
NoCOUG Feb. 2011 1

Don’t Be In a Funk:
Use Analytic Functions

Philip Rice
University of California Santa Cruz

Analytic Functions

Overview

  My involvement came from a performance
problem

  Overlap with some of the “traditional” aggregate
functions: e.g. max, avg, count
-- same keyword, similar syntax

  Goal today: raise awareness of possibilities,
know when to consider as an option;
not a comprehensive view of all functions

NoCOUG Feb. 2011 Analytic Functions 2

Overview

  Functions are used in SELECT statement:
 likely to be most helpful in reporting situations

  Better functionality: traditional approach can be
much more difficult or nearly impossible

  Performance improvement is likely to be more
obvious with larger datasets, difference can be
hours down to minutes(!)

NoCOUG Feb. 2011 Analytic Functions 3

General Syntax

  Function(arg1, …, argn) OVER (
[PARTITION BY <…>] [ORDER BY <…>]
[window_clause])

  “OVER” is indicator of analytic function
  PARTITION BY is comparable to GROUP BY
  window_clause is not as commonly used, but

can be helpful, e.g. looking at different time
periods on same row of output (examples later)

  window_clause (partial) syntax is
[ROW or RANGE] BETWEEN <start> AND <end>

NoCOUG Feb. 2011 Analytic Functions 4

Example: “traditional” count
  select count(*), OBJECT_TYPE  
from all_objects  
where owner = 'OUTLN’ 
group by OBJECT_TYPE;  
 
COUNT(*) OBJECT_TYPE  
-------- -----------  
 4 INDEX  
 1 PROCEDURE  
 3 TABLE"

  Non-aggregated columns must be in GROUP BY
  What if we want to show detail at same time as

the aggregate?
NoCOUG Feb. 2011 Analytic Functions 5

If “OVER” is empty, acts on whole set
  select object_name,object_type,  

 count(*) OVER () tot_count,  
 count(*) OVER (PARTITION BY object_type) type_count  
from all_objects where owner = 'OUTLN';  
 
OBJECT_NAME OBJECT_TYPE TOT_COUNT TYPE_COUNT  
--------------------- ----------- ---------- ----------  
OL$NAME INDEX 8 4  
OL$HNT_NUM INDEX 8 4  
OL$SIGNATURE INDEX 8 4  
OL$NODE_OL_NAME INDEX 8 4  
ORA$GRANT_SYS_SELECT PROCEDURE 8 1  
OL$NODES TABLE 8 3  
OL$HINTS TABLE 8 3  
OL$ TABLE 8 3"

NoCOUG Feb. 2011 Analytic Functions 6

Total
for ALL

rows,
on

each
detail

line

Total
for

each
object

type

Timing of execution in SQL

  Analytic functions are computed after:
  All joins
  WHERE clause
  GROUP BY
  HAVING

  Main ORDER BY of query is after analytic function
  So AFs can only appear in select list and

 in main ORDER BY clause of query

NoCOUG Feb. 2011 Analytic Functions 7

Timing of execution in SQL

  Stages:

NoCOUG Feb. 2011 Analytic Functions 8

Joins, WHERE, GROUP BY, HAVING

Apply analytic functions to result set
rows (aka “partition”)

Apply ORDER BY clause
 (from main query)

Prep for ROW_NUMBER and RANK
  Select object_type “ObjTyp” to_char(last_ddl_time,  

 'yyyymmdd hh24miss') last_ddl_time  
from all_objects  
where owner = 'OUTLN’ 
 and object_type IN ('TABLE','INDEX')  
group by owner, object_type,  
 to_char(last_ddl_time,'yyyymmdd hh24miss')  
order by object_type, last_ddl_time;  
ObjTyp LAST_DDL_TIME  
------ ---------------  
INDEX 20031001 173156  
INDEX 20080906 102159  
TABLE 20080906 102610"

  2 of 3 have same LAST_DDL_TIME at detail level,
 we’ll use as demo for RANK

NoCOUG Feb. 2011 Analytic Functions 9

ROW_NUMBER and RANK
select object_type "ObjTyp", substr(object_name,1,10) "ObjName","
 to_char(last_ddl_time,'yyyymmdd hh24miss') last_ddl_time,"

 row_number() over "
 (partition by object_type order by last_ddl_time) RN,"

 rank() over "
 (partition by object_type order by last_ddl_time) R,"

 dense_rank() over "
 (partition by object_type order by last_ddl_time) DR"

 from all_objects"
 where owner = 'OUTLN' and object_type IN ('TABLE','INDEX');"

Note that all three functions have same PARTITION BY
and ORDER BY clauses.

Results on next slide …

NoCOUG Feb. 2011 Analytic Functions 10

Row_number, Rank, Dense Rank

  Remember: Last three columns all have: 
(partition by object_type order by last_ddl_time)  
[…]"

  ObjTyp ObjName LAST_DDL_TIME RN R DR  
------ ---------- --------------- ---- ---- ----  
INDEX OL$NAME 20031001 173156 1 1 1  
INDEX OL$HNT_NUM 20031001 173156 2 1 1  
INDEX OL$SIGNATU 20031001 173156 3 1 1  
INDEX OL$NODE_OL 20080906 102159 4 4 2  
TABLE OL$NODES 20080906 102610 1 1 1  
TABLE OL$ 20080906 102610 2 1 1  
TABLE OL$HINTS 20080906 102610 3 1 1"

NoCOUG Feb. 2011 Analytic Functions 11

Behavior: Row_number, Rank, Dense Rank

  If two records have the same value in the ORDER BY,
the two records get different ROW_NUMBER.
RANK and DENSE_RANK do not work like that.

  If two records have the same value in the ORDER BY,
they both get the same RANK or DENSE_RANK.
The difference between RANK and DENSE_RANK is
how they are counted.
DENSE_RANK uses sequential numbers, RANK does
not.
In the INDEX set, the fourth is different from the first
three.
RANK jumps to display "4", and DENSE RANK is "2".

NoCOUG Feb. 2011 Analytic Functions 12

ROW_NUMBER is similar to ROWNUM

  One key difference:
ROWNUM gets incremented as rows are
returned from the query,
 so we can not say "WHERE ROWNUM = 5".
But ROW_NUMBER can be used that way.

NoCOUG Feb. 2011 Analytic Functions 13

Sort both ways in same SQL
  Select […],  

 row_number() OVER (partition by object_type  
 order by last_ddl_time) SORTUP,  
 row_number() OVER (partition by object_type  
 order by last_ddl_time DESC NULLS LAST) SORTDOWN  
from all_objects where owner = 'OUTLN’ 
 and object_type IN ('TABLE','INDEX');"

 
ObjTyp LAST_DDL_TIME SORTUP SORTDOWN  
------ --------------- ---------- ----------  
INDEX 20031001 173156 1 4  
INDEX 20031001 173156 2 3  
INDEX 20031001 173156 3 2  
INDEX 20080906 102159 4 1  
TABLE 20080906 102610 1 3  
TABLE 20080906 102610 2 2  
TABLE 20080906 102610 3 1"

NoCOUG Feb. 2011 Analytic Functions 14

Traditional -- slow way to see mixed detail and
summary levels (generated from reporting tool)

  SELECT <detail columns>, max_effdt, max_effseq  
FROM  
 (SELECT <detail columns>,  
 MAX (DISTINCT t2.APLAN_EFFDT) max_effdt  
 FROM t3, t1 LEFT OUTER JOIN t2 ON […]  
 WHERE […] GROUP BY t1.CTERM_EMPLID, t1.CTERM_TERM_CD) d5,  
 (SELECT <detail columns>,  
 MAX (t2.APLAN_EFFSEQ) max_effseq  
 FROM t3, t1 LEFT OUTER JOIN t2 ON […]  
 WHERE […] GROUP BY t1.CTERM_EMPLID, t1.CTERM_TERM_CD,  
 t2.APLAN_EFFDT) d4,  
 (SELECT <detail columns only, no aggregate!!!>  
 FROM t3, t1 LEFT OUTER JOIN t2 ON […]  
 WHERE […] < NO group by clause!!!>) d3  
WHERE < predicates for outer select >  
ORDER BY < columns for outer select >"

NoCOUG Feb. 2011 Analytic Functions 15

NoCOUG Feb. 2011 Analytic Functions 16

Analytic Function is FASTER!!

Requires only one inline view, a
single pass instead of three…

Improvement is Hours to Minutes
  SELECT <detail columns>, max_effdt, max_effseq  

FROM  
 (SELECT <detail columns>,  
 max(t2.APLAN_EFFDT) OVER  
 (PARTITION BY t1.cterm_emplid, t1.cterm_term_cd)  
 AS max_effective_date,  
 max(t2.APLAN_EFFSEQ) OVER  
 (PARTITION BY t1.cterm_emplid, t1.cterm_term_cd,  
 t2.APLAN_EFFDT)  
 AS max_effective_sequence  
 FROM t3, t5 (t1 LEFT OUTER JOIN t2 ON […])  
 LEFT OUTER JOIN t4 ON […] WHERE […])  
WHERE < predicates for outer select >  
ORDER BY < columns for outer select >"

NoCOUG Feb. 2011 Analytic Functions 17

NoCOUG Feb. 2011 Analytic Functions 18

Keep adapting, don’t be a dinosaur!

Example of UPDATE
  UPDATE FZBRFCX SET FZBRFCX_ZERO_FLAG = 2  

WHERE rowid IN  
 (SELECT rowid FROM  
 (SELECT rowid, FZBRFCX_ZERO_FLAG Flag,  
 sum(FZBRFCX_TRANS_AMT) OVER  
 (PARTITION BY FZBRFCX_ACCT_CODE,  
 FZBRFCX_FUND_CODE,  
 FZBRFCX_DOC_REF_NUM) Sum_Amt  
 FROM FZBRFCX)  
 WHERE Sum_Amt = 0 AND Flag <> 0) ;"

NoCOUG Feb. 2011 Analytic Functions 19

Helpful sidetrack: Query Subfactoring
AKA Common Table Expression

  Analytic functions often need an inline view
(subquery).

  Sometimes the inline views are nested
  Indentation is helpful, but can be confusing
  Subfactoring used here for clarity with related

SQL statements across multiple slides
  Subfactoring easily allows multiple use of alias

[11.2 allows recursive too]

NoCOUG Feb. 2011 Analytic Functions 20

Traditional inline: layers with indentation
  SELECT MID_LVL.po_code, MID_LVL.seq, […]  

FROM  
 (select INNER_LVL.po_code, INNER_LVL.seq, […]  
 from  
 (select po_code, seq, […]  
 from fprpoda b  
 where po_code in  
 (select b.po_code  
 from fprpoda b  
 where activity_date  
 between '01-NOV-09' and '09-NOV-09') CODE_LIST  
) INNER_LVL  
) MID_LVL  
WHERE < [MID_LVL.column] predicates...>"

NoCOUG Feb. 2011 Analytic Functions 21

Query Subfactoring: Top Down
  WITH  

 CODE_LIST AS  
 (select po_code  
 from fprpoda  
 where activity_date  
 between '01-NOV-09' and '09-NOV-09’),  
 INNER_LVL AS  
 (select po_code, seq, […]  
 from fprpoda  
 where po_code in CODE_LIST),  
 MID_LVL AS  
 (select po_code, seq, […]  
 from INNER_LVL)  
SELECT * FROM MID_LVL  
WHERE < predicates...>"

NoCOUG Feb. 2011 Analytic Functions 22

Running Totals and Windowing

  Requirement:
Show values from current and previous rows,
where running total went above $50,000 level,
where more stringent approvals are required:
Is anyone trying to get around audit rules?

  Originally looked like it would need PL/SQL, with
cursors starting and stopping

  We’ll use query subfactoring to see the pieces
build on each other…

NoCOUG Feb. 2011 Analytic Functions 23

Running Totals and Windowing: stmt1

 WITH  
code_list AS (-- [codes used in next stmt]  
SELECT distinct po_code  
FROM fprpoda  
WHERE trunc(activity_date)  
 BETWEEN '01-NOV-09' AND '09-NOV-09’ 
 AND seq is not null),"

NoCOUG Feb. 2011 Analytic Functions 24

Running Totals and Windowing: stmt2
  INNER_LVL AS (-- [sum each code and seq combo]  

SELECT po_code,"

 LAG(po_code, 1) OVER  
 (ORDER BY po_code) "PrevCode",  
 seq , amt "CurrAmt", activity_date, "

 SUM(amt) OVER (PARTITION BY po_code  
 ORDER BY po_code, seq, activity_date)

" " "running_tot  
 FROM fprpoda  
 WHERE po_code IN  
 (select po_code from CODE_LIST)),"

NoCOUG Feb. 2011 Analytic Functions 25

Running Totals and Windowing: stmt3
  MID_LVL AS (-- get curr/prev row values  
SELECT po_code, seq ,  
 (CASE WHEN "PrevCode" != po_code THEN NULL"

 ELSE LAG(running_tot, 1) OVER"
 (ORDER BY po_code, seq) END) "PrevRunTot”,  
 running_tot "RunningTot",  
 activity_date curr_actv,  
 (CASE WHEN "PrevCode" != po_code THEN NULL"
 ELSE LAG(activity_date) OVER  
 (ORDER BY po_code, seq) END) prev_actv  
 FROM INNER_LVL)  
 -- 1 is default for LAG, hard coding would be  
 -- for clarity"

NoCOUG Feb. 2011 Analytic Functions 26

Running Totals and Windowing: Final
  Query subfactoring above is done: one isolated stmt

shows what we’re ultimately trying to do…
 SELECT po_code, seq, "PrevRunTot",  
 "RunningTot”-"PrevRunTot" "DiffChange",  

 "RunningTot" , prev_actv, curr_actv  
 FROM MID_LVL  
 WHERE "PrevRunTot” < 50000  
 AND "RunningTot” >= 50000;  
PO_CODE SEQ PrevRunTot DiffChange RunningTot PREV_ACTV CURR_ACTV"

-------- ---- ----------- ----------- ----------- --------- ---------"
B0142584 7 46,800.00 5,500.00 52,300.00 05-FEB-09 05-NOV-09!
B0181676 1 38,142.00 23,856.34 61,998.34 26-NOV-07 17-NOV-08!
S0176940 1 43,371.00 42,156.00 85,527.00 17-JUN-05 23-MAR-06!
S0181330 1 1.00 302,069.91 302,070.91 20-JUL-07 28-AUG-07!
"

NoCOUG Feb. 2011 Analytic Functions 27

Detail for one PO, Seq# 0, 2, and 7: exact same date/time,
 so running total is not gradually increasing

PO_CODE SEQ CurrAmt RunningTot Activity_Date_Time!
-------- ---- ----------- ----------- --------------------!
B0142584 0 1.00 5,001.00 22-JAN-2003 10:27:00!
B0142584 0 5,000.00 5,001.00 22-JAN-2003 10:27:00!
B0142584 1 6,500.00 11,501.00 09-OCT-2003 14:36:01!
B0142584 2 -1.00 18,500.00 27-OCT-2004 15:51:01!
B0142584 2 7,000.00 18,500.00 27-OCT-2004 15:51:01!
B0142584 3 9,500.00 28,000.00 05-OCT-2006 13:27:01!
B0142584 4 4,000.00 32,000.00 25-OCT-2007 09:45:02!
B0142584 5 5,500.00 37,500.00 27-NOV-2007 10:12:03!
B0142584 6 9,300.00 46,800.00 05-FEB-2009 11:12:01!
B0142584 7 -7,000.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 7,000.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 -9,300.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 9,500.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 -4,000.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 -11,500.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 9,500.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 -9,500.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 11,500.00 52,300.00 05-NOV-2009 12:27:01!
B0142584 7 9,300.00 52,300.00 05-NOV-2009 12:27:01!
"

NoCOUG Feb. 2011 Analytic Functions 28

Running Totals and Windowing: Notes

  ”LAG” puts curr/prev values on same row, that
allows easy WHERE clause to find threshold

  We could not put “LAG” in stmt with running
total (needed extra layering), because curr/prev
row was not available until running total was
done

  We got new running total for each code,
because that is in “PARTITION BY” clause

NoCOUG Feb. 2011 Analytic Functions 29

11.2 feature: LISTAGG

  Can be Simple Aggregate OR Analytic
  Concatenates values from rows into a string,

i.e. a LIST AGGregation
  Example is continuation of Running Total, which

has duplicate dates for some Sequences, and
LISTAGG faithfully shows all dups

  Including “distinct” in SQL looks across column
values, not within LISTAGG: can not eliminate dups

  Simple Aggregate example shows dups…

NoCOUG Feb. 2011 Analytic Functions 30

11.2 LISTAGG: Simple Aggregate
SELECT seq,"
 LISTAGG(to_char(activity_date,'MON-YYYY'), '; ')"
 WITHIN GROUP (ORDER BY seq) "Activity_Dates""
FROM fprpoda WHERE po_code = 'B0142584' AND seq < 3"
GROUP BY seq;  
 SEQ Activity_Dates"
----- ---------------------"
 0 JAN-2003; JAN-2003"
 1 OCT-2003"
 2 OCT-2004; OCT-2004"

NoCOUG Feb. 2011 Analytic Functions 31

11.2 LISTAGG: Analytic
  Need "distinct" for analytic, else shows all 19 rows;

No GROUP BY, analytic function is at detail level
SELECT distinct seq,"
 SUM(amt) OVER (ORDER BY seq, activity_date) "RunTot","
 SUM(amt) OVER (PARTITION BY seq ORDER BY"

 seq, activity_date) "SeqTot",  
 LISTAGG(amt, ’;’) WITHIN GROUP (ORDER BY seq)  
 OVER (PARTITION BY seq) "Amts""
FROM fprpoda WHERE po_code = 'B0142584’  
 AND seq IS NOT NULL ORDER BY seq;"

  Sequence 7 has 10 Amount entries, some cancel
each other out…

NoCOUG Feb. 2011 Analytic Functions 32

11.2 LISTAGG: Analytic
  Reminder of syntax, and result from SQL stmt:
LISTAGG(amt, ’;’) WITHIN GROUP (ORDER BY seq)  
 OVER (PARTITION BY seq) "Amts”  
 Seq RunTot SeqTot Amts"
---- ------ ------ -----------------------------"
 0 5001 5001 5000;1"
 1 11501 6500 6500"
 2 18500 6999 7000;-1"
 3 28000 9500 9500"
 4 32000 4000 4000"
 5 37500 5500 5500"
 6 46800 9300 9300"
 7 52300 5500 9300;-9500;9500;-11500;-4000;"
 9500;-9300;7000;-7000;11500"

NoCOUG Feb. 2011 Analytic Functions 33

Moving Average
  WITH SGLCODE AS ( 
select seq, amt  
from fprpoda  
where po_code in ('BA177629')  
 and seq IS NOT NULL)  
SELECT seq, amt,  
 avg(amt) OVER (order by seq rows  
 between 1 preceding and 1 following) ma1,  
 avg(amt) OVER (order by seq rows  
 between 0 preceding and 1 following) ma2,  
 avg(amt) OVER (order by seq rows  
 between 1 preceding and 0 following) ma3"
"FROM SGLCODE order by seq;"

NoCOUG Feb. 2011 Analytic Functions 34

Moving Average: Result
  SEQ AMT MA1 MA2 MA3  
--- --------- --------- --------- ---------  
 0 .01 1068.86 1068.86 .01  
 0 2137.70 2379.24 3568.85 1068.86  
 1 5000.00 2596.23 2825.50 3568.85  
 2 651.00 18500.00 25250.00 2825.50  
 3 49849.00 25250.00 49849.00 25250.00  
NOTE: 
MA1: 1 before, 1 after (3 rows avg)  
MA2: 0 before, 1 after (2 rows avg)  
MA3: 1 before, 0 after (2 rows avg)  
"

NoCOUG Feb. 2011 Analytic Functions 35

(Finally) NTILE

  Example on next slide is 6 rows of test scores
with 4 buckets (Quartile)

  NTILE definition is ordered DESCENDING so
that highest test scores are in buckets 1 and 2

  If “DESC” were taken out of SQL, ranking would
be reversed, i.e. lowest scores would be in the
1st quartile rather than 4th

  Two extra values (6/4) are allocated to buckets
1 and 2

NoCOUG Feb. 2011 Analytic Functions 36

NTILE: Example with 4 buckets
SELECT name, score,"
 NTILE(4) OVER (ORDER BY score DESC)  
 AS quartile"

FROM test_scores ORDER BY name;"
NAME SCORE QUARTILE"
----------------- ------ ---------"
Barry Bottomly 12 4"
Felicity Fabulous 99 1"
Felix Fair 41 2"
Mildred Middlin 55 2"
Paul Poor 24 3"
Sharon Swell 86 1"

NoCOUG Feb. 2011 Analytic Functions 37

NoCOUG Feb. 2011 Analytic Functions 38

A & Q

  A & Q Answers: Wisdom to share? Questions?
  Philip Rice price [at] ucsc {dot} edu

