uniqueness.
(1) On systems with large volumes of updates, high contention 

may occur for index blocks containing recent index entries.  
(2) Depending on how a given table's data is updated and 

deleted over time, primary key indexes may perpetually 
grow in size.  
– This occurs as an index grows from one end, while becoming 

sparsely populated on the other end (aka "right-handed indexes").
– Use of "reverse key" indexes can mitigate this problem under many 

circumstances.
– DBA's may need to periodically coalesce free space in these 

indexes.

32



• Reverse key indexes sort index entries by inverting each column's 
value.  For example "index" would be sorted as "xedni".

• This reduces potential hot blocks by spreading out sequential 
values over a wide range of index blocks.

• Reverse key indexes can be used to retrieve individual rows but 
cannot be used to retrieve ranges of values:
SELECT * FROM MY_TAB WHERE ID = 1497;
SELECT * FROM MY_TAB WHERE ID BETWEEN 1497 AND 1501;

Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Sequences: 
Index Risks from Ascending Values (2)

33

1517
1518
1519
1520
1521

1512
1513
1514
1515
1516

1507
1508
1509
1510
1511

1502
1503
1504
1505
1506

1497
1498
1499
1500
1501

1492
1493
1494
1495
1496

8151
8941
9051
9151
9941

6941
7051
7151
7941
8051

5051
5151
5941
6051
6151

3151
3941
4051
4151
4941

1251
2051
2151
2941
3051

0051
0151
0251
1051
1151

Regular Index

Reverse Key Index



• On high throughput systems with large tables, reverse key indexes 
may spread entires across so many index blocks, that index blocks 
tend to age out of memory between uses.  This can result in 
excessive I/O.

• One solution is to replace sequence calls with calls to a function 
which manipulates the sequence values.  For example:

CREATE OR REPLACE FUNCTION PID_NEXT_VALUE RETURN INTEGER IS
   PID INTEGER;
BEGIN
   PID := PID_SEQ.NEXTVAL;
   RETURN ((100000000000 * (MOD (PID * 37, 300) + 100)) + PID);
END PID_NEXT_VALUE;
/

• In this particular example, a value between 100e+11 and 399e+11,  
derived from the sequence value, is added to the sequence value. 
This algorithm provides 300 index insertion points.  For example:
    12345 => 16500000012345, 12346 => 20200000012346

• Function calls measure ~10% slower than calls to pid_seq.nextval.
Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  34

Sequences:
Index Risks from Ascending Values (3)



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Summary of Unique Identifiers 
and Sequences

• Generally, unique identifiers in data should not be required 
to be in exact chronological order or gap free.

• When using sequences to generate surrogate key values, 
consider caching values in each application server.  This 
can reduce network traffic, database overhead and 
contention for sequence values.

• Index values based on sequences may suffer from high 
contention or excessive size on disk.  Reverse key indexes 
or some sort of function based key generation may help 
reduce these problems.

35



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Topic #3: 
Critical Sections & DBMS_LOCK (1)

• Many applications contain sections of code which must 
never be executed by more than one thread at a time.

• In concurrent programming, these sections of code are 
referred to as Critical Sections.

• Critical sections normally require a locking mechanism 
to protect them, limiting access to one thread at a time.

• Oracle's DBMS_LOCK package provides an interface 
to Oracle's internal lock manager.

• This supports user defined locks for protecting critical 
sections and other critical resources, both inside and 
outside the database.

36



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Critical Sections & DBMS_LOCK (2)

• Use of Oracle's DBMS_LOCK package is often 
preferable to implementing locks inside application code.

• Consider the following example where three application 
servers are in use, all executing the same application.

• When a given thread executes a critical section, it must 
first acquire a lock to prevent other threads from 
executing the same critical section, on any server. 

• This requires a locking mechanism shared among 
application servers.  DBMS_LOCK can be used for this.

37

Database
Server

Application
Server B

Application
Server C

Application
Server A



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Critical Sections & DBMS_LOCK (3)

• Some advantages of using DBMS_LOCK are:
– The locks participate in Oracle's deadlock detection, along with locks 

on rows, tables and other Oracle resources.

– Oracle 10046 trace data can be used to identify excessive lock 
contention.

– It is easily called using JDBC stored procedure calls and other APIs.

– Locks can be released prior to a Commit or Rollback 
(unlike SELECT .. FOR UPDATE).

– Locks can be defined to automatically release on Commit or Rollback 
or to persist through a Commit or Rollback.

– Locks are automatically released if the DB session is terminated.

– DBMS_LOCK supports multiple lock types.

– DBMS_LOCK's procedures can be called by database triggers. 

38



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Critical Sections & DBMS_LOCK (4)

• Examples of function/procedure calls from PL/SQL:
-- Attempt to acquire exclusive lock with ID #2100701. Give up after 60 sec.
LOCK_STATUS := DBMS_LOCK.REQUEST (ID => 2100701, 
   LOCKMODE => DBMS_LOCK.X_MODE, TIMEOUT => 60, RELEASE_ON_COMMIT => TRUE);

-- Explicit release of user defined lock #2100701.     
LOCK_STATUS := DBMS_LOCK.RELEASE (ID => 2100701);

-- Put the current session to sleep for the specified time in seconds.     
DBMS_LOCK.SLEEP (SECONDS => 5);

• If a call to DBMS_LOCK.REQUEST needs to wait to acquire a 
lock, a line like the following will appear in the 10046 trace file:

WAIT #6: nam='enq: UL - contention' ela=5305032 
   name|mode=1431044102 id=2100701 0=0 obj#=-1 tim=5439364938116

– UL in the name 'enq: UL - contention' refers to User Lock.
– ela= specifies the time waited in microseconds, 5.3 seconds above.
– id= specifies the id of the lock requested.

39



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Critical Sections & DBMS_LOCK (5)
• When 10046 trace files are available for analysis, they can be used to 

identify lock contention from calls to DBMS_LOCK.
• In the examples below, the mrskew analysis tool was used to look for 

UL lock contention, in a collection of trace files.
$ mrskew --name='enq: UL - contention' windmere_ora*.trc

 RANGE {min <= e < max}            DURATION     CALLS         MEAN          MIN          MAX
   0.000000    0.000001      0.000000   0.0%        0
   0.000001    0.000010      0.000000   0.0%        0
   0.000010    0.000100      0.000000   0.0%        0
   0.000100    0.001000      0.000467   0.0%        1     0.000467     0.000467     0.000467
   0.001000    0.010000      0.043560   0.0%        9     0.004840     0.001002     0.009146
   0.010000    0.100000      0.712841   0.2%       20     0.035642     0.010045     0.067194
   0.100000    1.000000      0.553350   0.1%        3     0.184450     0.144842     0.230371
   1.000000   10.000000      0.000000   0.0%        0
  10.000000  100.000000    414.682628  99.7%        7    59.240375    54.601764    60.016537
 100.000000 1000.000000      0.000000   0.0%        0
1000.000000    Infinity      0.000000   0.0%        0
              TOTAL (5)    415.992846 100.0%       40    10.399821     0.000467    60.016537

$  mrskew --name='enq: UL - contention' --group='$p2' --label='LOCK ID' windmere_ora*.trc

   LOCK ID               DURATION       CALLS         MEAN          MIN          MAX
   1000201      414.682628  99.7%           7    59.240375    54.601764    60.016537
   3300901        0.898332   0.2%          24     0.037430     0.000467     0.230371
   2100701        0.411886   0.1%           9     0.045765     0.032952     0.051456
 TOTAL (3)      415.992846 100.0%          40    10.399821     0.000467    60.016537

40



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Critical Sections & DBMS_LOCK (6)

• DBMS_LOCK provides a straightforward way to synchronize 
various applications and enforce serialization where needed.

• The ability to explicitly release locks enables one to minimize 
the duration of critical sections without requiring a Commit or 
Rollback to release the locks.

– DBMS_LOCK allows exception handlers to release locks.

• Execute privilege must be explicitly granted to DBMS_LOCK.  
This is not granted to every Oracle user by default.

• The DBMS_LOCK package is documented in the manual 
"Oracle Database PL/SQL Packages and Types Reference."

41



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Topic #4:  "Filter Early"

• Advice often repeated by SQL tuning experts is "Filter Early."

• When writing queries, this refers to the early exclusion from 
further consideration, of as much data as possible.

• Put differently: Make your system do as little work as possible.

• This same advice applies on a larger scale when considering 
a system's complete software stack.

• Many developers assume it makes little difference where data 
is filtered and manipulated, as long the work gets done.

• For high performance systems, this assumption is wrong. 

42



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Filter Early: Example (1)

• Consider the following two requests:
     1: Assemble a list of addresses for magazine subscribers in Texas, 
     whose subscriptions expired during the past 90 days.
     2: Assemble a list of addresses for magazine subscribers in California, 
 whose subscriptions expired during the past 90 days.
 SQL> describe customers
 Name                Null?     Type
 ------------------  --------  ------------
 CUSTOMER_ID         NOT NULL  NUMBER(19)
 CUSTOMER_NAME       NOT NULL  VARCHAR2(50)
 STREET              NOT NULL  VARCHAR2(30)
 CITY                NOT NULL  VARCHAR2(30)
 STATE               NOT NULL  VARCHAR2(2)
 ZIP                 NOT NULL  NUMBER(5)
 VERSION             NOT NULL  NUMBER(19)

 SQL> describe subscriptions
 Name                Null?     Type
 ------------------  --------  ------------
 CUSTOMER_ID         NOT NULL  NUMBER(19)
 SUBSCRIPTION#       NOT NULL  NUMBER(4)
 EXPIRATION_DATE     NOT NULL  DATE
 AUTO_RENEW                    VARCHAR2(1)
 VERSION             NOT NULL  NUMBER(19)

43

Customers Subscriptions

Assume Oracle indexes exist on 
STATE and EXPIRATION_DATE 
and that they are used for the 
queries.



• To answer these questions efficiently, where should one start, 
with the Customers table or the Subscriptions table?

• The answer depends on the contents of the data in each table.

• CASE A:
– Customers has 20,000,000 rows, with 1,950,000 in Texas and 

2,100,000 in California.
– Subscriptions has 5,000 total rows, with 800 expired in last 90 days.

• CASE B:
– Customers has 20,000,000 rows, with 35,000 in Texas and 

2,100,000 in California.
– Subscriptions has 12,000,000 rows, 900,000 expired in last 90 days.

Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Filter Early: Example (2)

44

Customers Subscriptions



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Filter Early: Example 
Texas Subscribers

– Starting with Customers, one must read 1,950,000 rows for Texas and 
then probe Subscriptions 1,950,000 times looking for matches.

– Starting with Subscriptions, one must read 800 rows and then probe 
Customers 800 times to retrieve addresses.

– Subscriptions is the better place to start (~1,600 vs. 3,900,000).

– Starting with Customers, one must read 35,000 rows and then probe 
Subscriptions 35,000 times looking for matches.

– Starting with Subscriptions, one must read 900,000 rows and then 
probe Customers 900,000 times to retrieve addresses.

– Customers is the better place to start (~70,000 vs. 1,800,000).
45

Customers

20,000,000 Rows
1,950,000 in TX

Subscriptions

5,000 Rows
800 Expired

A
Customers

20,000,000 Rows
35,000 in TX

Subscriptions

12,000,000 Rows
900,000 Expired

B

A:

B:



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Filter Early: Example 
California Subscribers

– Starting with Customers, one must read 2,100,000 rows and then 
probe Subscriptions 2,100,000 times looking for matches.

– Starting with Subscriptions, one must read 800 rows and then probe 
Customers 800 times to retrieve addresses.

– Subscriptions is the better place to start (~1,600 vs. 4,200,000).

– Starting with Customers, one must read 2,100,000 rows and then 
probe Subscriptions 2,100,000 times looking for matches.

– Starting with Subscriptions, one must read 900,000 rows and then 
probe Customers 900,000 times to retrieve addresses.

– Unlike Texas, Subscriptions is the best place to start 
(~1,800,000 vs. 4,200,000).

46

Customers

20,000,000 Rows
2,100,000 in CA

Subscriptions

5,000 Rows
800 Expired

A
Customers

20,000,000 Rows
2,100,000 in CA

Subscriptions

12,000,000 Rows
900,000 Expired

B

A:

B:



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Filter Early: Summary

• Oracle collects & maintains a wide variety of data statistics.  
• Middle tier frameworks and applications do not have the 

benefit of up-to-date data statistics.  
• Oracle's data statistics help its query optimizer determine an 

efficient execution plan (retrieval strategy) for each query. 
• Inefficient execution plans are often thousands of times 

slower, than efficient plans returning exactly the same data.
• Filtering data in the middle tier incurs a high risk of inefficient 

retrieval strategies which increase resource consumption 
across many hardware and software components in a system.

• Applications should filter as much data as possible in the 
database, retrieving only that data which they require for their 
core business logic.

47



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Conclusion (1)

• Large software systems increasingly rely on multi-threading 
and high concurrency to achieve high performance.

• Oracle, like other database products, includes a wide variety 
of features which leverage its architecture to support high 
concurrency, high throughput and rapid response times.

• Systems designed to remain database neutral, neglecting to 
use database specific enhancements, run strong risks of high 
contention, excessive overhead and poor performance. 

• These systems tend to require disproportionately large  
amounts of hardware for the tasks at hand, also leading to 
increased software licensing costs.  

48



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Conclusion (2)

• Developers and architects need to understand their target 
databases, learning to use their features efficiently in support 
of the systems they are developing.

• Filtering data in the database as much as possible, instead of 
inefficiently filtering in other software tiers, is another critical 
consideration when developing high performance software.

• When used properly, databases should simplify software 
development, reduce maintenance costs and promote high 
system performance.

49



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

Q & A

50



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

References & Further Reading

Millsap, C.  2011.  Mastering Performance with Oracle Extended SQL Trace.  
Method-R Corporation.  http://www.method-r.com/downloads/
doc_download/72-mastering-performance-with-extended-sql-trace 

Millsap, C.; Holt, J.  2003.  Optimizing Oracle Performance.  O’Reilly.  
ISBN 059600527X. 
This book is highly recommended to all DBAs and developers.
Chapters 1 to 4 are strongly recommended for all developers.

Oracle Corporation.  2010.  Interpreting Raw SQL_TRACE and 
DBMS_SUPPORT.START_TRACE Output - Note 39817.1.  

Oracle Corporation.  2010.  Oracle Database PL/SQL Packages and Types 
Reference, 11g Release 2 (11.2).  Part Number E16760-05.  

Oracle Corporation.  2010.  Oracle Database Reference, 11g Release 2 (11.2).  
Part Number E17110-05.  

Põder, T.  2010.  Understanding LGWR, Log File Sync Waits and Commit 
Performance.  http://files.e2sn.com/slides/Tanel_Poder_log_file_sync.pdf

51



Copyright © 2011 Thales-Raytheon Systems Co. All rights reserved.  

My Primary Tools for Trace File Analysis

• MR Tools, a collection of powerful command line tools for 10046 trace file 
analysis.  One of these tools, mrskew, is shown in some of the examples.
Available from Method-R Corporation at:  
 http://www.method-r.com/software/mrtools

• Method-R Profiler, also available from Method-R Corporation at:  
 http://www.method-r.com/software/profiler

• Personal tools I have written in PL/SQL and Perl.  Several of these are 
available upon request writing me at:  zitelli@raytheon.com 

• A fast text editor adept at handling files exceeding 100 Mb with potentially 
thousands of characters per line. I prefer BBEdit (Mac) and TextPad (PC). 

• Simple UNIX commands and utilities like grep, awk, sort, wc, and perl.

• Oracle documentation and web searches.

• Write me if you have questions or need further assistance.

52


