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Don’t Be In a Funk: 
Use Analytic Functions 

 
 

Philip Rice 
University of California Santa Cruz 

Analytic Functions 



Overview 

  My involvement came from a performance 
problem 

  Overlap with some of the “traditional” aggregate 
functions: e.g. max, avg, count 
-- same keyword, similar syntax 

  Goal today: raise awareness of possibilities, 
know when to consider as an option; 
not a comprehensive view of all functions 
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Overview 

  Functions are used in SELECT statement: 
 likely to be most helpful in reporting situations 

  Better functionality: traditional approach can be 
much more difficult or nearly impossible 

  Performance improvement is likely to be more 
obvious with larger datasets, difference can be 
hours down to minutes(!) 
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General Syntax 

  Function(arg1, …, argn) OVER ( 
[PARTITION BY <…>]   [ORDER BY <…>] 
[window_clause] ) 

  “OVER” is indicator of analytic function 
  PARTITION BY is comparable to GROUP BY 
  window_clause is not as commonly used, but 

can be helpful, e.g. looking at different time 
periods on same row of output (examples later) 

  window_clause (partial) syntax is 
[ROW or RANGE] BETWEEN <start> AND <end> 
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Example: “traditional” count 
  select count(*), OBJECT_TYPE  
from all_objects  
where owner = 'OUTLN’ 
group by OBJECT_TYPE;  
 
COUNT(*) OBJECT_TYPE  
-------- -----------  
       4 INDEX  
       1 PROCEDURE  
       3 TABLE"

  Non-aggregated columns must be in GROUP BY 
  What if we want to show detail at same time as 

the aggregate? 
NoCOUG   Feb. 2011 Analytic Functions 5 



If “OVER” is empty, acts on whole set 
  select object_name,object_type,  

  count(*) OVER () tot_count,  
  count(*) OVER (PARTITION BY object_type) type_count  
from all_objects where owner = 'OUTLN';  
 
OBJECT_NAME           OBJECT_TYPE  TOT_COUNT TYPE_COUNT  
--------------------- ----------- ---------- ----------  
OL$NAME               INDEX                8          4  
OL$HNT_NUM            INDEX                8          4  
OL$SIGNATURE          INDEX                8          4  
OL$NODE_OL_NAME       INDEX                8          4  
ORA$GRANT_SYS_SELECT  PROCEDURE            8          1  
OL$NODES              TABLE                8          3  
OL$HINTS              TABLE                8          3  
OL$                   TABLE                8          3"
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Timing of execution in SQL 

  Analytic functions are computed after: 
  All joins 
  WHERE clause 
  GROUP BY 
  HAVING 

  Main ORDER BY of query is after analytic function 
  So AFs can only appear in select list and 

 in main ORDER BY clause of query 
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Timing of execution in SQL 

  Stages: 
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Joins, WHERE, GROUP BY, HAVING 

Apply analytic functions to result set 
rows (aka “partition”) 

Apply ORDER BY clause 
 (from main query) 



Prep for ROW_NUMBER and RANK 
  Select object_type “ObjTyp” to_char(last_ddl_time,  

               'yyyymmdd hh24miss') last_ddl_time  
from all_objects  
where owner = 'OUTLN’ 
 and object_type IN ('TABLE','INDEX')  
group by owner, object_type,  
  to_char(last_ddl_time,'yyyymmdd hh24miss')  
order by object_type, last_ddl_time;  
ObjTyp LAST_DDL_TIME  
------ ---------------  
INDEX  20031001 173156  
INDEX  20080906 102159  
TABLE  20080906 102610"

  2 of 3 have same LAST_DDL_TIME at detail level, 
 we’ll use as demo for RANK 
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ROW_NUMBER and RANK 
select object_type "ObjTyp", substr(object_name,1,10) "ObjName","
     to_char(last_ddl_time,'yyyymmdd hh24miss') last_ddl_time,"

     row_number() over "
      (partition by object_type order by last_ddl_time) RN,"

     rank() over "
      (partition by object_type order by last_ddl_time) R,"

     dense_rank() over "
      (partition by object_type order by last_ddl_time) DR"

   from all_objects"
   where owner = 'OUTLN' and object_type  IN ('TABLE','INDEX');"

Note that all three functions have same PARTITION BY 
and ORDER BY clauses. 

Results on next slide … 
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Row_number, Rank, Dense Rank 

  Remember: Last three columns all have: 
(partition by object_type order by last_ddl_time)  
[…]"

  ObjTyp ObjName    LAST_DDL_TIME     RN    R   DR  
------ ---------- --------------- ---- ---- ----  
INDEX  OL$NAME    20031001 173156    1    1    1  
INDEX  OL$HNT_NUM 20031001 173156    2    1    1  
INDEX  OL$SIGNATU 20031001 173156    3    1    1  
INDEX  OL$NODE_OL 20080906 102159    4    4    2  
TABLE  OL$NODES   20080906 102610    1    1    1  
TABLE  OL$        20080906 102610    2    1    1  
TABLE  OL$HINTS   20080906 102610    3    1    1"
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Behavior: Row_number, Rank, Dense Rank 

  If two records have the same value in the ORDER BY, 
the two records get different ROW_NUMBER. 
RANK and DENSE_RANK do not work like that. 

  If two records have the same value in the ORDER BY, 
they both get the same RANK or DENSE_RANK. 
The difference between RANK and DENSE_RANK is 
how they are counted. 
DENSE_RANK uses sequential numbers, RANK does 
not. 
In the INDEX set, the fourth is different from the first 
three. 
RANK jumps to display "4", and DENSE RANK is "2". 
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ROW_NUMBER is similar to ROWNUM 

  One key difference: 
ROWNUM gets incremented as rows are 
returned from the query, 
 so we can not say "WHERE ROWNUM = 5". 
But ROW_NUMBER can be used that way. 
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Sort both ways in same SQL 
  Select […],  

  row_number() OVER ( partition by object_type  
  order by last_ddl_time) SORTUP,  
  row_number() OVER ( partition by object_type  
  order by last_ddl_time DESC NULLS LAST) SORTDOWN  
from all_objects where owner = 'OUTLN’ 
 and object_type IN ('TABLE','INDEX');"

 
ObjTyp LAST_DDL_TIME       SORTUP   SORTDOWN  
------ --------------- ---------- ----------  
INDEX  20031001 173156          1          4  
INDEX  20031001 173156          2          3  
INDEX  20031001 173156          3          2  
INDEX  20080906 102159          4          1  
TABLE  20080906 102610          1          3  
TABLE  20080906 102610          2          2  
TABLE  20080906 102610          3          1"
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Traditional -- slow way to see mixed detail and 
summary levels (generated from reporting tool) 

  SELECT <detail columns>, max_effdt, max_effseq  
FROM  
 ( SELECT <detail columns>,  
     MAX (DISTINCT t2.APLAN_EFFDT) max_effdt  
   FROM t3, t1 LEFT OUTER JOIN t2 ON […]  
   WHERE […] GROUP BY t1.CTERM_EMPLID, t1.CTERM_TERM_CD) d5,  
 ( SELECT <detail columns>,  
     MAX (t2.APLAN_EFFSEQ) max_effseq  
   FROM t3, t1 LEFT OUTER JOIN t2 ON […]  
   WHERE […] GROUP BY t1.CTERM_EMPLID, t1.CTERM_TERM_CD,  
                      t2.APLAN_EFFDT) d4,  
 ( SELECT <detail columns only, no aggregate!!!>  
   FROM t3, t1 LEFT OUTER JOIN t2 ON […]  
   WHERE […]    < NO group by clause!!!> ) d3  
WHERE < predicates for outer select >  
ORDER BY < columns for outer select >"
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Analytic Function is FASTER!! 

Requires only one inline view, a 
single pass instead of three… 



Improvement is Hours to Minutes 
  SELECT <detail columns>, max_effdt, max_effseq  

FROM  
 ( SELECT <detail columns>,  
   max(t2.APLAN_EFFDT) OVER  
     (PARTITION BY t1.cterm_emplid, t1.cterm_term_cd)  
      AS  max_effective_date,  
   max(t2.APLAN_EFFSEQ) OVER  
     (PARTITION BY t1.cterm_emplid, t1.cterm_term_cd,  
                   t2.APLAN_EFFDT)  
      AS  max_effective_sequence  
      FROM t3, t5 (t1 LEFT OUTER JOIN t2 ON […] )  
       LEFT OUTER JOIN t4 ON […] WHERE […] )  
WHERE < predicates for outer select >  
ORDER BY < columns for outer select >"
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Keep adapting, don’t be a dinosaur! 



Example of UPDATE 
  UPDATE FZBRFCX SET FZBRFCX_ZERO_FLAG = 2  

WHERE rowid IN  
  (SELECT rowid FROM  
    (SELECT rowid, FZBRFCX_ZERO_FLAG Flag,  
       sum(FZBRFCX_TRANS_AMT) OVER  
         (PARTITION BY FZBRFCX_ACCT_CODE,  
                       FZBRFCX_FUND_CODE,  
                       FZBRFCX_DOC_REF_NUM) Sum_Amt  
     FROM FZBRFCX )  
   WHERE Sum_Amt = 0 AND Flag <> 0 ) ;"
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Helpful sidetrack: Query Subfactoring 
AKA Common Table Expression 

  Analytic functions often need an inline view 
(subquery). 

  Sometimes the inline views are nested 
  Indentation is helpful, but can be confusing 
  Subfactoring used here for clarity with related 

SQL statements across multiple slides 
  Subfactoring easily allows multiple use of alias 

[11.2 allows recursive too] 
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Traditional inline: layers with indentation 
  SELECT MID_LVL.po_code, MID_LVL.seq, […]  

FROM  
 (select INNER_LVL.po_code, INNER_LVL.seq, […]  
  from  
   (select po_code, seq, […]  
    from fprpoda b  
    where po_code in  
      (select b.po_code  
       from fprpoda b  
       where activity_date  
         between '01-NOV-09' and '09-NOV-09') CODE_LIST  
   ) INNER_LVL  
 ) MID_LVL  
WHERE < [MID_LVL.column] predicates...>"

NoCOUG   Feb. 2011 Analytic Functions 21 



Query Subfactoring: Top Down 
  WITH  

 CODE_LIST AS  
  (select po_code  
   from fprpoda  
   where activity_date  
         between '01-NOV-09' and '09-NOV-09’ ),  
 INNER_LVL AS  
  (select po_code, seq, […]  
   from fprpoda  
   where po_code in CODE_LIST ),  
 MID_LVL AS  
  (select po_code, seq, […]  
   from INNER_LVL )  
SELECT * FROM MID_LVL  
WHERE < predicates...>"
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Running Totals and Windowing 

  Requirement: 
Show values from current and previous rows, 
where running total went above $50,000 level, 
where more stringent approvals are required: 
Is anyone trying to get around audit rules? 

  Originally looked like it would need PL/SQL, with 
cursors starting and stopping 

  We’ll use query subfactoring to see the pieces 
build on each other… 
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Running Totals and Windowing: stmt1 

 WITH  
code_list AS ( -- [codes used in next stmt]  
SELECT distinct po_code  
FROM  fprpoda  
WHERE trunc(activity_date)  
 BETWEEN '01-NOV-09' AND '09-NOV-09’ 
  AND seq is not null ),"
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Running Totals and Windowing: stmt2 
  INNER_LVL AS ( -- [sum each code and seq combo]  

SELECT po_code,"

    LAG(po_code, 1) OVER  
        (ORDER BY po_code) "PrevCode",  
    seq , amt "CurrAmt", activity_date, "

   SUM(amt) OVER (PARTITION BY po_code  
       ORDER BY po_code, seq, activity_date) 

" " "running_tot  
  FROM fprpoda  
  WHERE po_code IN  
 ( select po_code from CODE_LIST )  ),"
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Running Totals and Windowing: stmt3 
  MID_LVL AS ( -- get curr/prev row values  
SELECT    po_code, seq ,  
 (CASE WHEN "PrevCode" != po_code THEN NULL"

    ELSE  LAG(running_tot, 1) OVER"
      (ORDER BY po_code, seq) END) "PrevRunTot”,  
   running_tot "RunningTot",  
   activity_date curr_actv,  
  (CASE WHEN "PrevCode" != po_code THEN NULL"
   ELSE  LAG(activity_date) OVER  
     (ORDER BY po_code, seq) END)  prev_actv  
  FROM INNER_LVL)  
  -- 1 is default for LAG, hard coding would be  
  --  for clarity"
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Running Totals and Windowing: Final 
  Query subfactoring above is done: one isolated stmt 

shows what we’re ultimately trying to do… 
 SELECT po_code, seq, "PrevRunTot",  
   "RunningTot”-"PrevRunTot" "DiffChange",  

      "RunningTot" , prev_actv, curr_actv  
 FROM MID_LVL  
 WHERE "PrevRunTot” <  50000  
   AND "RunningTot” >= 50000;  
PO_CODE   SEQ  PrevRunTot  DiffChange  RunningTot PREV_ACTV CURR_ACTV"

-------- ---- ----------- ----------- ----------- --------- ---------"
B0142584    7   46,800.00    5,500.00   52,300.00 05-FEB-09 05-NOV-09!
B0181676    1   38,142.00   23,856.34   61,998.34 26-NOV-07 17-NOV-08!
S0176940    1   43,371.00   42,156.00   85,527.00 17-JUN-05 23-MAR-06!
S0181330    1        1.00  302,069.91  302,070.91 20-JUL-07 28-AUG-07!
"
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Detail for one PO, Seq# 0, 2, and 7: exact same date/time, 
 so running total is not gradually increasing 

PO_CODE   SEQ     CurrAmt  RunningTot Activity_Date_Time!
-------- ---- ----------- ----------- --------------------!
B0142584    0        1.00    5,001.00 22-JAN-2003 10:27:00!
B0142584    0    5,000.00    5,001.00 22-JAN-2003 10:27:00!
B0142584    1    6,500.00   11,501.00 09-OCT-2003 14:36:01!
B0142584    2       -1.00   18,500.00 27-OCT-2004 15:51:01!
B0142584    2    7,000.00   18,500.00 27-OCT-2004 15:51:01!
B0142584    3    9,500.00   28,000.00 05-OCT-2006 13:27:01!
B0142584    4    4,000.00   32,000.00 25-OCT-2007 09:45:02!
B0142584    5    5,500.00   37,500.00 27-NOV-2007 10:12:03!
B0142584    6    9,300.00   46,800.00 05-FEB-2009 11:12:01!
B0142584    7   -7,000.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7    7,000.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7   -9,300.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7    9,500.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7   -4,000.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7  -11,500.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7    9,500.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7   -9,500.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7   11,500.00   52,300.00 05-NOV-2009 12:27:01!
B0142584    7    9,300.00   52,300.00 05-NOV-2009 12:27:01!
"
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Running Totals and Windowing: Notes 

  ”LAG” puts curr/prev values on same row, that 
allows easy WHERE clause to find threshold 

  We could not put “LAG” in stmt with running 
total (needed extra layering), because curr/prev 
row was not available until running total was 
done 

  We got new running total for each code, 
because that is in “PARTITION BY” clause 

NoCOUG   Feb. 2011 Analytic Functions 29 



11.2 feature: LISTAGG 

  Can be Simple Aggregate OR Analytic 
  Concatenates values from rows into a string, 

i.e. a LIST AGGregation 
  Example is continuation of Running Total, which 

has duplicate dates for some Sequences, and 
LISTAGG faithfully shows all dups 

  Including “distinct” in SQL looks across column 
values, not within LISTAGG: can not eliminate dups 

  Simple Aggregate example shows dups… 
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11.2 LISTAGG: Simple Aggregate 
SELECT seq,"
  LISTAGG(to_char(activity_date,'MON-YYYY'), '; ')"
  WITHIN GROUP (ORDER BY seq) "Activity_Dates""
FROM fprpoda WHERE po_code = 'B0142584' AND seq < 3"
GROUP BY seq;  
 SEQ Activity_Dates"
----- ---------------------"
    0 JAN-2003; JAN-2003"
    1 OCT-2003"
    2 OCT-2004; OCT-2004"
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11.2 LISTAGG: Analytic 
  Need "distinct" for analytic, else shows all 19 rows; 

No GROUP BY, analytic function is at detail level 
SELECT distinct seq,"
  SUM(amt) OVER (ORDER BY seq, activity_date) "RunTot","
  SUM(amt) OVER (PARTITION BY seq ORDER BY"

      seq, activity_date) "SeqTot",  
  LISTAGG(amt, ’;’) WITHIN GROUP (ORDER BY seq)  
  OVER (PARTITION BY seq) "Amts""
FROM fprpoda WHERE po_code = 'B0142584’  
 AND seq IS NOT NULL ORDER BY seq;"

  Sequence 7 has 10 Amount entries, some cancel 
each other out… 
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11.2 LISTAGG: Analytic 
  Reminder of syntax, and result from SQL stmt: 
LISTAGG(amt, ’;’) WITHIN GROUP (ORDER BY seq)  
  OVER (PARTITION BY seq) "Amts”  
 Seq RunTot SeqTot Amts"
---- ------ ------ -----------------------------"
   0   5001   5001 5000;1"
   1  11501   6500 6500"
   2  18500   6999 7000;-1"
   3  28000   9500 9500"
   4  32000   4000 4000"
   5  37500   5500 5500"
   6  46800   9300 9300"
   7  52300   5500 9300;-9500;9500;-11500;-4000;"
                   9500;-9300;7000;-7000;11500"
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Moving Average 
  WITH SGLCODE AS (  
select seq, amt  
from fprpoda  
where po_code in ('BA177629')  
  and seq IS NOT NULL )  
SELECT   seq, amt,  
  avg(amt) OVER (order by seq rows  
   between 1 preceding and 1 following ) ma1,  
  avg(amt) OVER (order by seq rows  
   between 0 preceding and 1 following ) ma2,  
  avg(amt) OVER (order by seq rows  
   between 1 preceding and 0 following ) ma3"
"FROM SGLCODE order by seq;"
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Moving Average: Result 
  SEQ       AMT       MA1       MA2       MA3  
--- --------- --------- --------- ---------  
  0       .01   1068.86   1068.86       .01  
  0   2137.70   2379.24   3568.85   1068.86  
  1   5000.00   2596.23   2825.50   3568.85  
  2    651.00  18500.00  25250.00   2825.50  
  3  49849.00  25250.00  49849.00  25250.00  
NOTE: 
MA1: 1 before, 1 after (3 rows avg)  
MA2: 0 before, 1 after (2 rows avg)  
MA3: 1 before, 0 after (2 rows avg)  
"
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(Finally) NTILE 

  Example on next slide is 6 rows of test scores 
with 4 buckets (Quartile) 

  NTILE definition is ordered DESCENDING so 
that highest test scores are in buckets 1 and 2 

  If “DESC” were taken out of SQL, ranking would 
be reversed, i.e. lowest scores would be in the 
1st quartile rather than 4th 

  Two extra values ( 6/4 ) are allocated to buckets 
1 and 2 
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NTILE: Example with 4 buckets 
SELECT name, score,"
 NTILE(4) OVER (ORDER BY score DESC)  
 AS quartile"

FROM test_scores ORDER BY name;"
NAME               SCORE  QUARTILE"
----------------- ------ ---------"
Barry Bottomly        12         4"
Felicity Fabulous     99         1"
Felix Fair            41         2"
Mildred Middlin       55         2"
Paul Poor             24         3"
Sharon Swell          86         1"
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A & Q 

  A & Q  Answers: Wisdom to share?  Questions? 
  Philip Rice  price [at] ucsc {dot} edu 


